Studi Temperatur Optimal Terhadap Kekuatan Tarik dan Makrostruktur pada Komposisi Campuran Polypropiline (PP) dan High-Densitiy Polyethylene (HDPE) dengan Mesin Ekstruder

  LAMPIRAN 1

  (a) (b) (c)

Gambar 4.1 Film Spesimen Setelah Pengujian Tarik

  o o o

  (a)F1 165

  C, (b) F2 165

  C, (c) F3 165 C (a) (b)

  (c)

Gambar 4.2 Film Spesimen Setelah Pengujian Tarik

  o o o

  (a)F1 170

  C, (b) F2 170

  C, (c) F3 170 C

  (a) (b) (c)

Gambar 4.4 Film Spesimen Setelah Pengujian Tarik

  C

  o

  C, (c) F3 180

  o

  C, (b) F2 180

  o

  (c)

Gambar 4.3 Film Spesimen Setelah Pengujian Tarik

  C (a) (b)

  o

  C, (c) F3 175

  o

  C, (b) F2 175

  o

  (a)F1 175

a) F1 180

  LAMPIRAN 2 o Suhu 165 C

  • 80% PP : 20% HDPE (F1a)

  Fmaks = 45,666 x 9,807 N = 447,846462N

  Fmaks 447,846462 = = 33,10 N = 33,10 MPa

  2

  σmaks =

  2

  mm Ao 13,53

  5 ∆

  100% = 100% = 25%

  =

  20 33,10

  σmaks = = 132,40

  = 0,20

  • 80% PP : 20% HDPE (F1b)

  Fmaks = 40,173x 9,807 N = 393,976611N

  Fmaks 393,976611 = = 28,58 N = 28,58 MPa

  2

  σmaks =

  2

  mm Ao 13,79

  3,92 ∆

  100% = 100% = 19,60%

  =

  20 28,58

  σmaks = = 145,81

  = 0,196

  • 80% PP : 20% HDPE (F1c)

  Fmaks = 38,259 x 9,807 N = 375,206013N

  Fmaks 375,206013 = = 29,15 N = 29,15 MPa

  2

  σmaks =

  2

  mm Ao 12,87

  4,7 ∆

  100% = 100% = 23,50%

  =

  20 29,15

  σmaks = = 124,05

  = 0,235

  • 70% PP : 30% HDPE (F2a)

  Fmaks = 39,386 x 9,807 N = 386,258502N

  Fmaks 386,258502 = = 29,86 N = 29,86 MPa

  2

  σmaks =

  2

  mm Ao 12,93

  4,54 ∆

  100% = 100% = 22,70%

  =

  20

  29,86

  σmaks = = 131,54

  = 0,279

  • 70% PP : 30% HDPE (F2b)

  Fmaks = 36,627 x 9,807 N =359,200989N

  Fmaks 359,200989 = = 28,45 N = 28,45MPa

  2

  σmaks =

  2

  mm Ao 12,63

  5,23 ∆

  100% = 100% = 26,15%

  =

  20

  28,45

  σmaks = = 108,78

  = 0,2615

  • 70% PP : 30% HDPE (F2c)

  Fmaks = 36,999 x 9,807 N = 362,849193N

  Fmaks 362,849193 = = 27,77 N = 27,77MPa

  2

  σmaks =

  2

  mm Ao 13,07

  4,27 ∆

  100% = 100% = 21,35%

  =

  20

  27,77

  σmaks = = 130,05

  = 0,2135

  • 60% PP : 40% HDPE (F3a)

  Fmaks = 29,911 x 9,807 N = 293,337177N

  Fmaks 293,337177 = = 22,37 N = 22,37MPa

  2

  σmaks =

  2

  mm Ao 13,12

  3,6 ∆

  100% = 100% = 18%

  =

  20

  22,37

  σmaks = = 124,26

  = 0,18

  • 60% PP : 40% HDPE (F3b)

  Fmaks = 28,625 x 9,807 N = 280,725375N

  Fmaks 280,725375 = = 21,31 N = 21,31MPa

  2

  σmaks =

  2

  mm Ao 13,17

  3,2 ∆

  100% = 100% = 16%

  =

  20

  21,31

  σmaks = = 133,20

  = 0,16

  • 60% PP : 40% HDPE (F3c)

  Fmaks = 35,874 x 9,807 N = 351,816318N

  Fmaks 351,816318 = = 26,83 N = 26,83MPa

  2

  σmaks =

  2

  mm Ao 13,11

  4,26 ∆

  100% = 100% = 21,30%

  =

  20

  26,83

  σmaks = = 125,98

  = 0,213

  o Suhu 170 C

  • 80% PP : 20% HDPE (F1a)

  Fmaks = 32,297 x 9,807 N = 316,736679N

  Fmaks 316,736679 = = 22,66 N = 22,66MPa

  2

  σmaks =

  2

  mm Ao 13,93

  4,2 ∆

  100% = 100% = 21%

  =

  20

  26,83

  σmaks = = 107,92

  = 0,21

  • 80% PP : 20% HDPE (F1b)

  Fmaks = 45,485 x 9,807 N = 446,071395N

  Fmaks 446,071395 = = 34,05 N = 34,05MPa

  2

  σmaks =

  2

  mm Ao 13,10

  5,68 ∆

  100% = 100% = 28,40%

  =

  20

  34,05

  σmaks = = 119,90

  = 0,284

  • 80% PP : 20% HDPE (F1c)

  Fmaks = 35,001 x 9,807 N = 343,254807N

  Fmaks 343,254807 = = 24,48 N = 24,48MPa

  2

  σmaks =

  2

  mm Ao 14,02

  4,82 ∆

  100% = 100% = 24,10%

  =

  20

  24,48

  σmaks = = 101,58

  = 0,241

  • 70% PP : 30% HDPE (F2a)

  Fmaks = 35,349 x 9,807 N = 346,667643N

  Fmaks 346,667643 = = 25,23 N = 25,23MPa

  2

  σmaks =

  2

  mm Ao 13,74

  4,16 ∆

  100% = 100% = 20,80%

  =

  20

  25,23

  σmaks = = 121,29

  = 0,208

  • 70% PP : 30% HDPE (F2b)

  Fmaks = 39,049 x 9,807 N = 382,953543N

  Fmaks 382,953543 = = 27,31 N = 27,31MPa

  2

  σmaks =

  2

  mm Ao 14,02

  4 ∆

  100% = 100% = 20%

  =

  20

  27,31

  σmaks = = 136,14

  = 0,2

  • 70% PP : 30% HDPE (F2c)

  Fmaks = 40,864 x 9,807 N = 400,753248N

  Fmaks 400,753248 = = 29,20 N = 29,20MPa

  2

  σmaks =

  2

  mm Ao 13,73

  5,4 ∆

  100% = 100% = 27%

  =

  20

  29,20

  σmaks = = 108,14

  = 0,27

  • 60% PP : 40% HDPE (F3a)

  Fmaks = 38,847 x 9,807 N = 380,972529N

  Fmaks 380,972529 = = 28,39 N = 28,39MPa

  σmaks =

  2

  2

  mm Ao 13,42

  4,9 ∆

  100% = 100% = 24,50%

  =

  20

  28,39

  σmaks = = 115,87

  = 0,245

  • 60% PP : 40% HDPE (F3b)

  Fmaks = 35,842 x 9,807 N = 351,502494N

  Fmaks 351,502494 = = 27,57 N = 27,57MPa

  2

  σmaks =

  2

  mm Ao 12,75

  4,05 ∆

  100% = 100% = 20,25%

  =

  20

  27,57

  σmaks = = 136,14

  = 0,2025

  • 60% PP : 40% HDPE (F3c)

  Fmaks = 38,003 x 9,807 N = 372,695421N

  Fmaks 372,695421 = = 28,54 N = 28,54MPa

  2

  σmaks =

  2

  mm Ao 13,06

  4,98 ∆

  100% = 100% = 24,90%

  =

  20

  28,54

  σmaks = = 114,63

  = 0,249

  o Suhu 175 C

  • 80% PP : 20% HDPE (F1a)

  Fmaks = 45,443 x 9,807 N = 445,659501N

  Fmaks 445,659501 = = 34,79 N = 34,79MPa

  2

  σmaks =

  2

  mm Ao 12,81

  4,9 ∆

  100% = 100% = 24,50%

  =

  20

  34,79

  σmaks = = 142,00

  = 0,245

  • 80% PP : 20% HDPE (F1b)

  Fmaks = 48,841 x 9,807 N = 478,983687N

  Fmaks 478,983687 = = 35,03 N = 35,03MPa

  2

  σmaks =

  2

  mm Ao 13,67

  4,63 ∆

  100% = 100% = 23,15%

  =

  20

  35,03

  σmaks = = 151,32

  = 0,2315

  • 80% PP : 20% HDPE (F1c)

  Fmaks = 36,965 x 9,807 N = 362,515755N

  Fmaks 362,515755 = = 27,11 N = 27,11MPa

  2

  σmaks =

  2

  mm Ao 13,37

  4,58 ∆

  100% = 100% = 22,90%

  =

  20

  27,11

  σmaks = = 118,40

  = 0,229

  • 70% PP : 30% HDPE (F2a)

  Fmaks = 51,899 x 9,807 N = 508,973493N

  Fmaks 508,973493 = = 41,10 N = 41,10MPa

  2

  σmaks =

  2

  mm Ao 12,38

  4,55 ∆

  100% = 100% = 22,75%

  =

  20

  41,10

  σmaks = = 180,67

  = 0,2275

  • 70% PP : 30% HDPE (F2b)

  Fmaks = 54,362 x 9,807 N = 533,128134N

  Fmaks 533,128134 = = 41,22 N = 41,22MPa

  σmaks =

  2

  2

  mm Ao 12,93

  4,68 ∆

  100% = 100% = 23,40%

  =

  20

  41,10

  σmaks = = 176,15

  = 0,234

  • 70% PP : 30% HDPE (F2c)

  Fmaks = 51,866 x 9,807 N = 508,649862N

  Fmaks 508,649862 = = 40,35 N = 40,35MPa

  2

  σmaks =

  2

  mm Ao 12,61

  5,58 ∆

  100% = 100% = 27,90%

  =

  20

  40,35

  σmaks = = 144,61

  = 0,279

  • 60% PP : 40% HDPE (F3a)

  Fmaks = 39,822 x 9,807 N = 390,534354N

  Fmaks 390,534354 = = 29,51 N = 29,51MPa

  2

  σmaks =

  2

  mm Ao 13,23

  4,2 ∆

  100% = 100% = 21%

  =

  20

  29,51

  σmaks = = 140,54

  = 0,21

  • 60% PP : 40% HDPE (F3b)

  Fmaks = 30,346 x 9,807 N = 297,603222N

  Fmaks 297,603222 = = 24,27 N = 24,27MPa

  2

  σmaks =

  2

  mm Ao 12,26

  3,76 ∆

  100% = 100% = 18,80%

  =

  20

  24,27

  σmaks = = 129,11

  = 0,188

  • 60% PP : 40% HDPE (F3c)

  Fmaks = 34,971 x 9,807 N = 342,960597N

  Fmaks 342,960597 = = 27,61 N = 27,61MPa

  σmaks =

  2

  2

  mm Ao 12,42

  4,5 ∆

  100% = 100% = 22,50%

  =

  20

  27,61

  σmaks = = 122,70

  = 0,225

  o Suhu 180 C

  • 80% PP : 20% HDPE (F1a)

  Fmaks = 34,858 x 9,807 N = 341,852406N

  Fmaks 341,852406 = = 26,31 N = 26,31MPa

  σmaks =

  2

  2

  mm Ao

  13 4,98

  ∆ 100% =

  100% = 24,90% =

  20

  26,31

  σmaks = = 105,64

  = 0,249

  • 80% PP : 20% HDPE (F1b)

  Fmaks = 48,542 x 9,807 N = 476,051394N

  Fmaks 476,051394 = = 34,23 N = 34,23MPa

  2

  σmaks =

  2

  mm Ao 13,91

  7,3 ∆

  100% = 100% = 36,5%

  =

  20

  34,23

  σmaks = = 93,78

  = 0,36

  • 80% PP : 20% HDPE (F1c)

  Fmaks = 41,812 x 9,807 N = 410,050284N

  Fmaks 410,050284 = = 31,86 N = 31,86MPa

  2

  σmaks =

  2

  mm Ao 12,87

  4,68 ∆

  100% = 100% = 23,4%

  =

  20

  31,86

  σmaks = = 136,17

  = 0,234

  • 70% PP : 30% HDPE (F2a)

  Fmaks = 39,943 x 9,807 N = 391,721001N

  Fmaks 391,721001 = = 32,11 N = 32,11MPa

  2

  σmaks =

  2

  mm Ao 12,20

  4,87 ∆

  100% = 100% = 24,35%

  =

  20

  32,11

  σmaks = = 131,85

  = 0,2435

  • 70% PP : 30% HDPE (F2b)

  Fmaks = 39,273 x 9,807 N = 385,150311N

  Fmaks 385,150311 = = 29,92 N = 29,92MPa

  σmaks =

  2

  2

  mm Ao 12,87

  3,92 ∆

  100% = 100% = 19,60%

  =

  20

  29,92

  σmaks = = 152,67

  = 0,196

  • 70% PP : 30% HDPE (F2c)

  Fmaks = 38,587 x 9,807 N = 378,422709N

  Fmaks 378,422709 = = 29,87 N = 29,87MPa

  2

  σmaks =

  2

  mm Ao 12,67

  5,4 ∆

  100% = 100% = 27%

  =

  20

  29,87

  σmaks = = 110,63

  = 0,27

  • 60% PP : 40% HDPE (F3a)

  Fmaks = 39,03 x 9,807 N = 382,76721N

  Fmaks 382,76721 = = 30,51 N = 30,51MPa

  2

  σmaks =

  2

  mm Ao 12,55

  3,82 ∆

  100% = 100% = 19,10%

  =

  20

  30,51

  σmaks = = 159,73

  = 0,191

  • 60% PP : 40% HDPE (F3b)

  Fmaks = 45,95 x 9,807 N = 450,63165N

  Fmaks 450,63165 = = 33,75 N = 33,75MPa

  2

  σmaks =

  2

  mm Ao 13,35

  5,1 ∆

  100% = 100% = 25,50%

  =

  20

  33,75

  σmaks = = 132,33

  = 0,255

  • 60% PP : 40% HDPE (F3c)

  Fmaks = 38,915 x 9,807 N = 381,639405N

  Fmaks 381,639405 = = 30,08 N = 30,08MPa

  2

  σmaks =

  2

  mm Ao 12,69

  4,12 ∆

  100% = 100% = 20,60%

  =

  20

  30,08

  σmaks = = 146,03

  = 0,206

  LAMPIRAN 3

  (a) (b) (c)

Gambar 4.1 Kurva Load

  • –Stroke

  

o o o

a) C spesimen a, (b) F1 165 Cspesimen b, (c) F1 165 C spesimen c

  F1 165

  (a) (b) (c)

Gambar 4.2 Kurva Load

  • –Stroke

  o o o

a) C spesimen a, (b) F2 165 Cspesimen b, (c) F2 165 C spesimen c

  F2 165

  (a) (b) (c)

Gambar 4.3 Kurva Load

  • –Stroke

  o o o

a) C spesimen a, (b) F3 165 Cspesimen b, (c) F3 165 C spesimen c

  F3 165

  (a) (b) (c)

Gambar 4.4 Kurva Load

  • –Stroke

  o o o

a) C spesimen a, (b) F1 170 Cspesimen b, (c) F1 170 C spesimen c

  F1 170

  (a) (b) (c)

Gambar 4.5 Kurva Load

  • –Stroke

  o o o

a) C spesimen a, (b) F2 170 Cspesimen b, (c) F2 170 C spesimen c

  F2 170

  (a) (b) (c)

Gambar 4.6 Kurva Load

  • –Stroke

  o o o

a) C spesimen a, (b) F3 170 Cspesimen b, (c) F3 170 C spesimen c

  F3 170

  (a) (b) (c)

Gambar 4.7 Kurva Load

  • –Stroke

  o o o

a) C spesimen a, (b) F1 175 Cspesimen b, (c) F1 175 C spesimen c

  F1 175

  (a) (b) (c)

Gambar 4.8 Kurva Load

  • –Stroke

  o o o

a) C spesimen a, (b) F2 175 Cspesimen b, (c) F2 175 C spesimen c

  F2 175

  (a) (b) (c)

Gambar 4.9 Kurva Tegangan

  • – Regangan

  o o o

a) C spesimen a, (b) F3 175 C spesimen b, (c) F3 175 C spesimen c

  F3 175

  (a) (b) (c)

Gambar 4.10 Kurva Tegangan

  • – Regangan

  o o o

a) C spesimen a, (b) F1 180 C spesimen b, (c) F1 180 C spesimen c

  F1 180

  (a) (b) (c)

Gambar 4.11 Kurva Tegangan

  • – Regangan

  o o o

a) C spesimen a, (b) F2 180 C spesimen b, (c) F2 180 C spesimen c

  F2 180

  (a) (b) (c)

Gambar 4.12 Kurva Load

  • – Stroke

  o o o

a) C spesimen a, (b) F3 180 C spesimen b, (c) F3 180 C spesimen c

  F3 180

Dokumen yang terkait

Peran Sikap, Norma Subjektif, dan Perceived Behavioral Control (PBC) terhadap Intensi Menggunakan Homeschooling sebagai Jalur Pendidikan

0 0 36

BAB II TINJAUAN PUSTAKA 2.1 INTENSI MENGGUNAKAN HOMESCHOOLING - Peran Sikap, Norma Subjektif, dan Perceived Behavioral Control (PBC) terhadap Intensi Menggunakan Homeschooling sebagai Jalur Pendidikan

0 0 23

BAB I PENDAHULUAN 1.1 LATARBELAKANG MASALAH - Peran Sikap, Norma Subjektif, dan Perceived Behavioral Control (PBC) terhadap Intensi Menggunakan Homeschooling sebagai Jalur Pendidikan

0 0 15

Peran Sikap, Norma Subjektif, dan Perceived Behavioral Control (PBC) terhadap Intensi Menggunakan Homeschooling sebagai Jalur Pendidikan

0 0 14

Hubungan Tipe Komitmen Organisasi Terhadap Cyberloafing Pada Karyawan Kantor Perwakilan Bank Indonesia Provinsi Sumatera Utara

0 0 38

Hubungan Tipe Komitmen Organisasi Terhadap Cyberloafing Pada Karyawan Kantor Perwakilan Bank Indonesia Provinsi Sumatera Utara

0 0 7

BAB II TINJAUAN PUSTAKA A. CYBERLOAFING 1. Pengertian Cyberloafing - Hubungan Tipe Komitmen Organisasi Terhadap Cyberloafing Pada Karyawan Kantor Perwakilan Bank Indonesia Provinsi Sumatera Utara

0 1 18

BAB I PENDAHULUAN A. LATAR BELAKANG - Hubungan Tipe Komitmen Organisasi Terhadap Cyberloafing Pada Karyawan Kantor Perwakilan Bank Indonesia Provinsi Sumatera Utara

0 1 12

BAB II TINJAUAN PUSTAKA 2.1 Antena Mikrostrip - Perbandingan Kinerja Antena Mikrostrip Susun Dua Elemen Patch Segi Empat Menggunakan Teknik DGS (Defected Ground Structure) dan Tanpa DGS Berbentuk Segitiga Sama Sisi

0 0 15

Perbandingan Kinerja Antena Mikrostrip Susun Dua Elemen Patch Segi Empat Menggunakan Teknik DGS (Defected Ground Structure) dan Tanpa DGS Berbentuk Segitiga Sama Sisi

0 0 11