HARMONIC UNIVALENT FUNCTIONS INVOLVING FOX - WRIGHT

  Bulletin of Mathematics

  ISSN Printed: 2087-5126; Online: 2355-8202 Vol. 08, No. 02 (2016), pp.133-141 http://jurnal.bull-math.org

  

HARMONIC UNIVALENT FUNCTIONS INVOLVING

FOX - WRIGHT

AIBAH

  IREGAR ORHEZAN MAR AND N ZMAR N AUD S S , N U T . A T .D

  Abstract. In this paper we introduce the new subclass of analytic and harmonic univalent func- tions involving Fox-Wright functions.The coefficient bounds and Growth Theorem as well as Dis- tortion Theorem results for these functions are obtained.

1. INTRODUCTION

  A continuous function f (u, v) = u + iv is a complex-valued harmonic function in a simply connected complex domain C if both u and v are real harmonic in

C. Let H denote the family of function f = h + g which are harmonic and sense

  • preserving in the open unit disk U = z : |z| < 1 where h and g are given by

  ∞ ∞ k k , h (z) = z + a k z g (z) = b k z (1)

  ∑ ∑

  k =2 k =1 The function h is called the analytic part and g is called the co-analytic part of the harmonic function f = h + g. The class H reduces to the class of normalized univalent analytic functions, if the co-analytic part of f is zero. A necessary and sufficient condition for f in H to be locally univalent and sense-preserving in U

  ′ ′( is that h (z) > g z ) in U . Let T H be the class of functions in H that may be expressed as f

  = h + g where Received 06-12-2016, Accepted 26-12-2016.

  2010 Mathematics Subject Classification : 30C45 Key words and Phrases : Harmonic, Univalent, starlike, Fox-Wright functions.

  Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright

  ∞ ∞ k k h a z , g b z , a (2)

  (z) = z − k (z) = k k ≥ 0, b k ≥ 0

  ∑ ∑

  k =2 k =1 Let S

  H (α) and K H (α) be the subclasses of H consisting of univalent harmonic functions starlike of order and convex of order α, respectively, where 0 ≤ α < 1 and

  |z| = r < 1, if ∂ i

  θ (arg f (re )) ≥ α, |z| = r < 1, (3)

  ∂ θ and " #

  ∂ ∂ i θ arg f (re ) ≥ α, |z| = r < 1, (4)

  ∂ θ ∂ θ Also let T S (α) and T K (α) be the respective subclasses of S (α) and K (α)

  H H H H consisting of functions of the form (2).

  Harmonic functions are indeed famous for their use in the study of minimal sur- faces and play an important role in a variety of problems in applied mathematics. Harmonic functions have been studied by different geometers such as Kneser [8]. In 1984, Clunie and Sheil-Small [2] began a study of complex-valued, harmonic mappings defined on a domain U ⊂ C. The coefficients bounds for the classes S H (α), K H (α), T S H (α), T K H (α) a are stud- ied in details by Silverman [11], Jahangiri [4], Jahangiri & Silverman [5], Silverman & Silvia [12],Jakubowski et al [6], Janteng et. al [7], Yalcin, [13], [14], [15] and Siregar et.al [10].

2. PRELIMINARY RESULTS

  In this paper, we considered the function as follows ∞

  α m m k Ω Θ

  I (α , β ) f (z) = z + a z , (5)

  1 1 k m,k ∑ k k k =2

      q

  Γ α j + A j (k − 1)

   

  ∏

     

   j =1 

  1 m

    Ω   ,

  = (6) k  s 

   

  (k − 1)!  

    Γ

  β j + B j (k − 1)  

  ∏

  j =1 " # k

  (k − 1) (k + λ − 2)! m

  Θ . (7) = k

  λ !(k − 2)! Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright

  In this section, the classes S H (Ω, Θ, γ) and T H (Ω, Θ, γ) , of functions which are harmonic univalent in U will be introduced. Some properties for functions f belonging to these classes which include the coefficient estimates, growth results and distortion theorem will be given.

  Let f = h + g denote in the form (2). f be in class function of S (Ω, Θ, γ) if H satisfy the condition

    ∂ λ

    (I f (z)) m,k

  ∂ θ i θ Re > 1 −|γ| , (z = re , z ∈ U) (8)

  ∂  z 

  ∂ θ α α where, I f f

  (x) in (1.5), 0 < |γ| ≤ 1 and I (z) = I(h) + I(g(z)) m,k m,k

3. COEFFICIENT BOUNDS

  Theorem 1. Let f = h + g with h and g given by (2), ∞ m m

  Ω Θ k (|a | +|b |) ≤ |γ| −|b | , (9) k k

  1

  ∑ k k

  k =2

      q

  Γ  α + A (k − 1)  j j

  ∏

      h k i

   j  =1 (k−1) (k+λ −2)! m

  1 m   where Ω   , Θ . Then

  = = s k   k

  (k−1)! λ !(k−2)!  

     

  Γ β j + B j (k − 1)

   ∏  j

  =1 f is harmonic univalent sense preserving in U and f ∈ S H (Ω, Θ, γ).

  ∞ ∞ k k Proof. Let f = h + g where ,h(z) = z − ∑ |a k | z and g (z) = ∑ |b k | z , |b 1 | < 1. k k

  =2 =1 For |z | ≤ |z | < 1, it sufficient to show that, f (z ) − f (z ) >

  0. So,

  1

  2

  1

  2 f h ,

  (z 1 ) − f (z 2 ) = (z 1 ) + g(z 1 ) − h(z 2 ) + g(z 2 ) = h (z ) − h(z ) − g(z ) − g(z )

  1

  2

  1

  2 By using triangle inequality for the above function is, f (z 1 ) − f (z 2 ) ≥ h (z 1 ) − g(h 2 ) − g (z 1 ) − g(z 2 ) (10)

  Substitute the function h and g from (2) respectively, into equation (10) become

  Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright f (z 1 ) − f (z 2 ) ≥ z

  k

  ||z| k −1

  k =2 k |a k

  ∑

  ∞

  ′ (z) ≥ 1 −

  Consequently, f is univalent in U . To prove that f is sense preserving in U . This is because h

  , in equation (6) and (7) respectively. f (z 1 ) − f (z 2 ) ≥ |z 1 − z 2 | (1 −|b 1 | −|z 2 ||γ| −|b 1 |) > 0

  (k+λ −2)! λ !(k−2)! i

  = h (k−1)

  ∑

  , Θ m k

        

  1 (k−1)!

  β j + B j (k − 1)      

  j =1 Γ

  ∏

  Γ α j + A j (k − 1) s

  j =1

  ∏

  > 1 − ∞

  k =2 k |a k

  =       

  |b k | , >

  ′ (z) ≥ g

  (12) ∴ h

  (z) ,

  ≥ g ′

  ||z| k −1

  k =1 k |b k

  ∑

  ∞

  ] γ

  | , take U = {z : |z| < 1, z ∈ C} ≥ 1 −

  Θ m k

  k =1 k [Ω m k

  ∑

  |a k | ≥ 1 − ∞

  ] γ

  Θ m k

  k =2 k [Ω m k

  ∑

  ∞

        q

  , where Ω m k

  1 − ∞ ∑ k =2 a k z k

  1 − z k

  ∑

  ∞

  2 ) +

  1 − z

  2 ) ≥ (z

  1 ) − f (z

  using the properties of sigma, from equation (11), we obtain f (z

  2 (11)

  2 ∞ ∑ k =1 b k z k

  (z k

  1 − z k

  ∞ ∑ k =2 a k z k

  2 ! = (z 1 − z 2 ) +

  2 − ∞ ∑ k =1 b k z k

  1 ! − z

  1 − ∞ ∑ k =1 b k z k

  2 ! z

  2 −

k

=2

a k z k

  1 ! − z

  k =2 a k

  1 − z k

  [|a k | +|b k |] !

  ! . From the equation in (5), will be finding f

  Θ k m i

  Ω k m

  k =2 k h

  ∑

  ∞

  1 −|b 1 | −

  2

  (z 1 ) − f (z 2 ) f (z 1 ) − f (z 2 ) ≥ absz 1 − z

  k =2 k [|a k | +|b k |]|z n | k −1

  2 ) −|b

  ∑

  ≥ |z 1 − z 2 | 1 −|b 1 | − ∞

  2 ),

  1 − z k

  (z k

  k =1 a k

  ∑

  ∞

  1 | +

  ′ (z) . Therefore f is sense preserving in U .

  Θ m k

  | !

  ]|b k

  Θ m k

  k =1 k [Ω m k

  

  | − ∞

  ]|a k

  Θ m k

  k =2 k [Ω m k

  ∑

  |γ| − ∞

    

  −1 ≥ 2

  ]b k z k

  k =1 k [Ω m k

  ≥ 0 The harmonic mappings f (z) = z +

  ∑

  ∞

  −1 − 2

  ]a k z k

  Θ m k

  k =2 k [Ω m k

  ∑

  ∞

  −1 = 2|γ| − 2

  ]b k z k

  Θ m k

  k =1 k [Ω m k

  ∑

  −1

    

  ∞

  Θ m k

  k =1 k

  |y k

  k =1

  ∑

  | + ∞

  |x k

  k =2

  

  |) = ∞

  | +|b k

  (|a k

  1

  ]

  Θ m k

  [Ω m k

  ∑

  ∑

  ] z k

  k =2 |γ| x k k [Ω m k

  Θ m k

  ] z k

  ∑

  k =1 |γ| y k k [Ω m k

  Θ m k

  (13) where ∞

  ∞

  ∑

  k =2 |x n | +

  ∞

  ∑

  k =1 |y n | = 1, it shows that the coeddicient bound given by (9) is sharp. The functions of form (13) are in S

  H (Ω, Θ, γ) because

  ]a k z k

  k =2 k [Ω m k

  | = 1 The restriction placed in Theorem 1 on the moduli of the coefficients of f = h + g enables us to conclude for arbitrary rotation of the coefficients of f that the resulting

  So, the I λ m,k

  = γ + 1 + ∞

  λ m,k g (z))

  − 2 − γ − (I λ m,k h (z)) + (I

  λ m,k g (z))

  λ m,k h (z)) − (I

  , ⇔ γ + (I

  , it suffieces to show that |γ| + w ≥ 2 −|γ| − w

  2 −|γ| − w

  β 1 )g(z), become Now f ∈ S H (Ω, Θ, γ). Usung the fact that Re{w} > 1 −|γ| if and only if |γ| + w ≥

  1 ,

  (α

  β 1 )h(z) and I λ m,k

  1 ,

  (α

  1 )g(z)

  k =2 k [Ω m k

  1 , β

  λ m,k (α

  1 )h(z) + I

  1 , β

  λ m,k (α

  1 ) f (z) = I

  1 , β

  (α

  I λ m,k

  β 1 ) f (z) in equation (5),

  1 ,

  (α

  Next I λ m,k

  Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright

  ∑

  Θ m k

  ∑

  ]b k z k

  ∞

  −1 −

  ]b k z k

  Θ m k

  k =1 k [Ω m k

  ∑

  ∞

  −1 −

  ]a k z k

  Θ m k

  k =2 k [Ω m k

  ∑

  ∞

  −1 ≥ 2|γ|−

  Θ m k

  ]a k z k

  k =1 k [Ω m k

  −1 −

  ∞

  ∑

  k =1 k [Ω m k

  Θ m k

  ]b k z k

  −1 − 2 − γ − 1 −

  ∞

  ∑

  k =2 k [Ω m k

  Θ m k

  ]a k z k

  −1

  ∑

  • |γ|
Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright

  Next the condition (10) is also necessary for functions f to be in T H (Ω, Θ, γ). Theorem 2. Let f

  = h + g with h and g given by (2). Then f ∈ T H (Ω, Θ, γ) if and only if the inequality (9) holds for the coefficients of f = h + g. Proof. First suppose that f

  ∈ T H (Ω, Θ, γ), then by (8) have n o λ ′

  λ Re (I h (z)) − I g (z) m,k m,k

  ( ) ∞ ∞ m m k m m k

  −1 −1 Θ Θ >

  = Re 1 − k [Ω ]a z − k [Ω ]b z 1 −|γ| k k

  ∑ k k ∑ k k

  k k =2 =1

  ∞ m m −

  Θ If choose z to be real and let z → 1 , then we can have 1 − k [Ω ]|a | − k

  ∑ k k

  k =2 ∞ m m

  Θ k [Ω ]|b k | > 1 −|γ|, which is precisely the assertion (9). Conversely, suppose k k

  ∑

  k =1 that the inequality (9) holds true. Then can be find from the equation (8) that n o

  λ ′ λ

  Re (I h (z)) − I g (z) m,k m,k

  ( ) ∞ ∞ m m k m m k

  −1 −1 Θ Θ

  = Re 1 − k [Ω ]a z − k [Ω ]b z k k

  

∑ k k ∑ k k

  k k =2 =1

  ∞ m m k −1 Θ

  ≥ 2 − k [Ω ](|a k | +|b k |)|z|

  ∑ k k

  k =1 ∞ m m

  > 2 k Θ − [Ω ](|a k | +|b k |) ≥ 1 −|γ|

  ∑ k k

  k =1 provided that the inequality (9) is satisfied.

4. GROWTH BOUNDS AND DISTORTION THEOREM

  In this subsection, growth bounds for functions in T H (Ω, Θ, γ) will be obtained and extreme points for this class will be given. Theorem 3. If f ∈ T (Ω, Θ, γ) for 0 < |γ| ≤ 1, N , λ ≤ 0 and |z| = r > 1, then

  H |γ| −|b 1 |

  2 f (z) ≤ (1 +|b |) r + r

  1 m m 2 Θ

  [Ω ] k k and

  |γ| −|b 1 |

  2 f (z) ≥ (1 −|b 1 |) r − r m m

  2 Θ [Ω ] k k Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright

  Proof. Let f ∈ T H (Ω, Θ, γ). Taking the absolute value of f (z). The right hand side f (z) ≥ (1 +|b

  ∑

  [|a k | +|b k |]r

  1 |

  ] |γ| −|b

  Θ m k

  2 [Ω m k

  k =2

  2 ∞

  (z) ≤ (1 +|b 1 |) r + |γ| −|b

  ] r

  Θ m k

  |γ| −|b 1 | 2 [Ω m k

  2 ≤ (1 +|b 1 |) r +

  k =2 [|a k | +|b k |]r

  ∑

  2 And also, by equation (9), we find f

  1 | 2 [Ω m k

  |]r k

  2 Θ m

  2 Θ m

  Ω m

  1 |

  |γ| −|b

  ′ (z) ≥ (1 −|b 1 |) −

  2 r, and f

  Ω m

  Θ m k

  1 |

  (z) ≤ (1 +|b 1 |) + |γ| −|b

  (Ω, Θ, γ) for 0 < |γ| ≤ 1, m ∈ N , λ ≥ 0 and |z| = r > 1 f ′

  Theorem 4. If f ∈ T H

  Distortion for function in T H (Ω, Θ, γ) will be obtained by Theorem 4.

  2 (15) The proof is complete.

  ] r

  ≤ (1 +|b 1 |) r + ∞

  | +|b k

  1 |) r −

  ∑

  ] ∞

  Θ m k

  2 [Ω m k

  |γ| −|b 1 |

  2 ≥ (1 +|b 1 |) r −

  k =2 [|a k | +|b k |]r

  ≥ (1 +|b 1 |) r − ∞

  k =2

  |]r k

  | +|b k

  [|a k

  k =2

  ∑

  ∞

  ∑

  2 [Ω m k

  [|a k

  ] r

  k =2

  ∑

  ∞

  1 |) r +

  The left hand side, f (z) ≤ (1 +|b

  2 (14)

  Θ m k

  Θ m k

  1 | 2 [Ω m k

  |γ| −|b

  2 By equation (9), we obtain f (z) ≥ (1 +|b 1 |) r −

  |]r

  | +|b k

  [|a k

  ] |γ| −|b 1 |

  2 r. Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright

  To obtained distortion theorem, it can be differentiate the equation in (14) and (15), then

  |γ| −|b |

  1 ′ f r,

  (z) ≤ (1 +|b 1 |) + m m

  Ω Θ

  2

  2 and

  |γ| −|b 1 | ′ f (z) ≥ (1 −|b 1 |) − r. m m

  Ω Θ

  2

  2 REFERENCES

  

1. Al-Saqsi, K., Darus, M. (2008). An Operator Defined by Convolution Involving

the Polylogarithms Functions. University Kebangsaan Malaysia.

  

2. Clunie, J. & Sheil-Small, T. 1984. Harmonic univalent functions. Ann. Acad. Sci.

  Fenn.,Ser. A.I 9: 3-25.

  3. Darus, M. & Siregar, S. 2005. Certain subclass of harmonic functions using

  Hadamard product. Proc. Int. Advanced Tech. Congress. ITMA(Univ. Putra Malaysia).

  4. Jahangiri, J. M. 1999. Harmonic functions starlike in the unite disk. J. math.

  Anal. Appl .235: 470-477.

  

5. Jahangiri, J. M. and Silverman, H. 2002. Harmonic Univalent functions with

Varying Arguments, Int.J. Appl. Math. 8(3): 267-275.

  6. Jakubowski, Z. J., Majchrzak, W. & Skalska, K. 1993. Harmonic mappings with

  a positive real part. Materialy Konferencjiz Teorii Zagadnien Ekstremal- nych, Lodz XIV: 17-24.

  7. Janteng, A., Halim, S. A. & Darus, M. 2007. A new subclass of harmonic univalent functions. South. Asian Bull. Math. 31: 81-88.

  

8. Kneser, H. 1926. L”osung der aufgabe 41. Jahresber, Deutsch. Math.-Verein.

  35:123-124.

  

9. Ponnusamy, S. & Sabapathy, S. 1996. Polylogarithms in the theory of univalent

functions. Results in Mathematics 30: 136-150.

  10. Siregar, S, Darus, M and Jahangiri, J.M. 2007. Harmonic Univalent functions Defined by Convolution, Int.J. Comp. & Math. Appl. 1(2): 173-182.

  

11. Silverman, H. 1998. Harmonic univalent functions with negative coefficients. J.

  Math. Anal. Appl . 220(1): 275-284.

  12. Silverman, H. & Silvia, E. M. 1999. Subclasses of harmonic univalent functions.

  New Zeal. J. Math . 28: 275-284.

  

13. Yalcin, S. & O”ztu”rk, M. 2006. On a subclass of certain convex harmonic

  Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright

  

14. Yalcin, S., O”ztu”rk, M. & Yamankaradeniz, M. 2000. On some subclasses of

  harmonic functions. Kluwer Acad. Publ., Math. Appl., Fun. Equ. Ineq. 518: 325-331.

  15. Yalcin, S., O”ztu”rk, M. & Yamankaradeniz, M. 2002. A new subclass of harmonic mappings with positive real part. Hacettepe J. Math. Stat. 31: 13-18.

  Saibah Siregar : Department of Science and Biotechnology, Faculty of Engineering and Life Sciences, University of Selangor, Bestari Jaya 45600, Selangor D.E. Malaysia

  E-mail: [email protected]

  Norhezan Umar : Department of Science and Biotechnology, Faculty of Engineering and Life Sciences, University of Selangor, Bestari Jaya 45600, Selangor D.E. Malaysia

  E-mail: [email protected]

  Tn. Azmar Tn.Daud : Department of Science and Biotechnology, Faculty of Engineering

and Life Sciences, University of Selangor, Bestari Jaya 45600, Selangor D.E. Malaysia

  E-mail: [email protected]

  Siregar, S. et al. – Harmonic Univalent Function Involving Fox - Wright .

Dokumen yang terkait

BAB I PENDAHULUAN 1.1 Latar Belakang - UEU Undergraduate 11900 BAB I.Image.Marked

0 0 8

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah - UEU Undergraduate 11901 BAB I.Image.Marked

0 0 11

BAB I PENDAHULUAN - EFEKTIVITAS KOMUNIKASI ANTARPRIBADI GURU BIMBINGAN KONSELING TERHADAP MOTIVASI BELAJAR SISWA KELAS X SMK JAKARTA 1

0 0 9

BAB I PENDAHULUAN A. Latar Belakang - PERBEDAAN EFEKTIFITAS MUSCLE ENERGY TECHNIQUE (MET) DAN MYOFASCIAL RELEASE TECHNIQUE (MRT) PADA INTERVENSI ULTRASOUND DALAM MENINGKATKAN FLEKSIBILITAS OTOT UPPER TRAPEZIUS PADA MYOFASCIAL

0 2 7

Risana Rachmatan, Triova Natasha Prodi Psikologi, Fakultas Kedokteran, Universitas Syiah Kuala email: risana.ridwangmail.com Abstrak - Disonansi Pasca Pembelian Online Pada Mahasiswa

0 0 7

DAFTAR ISI - Cover | Daftar Isi | - | Seminar Nasional Teknologi Informasi Komunikasi dan Industri

0 4 14

Chaterine, Sri Hartini, Winida Marpaung Fakultas Psikologi Universitas Prima Indonesia Medan email: chaterine_xuyahoo.com, srihartini_psikologiunpri.mdn.ac.id, winida.marpaunggmail.com Abstrak - Readiness For Change Ditinjau Dari Kepemimpinan Transformasi

0 1 11

A. Penilaian Kinerja Sebuah Perspektif Organisasi - PENILAIAN KINERJA KARYAWAN CONTOH

0 0 10

Effects of Organizational Culture on Employee Performance (Case Study of Wartsila - Kipevu Ii Power Plant)

1 6 14

DUNAT INDRATMO Teknik Sipil FTSP - ITS Telp. : (031) 8290332 ; Fax. : (031) 8292953 ; HP. 08123235002 E-mail : indratmo53yahoo.co.id Abstrak— Kendaraan bermotor di kota Surabaya semakin meningkat jumlahnya,

0 0 6