DEVELOPMENT OF MASTER MODEL MACHINE FOR SPIN CASTING TECNOLOGY DEVELOPMENT OF MASTER MODEL MACHINE FOR SPIN CASTING TECNOLOGY.

DEVELOPMENT OF MASTER MODEL MACHINE FOR SPIN
CASTING TECNOLOGY

THESIS
This is Submitted to Fulfill Prerequirement of
Industrial Engineer of International S-1 Program

Written by:
Agustinus Mahar Wicaksono
04 14 04299

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM
INDUSTRIAL TECHNOLOGY FACULTY
ATMA JAYA YOGYAKARTA UNIVERSITY
YOGYAKARTA
2010

i

ii


iii

ACKNOWLEDGMENT

This Thesis is dedicated for
Mom, Dad and My Sisters
And also for My Girl

iv

FOREWORD

This final report is one of the prerequisite to
finish the undergraduate study program in Industrial
Engineering Department, Industrial Technology Faculty,
Atmajaya Yogyakarta University.
I am so grateful to many people who encouraged,
and

help


me

to

finish

this

final

report.

On

this

opportunity, I would like to thank:
1.


Jesus Christ, for His blessing and guidance.

2.

Mr. Ir. B. Kristianto, M.Eng., Ph.D, as the Dean of
Industrial Technology Faculty, Atmajaya Yogyakarta
University.

3.

Mr.

The

Jin

Industrial

Ai,


D.Eng.,

Engineering

Ph.D,

as

the

Department,

Head

of

Industrial

Technology Faculty, Atmajaya Yogyakarta University.
4.


Mrs. Ririn Diar Astanti, D. Eng, as the Coordinator
International Class of Industrial Engineering.

5.

Mr. Theodorus B. Hanandoko, S.T., M.T., as first
adviser,

who

guidance,

had

spent

direction,

plenty


inputs

of

and

time

to

correction

give
in

writing this final report.
6.

Mr. Paulus Wisnu Anggoro, S.T., M.T., thanks for

all those advice, inputs and support in writing
this final report.

7.

Mr.

Ashari

and

his

crews

at

Hari

Mukti


Teknik

Workshop, thank you the input, the idea of machine
construction, and warm welcome.
8.

Friends,
quality

Dahana,

Eko,

brainstorming

William,

Pieter,


for

our

session.

Thanks

for

the

input, support and pickup rent.
v

9.

My lovely Bebeb. Thanks for your patience. Your
phone calls cheers me up during the completion of
my thesis. Warm kiss. I love you.


10. My friends TIKI Batch 2004, finally, we’re in the
same level. Thank you.
11. My lovely Family, Dad and my sisters, especially
for minister of financial my mom, thanks for your
approval in funding my thesis, love you mom.
12. Uncle hadi, uncle Budi, Mas eko and families at
Fajar Indah Solo for nice advice, support and warm
welcome during the research of silicon rubber.
13. All those who haven’t mentioned, thank you.
I realize that this final report has not perfect
but I hope that this final report can be useful and can
be developed in a further research.
Yogyakarta, August 2010

vi

CONTENTS

COVER …………………………………………………………………………………………………………………


i

STATEMENT OF WORK’S ORIGINALITY ……………………………………………

ii

AUTHORIZATION ……………………………………………………………………………………………

iii

ACKNOWLEDGEMENT ………………………………………………………………………………………

iv

FOREWORD …………………………………………………………………………………………………………

v

CONTENTS …………………………………………………………………………………………………………

vii

TABLE CONTENTS …………………………………………………………………………………………

x

FIGURE CONTENTS ………………………………………………………………………………………

xii

APPENDIX CONTENT ……………………………………………………………………………………

xvi

ABSTRACT …………………………………………………………………………………………………………

xvii

CHAPTER 1 BACKGROUND
1.1. Background ……………………………………………………………………………………………

1

1.2. Problem Statement …………………………………………………………………………

3

1.3. Research Objectives ……………………………………………………………………

3

1.4. Scope of Research …………………………………………………………………………

4

1.5. Research Methodology …………………………………………………………………

5

1.6. Report Outline …………………………………………………………………………………

6

CHAPTER 2 LITERATURE REVIEW ……………………………………………………………

7

CHAPTER 3 BASIC THEORY
3.1. Spin Casting ……………………………………………………………………………………

10

3.2. Casting Defects ……………………………………………………………………………

15

3.3. Silicone Rubber ……………………………………………………………………………

15

3.4. Tin ……………………………………………………………………………………………………………

19

3.5. Analysis Tools ………………………………………………………………………………

20

3.5.1. Function Analysis …………………………………………………………………

21

3.5.2. Functional Decomposition Diagram (FDD)……………

21

vii

3.5.3. Design Failure Mode Effect Analysis (DFMEA)

26

3.5.4. Grid Analysis ……………………………………………………………………………

34

3.5.5. Tree Diagram ………………………………………………………………………………

36

3.5.6. The Cause and Effect Diagram (Fishbone Diagram)
…………………………………………………………………………………………………………………

39

3.5.7. Arrow Diagram ……………………………………………………………………………

41

3.6. Mechanical Design Procedure ……………………………………………

43

3.6.1. Shaft Design Procedure …………………………………………………

43

3.6.2. Taper Key Design Procedure …………………………………………

51

3.6.3. Axial Bearing Design Procedure ………………………………

55

3.9. Production Cost ………………………………………………………………………………

57

CHAPTER 4 COMPANY PROFILE AND DATA
4.1. Current Spin Casting Machine Component
Data …………………………………………………………………………………………………………

69

4.2. Experiment Material Cost………………………………………………………

76

4.3. Data of Machine component cost ……………………………………

60

CHAPTER 5 ANALYSIS AND DISCUSSION
5.1. Analysis
5.1.1 . Analysis using Function Analysis ………………………

61

5.1.2. Analysis using Functional Decomposition
Diagram ……………………………………………………………………………………………

62

5.1.3. Analysis using FMEA ………………………………………………………

64

5.2. Redesign Process …………………………………………………………………………

70

5.2.1. Substitute Material for Hinge
(Part A1-3) and (part A1-4) ………………………………………

70

5.2.2. Substitute Material for Upper Inlet
(Part B1-1)……………………………………………………………………………………

72

5.2.3. Substitute Material for Handle (PartA1-2)…

74

5.2.4. Redesign Construction for Shaft (Part B2-4)…… 97

viii

5.2.5. Substitute Bolt M7 to Taper Key as Shaft Stopper
Key ………………………………………………………………………………………………………

99

5.2.6. Redesigned Head Casting …………………………………………………… 104
5.2.7. Substitute The Selected Guide Member (Part B2-3)
and Sealing Member (Part B2-6)…………………………………… 105
5.2.8. Adjustment

Design

for

pulley

(Part

B2-5)

and

Belt (Part B2-5-1)……………………………………………………………………… 95
5.3. Result of Redesign Process …………………………………………………… 96
5.4. The Experimental Analysis of Adaro Business Card
Holder The New Master Model Machine …………………………
5.4.1. Analysis

of

The

Result

on

Experiment

99

Adaro

Business Card Holder Using The New Master Model
Machine ……………………………………………………………………………………………

100

5.4.2. Analysis Production Cost of Adaro Business Card
Holder ………………………………………………………………………………………………… 113
5.4.3. Analysis of Master

Model Machine Cost …………

117

5.6.4. Analysis of Production Cost of Adaro Business
Card Holder ………………………………………………………………………………
5.2. Discussion …………………………………………………………………………………………

118
115

CHAPTER 6 MANUAL INSRTUCTION
6.1. Component Unit of Spin Casting Machine ………………… 119
6.2. The List of Specification of Spin Casting
Machine …………………………………………………………………………………………………… 122
6.3. The Operating Procedure of Spin Casting
Machine …………………………………………………………………………………………………

122

CHAPTER 7 CONCLUSION AND SUGGESTION
7.1. Conclusion …………………………………………………………………………………………

135

7.2. Suggestion …………………………………………………………………………………………

137

ix

TABLE CONTENTS

Table 2.1. Comparison Previous and Present Research

10

Table 3.1. Properties of Some Silicone Rubber …………

19

Table 3.2. The Functional Decomposition Elements …

23

Table 3.3. DFMEA Form Table …………………………………………………………

27

Table 3.4. Severity Rating ……………………………………………………………

29

Table 3.5. Occurrence Rating ………………………………………………………

31

Table 3.6. Detection Rating …………………………………………………………

32

Table 3.7. Grid Analysis Table Before Weighted ………

36

Table 3.8. Grid Analysis Table After Weighted …………

36

Table 3.9. Correction Factor of Power Transmitted…

46

Table 3.10. The Size of Taper Key ……………………………………………

52

Table 3.11. The Allowed Pressure on Axial Bearing …

55

Table 4.1. Current Master Model Machine
Specifications ………………………………………………………………

59

Table 4.2. Experiment Material Cost ……………………………………

59

Table 4.3. Data of Component cost …………………………………………

60

Table 5.1. Classification of Critical Functions
Parts ………………………………………………………………………………………

64

Table 5.2. FMEA Form ……………………………………………………………………………

66

Table 5.3. The Result of redesign Process ………………………… 97
Table 5.4. Usage of HTV Silicon Rubber in Vulcanizer at
First Trial ……………………………………………………………………

100

Table 5.5. Usage of HTV Silicon rubber in Vulcanizer at
Second Trial …………………………………………………………………

108

Table 5.6. Usage of HTV Silicon rubber in Vulcanizer at
Third Trial ……………………………………………………………………

111

Table 5.7. Production Time Using Master Model Machine
………………………………………………………………………………………………………… 113
Table 5.8. Master Model Machine Cost ………………………………

x

114

Table 5.9. Vulcanizer Machine Cost ……………………………………

114

Table 6.1. New Master Model Specification …………………

120

Table 7.1. The Specification of Master Model
Machine ……………………………………………………………………………

131

Table 7.2. Comparison Result ……………………………………………………

132

xi

FIGURE CONTENTS

Figure 1.1. Flowchart of Research Methodology …………

5

Figure 3.1. Arrange Part on the Mold …………………………………

10

Figure 3.2. Arrange Locknut and Sprayed …………………………

11

Figure 3.3. Vulcanization ………………………………………………………………

11

Figure 3.4. Gating and Venting …………………………………………………

12

Figure 3.5. Spinning ……………………………………………………………………………

13

Figure 3.6. Pouring ………………………………………………………………………………

13

Figure 3.7. Pouring Illustration ……………………………………………

14

Figure 3.8. Removal Parts ………………………………………………………………

14

Figure 3.9. Silicone Rubber Chain …………………………………………

16

Figure 3.10. Example of Tree Diagram …………………………………

39

Figure 3.11. Illustration of Fishbone Diagram …………

40

Figure 3.12. Example of Arrow Diagram ………………………………

42

Figure 3.13. Flow Diagram for Shaft with Torsion and
Bending Force Design Procedure
……………………………………………………………………………………………………

45

Figure 3.14. α Stress Concentration Factor of Taper
Key ………………………………………………………………………………………

49

Figure 3.15. Shear Stress on Taper Key ……………………………

52

Figure 3.16. Flow Diagram for Taper Key Design
Procedure ………………………………………………………………………

54

Figure 3.17. Flow Diagram for Axial Bearing Design
Procedure …………………………………………………………………………

56

Figure 4.1. Current Master Model Machine ………………………

58

Figure 5.1. Black Box System of Master Model Machine 61
Figure 5.2. Function Analysis of Master Model Machine
………………………………………………………………………………………………………… 61

xii

Figure 5.3. The Functional Decomposition Diagram for
The Current Spin Casting Machine ………………… 63
Figure 5.4. Hinge Substitute Material Selecting
Process ………………………………………………………………………………

71

Figure 5.5. Mild Steel of Hinge on Top Enclosure………

72

Figure 5.6. Upper Inlet Substitute Material Selecting
Process

………………………………………………………………………………

73

Figure 5.7. Handle Substitute Material Selecting
Process …………………………………………………………………………………

75

Figure 5.8. Mild Steel on Top Enclosure ……………………………

76

Figure 5.9. Forces on Shaft ……………………………………………………………

78

Figure 5.10. Forces of Belt Tension ……………………………………

79

Figure 5.11. Forces of Belt Tension Toward Z and X…

80

Figure 5.12. Reaction Forces Toward Z and X …………………

80

Figure 5.13. Reaction Forces Toward X and Y ………………

81

Figure 5.14. Bending Moment Diagram ……………………………………

82

Figure 5.15. The Modified Mold Frame Design of
Vulcanizer for Head Casting……………………………

88

Figure 5.16. Tree Diagram-The Best Design for Head
Casting …………………………………………………………………………………
Figure 5.17. Modified Mold Frame-Provide Balance……

89
90

Figure 5.18. Modified Mold Frame-Minimum Silicon Rubber
Usage ………………………………………………………………………………………

91

Figure 5.19. Counter-Grip Position …………………………………………

92

Figure 5.20. Illustration of Complete Head casting … 92
Figure 5.21. UCF four Flanged Bearing …………………………………

94

Figure 5.22. The Adaro Business Card Holder Product
Master ……………………………………………………………………………………

99

Figure 5.23. Figure of Tin Use …………………………………………………

100

Figure 5.24. Shrinkage after Vulcanizing Process……

101

xiii

Figure 5.25. Result Of Spin Casting Process on First
Trial …………………………………………………………………………………

102

Figure 5.26. Fishbone Diagram for Penetration Defect
…………………………………………………………………………………………………… 103
Figure 5.27. Tree Diagram for the Best Mold Frame
Design Related on Shrinkage at the Rubber
Mold ……………………………………………………………………………………

104

Figure 5.28. Dimesion Gap because of Shrinkage on
silicon Rubber Mold ……………………………………………

105

Figure 5.29. Result of Spin Casting Process at 34mm
Height ………………………………………………………………………………

106

Figure 5.30. Figure of Tin Selection …………………………………

106

Figure 5.31. Result of Spin Casting Process Using 50%
Tin in First Trial ………………………………………………… 107
Figure 5.32. Overview after Vulcanizing on Second Trial
…………………………………………………………………………………………………

109

Figure 5.33. Result of Spin Casting Process on Second
Trial …………………………………………………………………………………… 109
Figure 5.34. Fishbone Diagram for Penetration Defect
………………………………………………………………………………………………… 110
Figure 5.35. The New Dimension of New Mold Frame …

111

Figure 5.36. Result of Spin Casting Process Using 50%
Tin at Third Trial ………………………………………………… 112
Figure 5.37. Arrow Diagram of Casting Process …………… 113
Figure 6.1. New Master Model Machine …………………………………… 121
Figure 6.2. Thermocouple Setting ……………………………………………

121

Figure 6.3. MCB Turning On ……………………………………………………………

121

Figure 6.4. Cutting HTV Silicon Rubber ……………………………

121

Figure 6.5. Scaling Rubber ……………………………………………………………

122

Figure 6.6. Lubrication at the Mold Frame ……………………

122

xiv

Figure 6.7. Set Silicon Rubber With Master Product,
Sprue and Locknuts …………………………………………………

123

Figure 6.8. Lubrication at Silicon Rubber ……………………

123

Figure 6.9. Install the Upper Mold Frame ………………………

124

Figure 6.10. Turning Handle

………………………………………………………

124

Figure 6.11. Inserting the Mold Frame ………………………………

124

Figure 6.12. Pressing the Mold Frame …………………………………

125

Figure 6.13. MCB Turning Off ………………………………………………………

125

Figure 6.14. Pulling Out the Mold Frame …………………………

125

Figure 6.15. Open the Mold Frame ……………………………………………

126

Figure 6.16. Open Top Enclosure ………………………………………………

127

Figure 6.17. Load Silicon Rubber………………………………………………

127

Figure 6.18. Fasten the Mold Frame ………………………………………

127

Figure 6.19. Close Top Enclosure ……………………………………………

128

Figure 6.20. Connect Electrical Plug to the jack …

128

Figure 6.21. Turn the Switch On

……………………………………………

128

Figure 6.22. Pour the Molten Metal…………………………………………

129

Figure 6.23. Turn the Switch off ……………………………………………

129

Figure 6.24. Open Top Enclosure ………………………………………………

129

Figure 6.25. Remove Mold Frame …………………………………………………

130

Figure 6.26. Open Silicon Rubber Mold ………………………………

130

xv

APPENDIX CONTENTS

Appendix 1. Engineering Drawing

xvi

ABSTRACT
A master model is required before a product is
actually processed in a machine. A present research
build a prototype of master model machine in spin
casting technology which is not reliable for production
process.
The present master model machine was evaluated and
redesigned focused on the need of larger mold frame and
eliminate prop usage to enhance the reliability of
producing good quality of master product souvenirs made
from tin. The evaluation was started by constructing
Functional Decomposition Diagram. Later, the decomposed
part list was classified to its critical function based
on Function Analysis. Failure Modes Effects Analysis
(FMEA) was performed to evaluate failures of current
machine. Those failures were become input for redesign
process. Mechanical Design Procedure, Grid Analysis, and
Tree Diagram were performed during redesign process.
Some defects were found during experimental works of
Adaro business card holder using the new master model
machine. The Cause and Effect Diagram was performed to
find best solution to solve related problems.
By the end of the research, master model machine
with dimension 530mm x 440mm x 710mm; operating speed at
460 rpm; maximum silicone rubber dimension 204mm x 178mm
x 36mm ; electricity power 373 W and Adaro business card
holder product were obtained. The production time is 11,
15 minutes and the production cost per unit is IDR
10,500.00.

xvii