Characterization of magnetorheological brake for speed control application.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

Faculty of Mechanical Engineering

CHARACTERIZATION OF MAGNETORHEOLOGICAL BRAKE
FOR SPEED CONTROL APPLICATION

Ahmad Zaifazlin bin Zainordin

Master of Science in Mechanical Engineering

2014

© Universiti Teknikal Malaysia Melaka

CHARACTERIZATION OF MAGNETORHEOLOGICAL BRAKE FOR SPEED
CONTROL APPLICATION

AHMAD ZAIFAZLIN BIN ZAINORDIN

A thesis submitted

in fulfillment of the requirements for the degree of Master of Science in
Mechanical Engineering

Faculty of Mechanical Engineering

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

2014

© Universiti Teknikal Malaysia Melaka

DECLARATION

I declare that this thesis entitle "Characterization of Magnetorheological Brake for Speed
Control Application" is the result of my own research except as cited in the references. The
thesis has not been accepted for any degree and is not concurrently submitted in
candidature of any other degree.

Signature


Gᄋセ

ᄋ ᄋ ᄋ ᄋ ᄋ@

Name

: Ahmad Zaifazlin bin Zainordin

Date

:... Nャ_OセjAゥ@

......................

© Universiti Teknikal Malaysia Melaka

APPROVAL

I hereby declare that I have read this thesis and in my opinion this thesis is sufficient in
terms of scope and quality for the award of Master of Science in Mechanical Engineering.


Nam

: Engr. Dr. Mohd Azman bin Abdullah

Date

1 2 SEP 2014
................................................

© Universiti Teknikal Malaysia Melaka

DEDICATION

To my beloved father, mother, sister and brother

© Universiti Teknikal Malaysia Melaka

ABSTRACT


Magnetorheological (MR) brake is one of the brake-by-wire technologies which is
developed using MR fluid by immersing it in MR brake mechanism. This study deals with
the development of MR brake in order to characterize and implement control system for
shaft speed application. It began from the literature review of previous study on MR brake
and continue the development of MR brake with a test rig. The MR brake was
characterized at various current in order to obtain the brake torque during braking. In
addition, the MR brake was also characterized at various loads to study the response such
as angular velocity, brake torque and displacement responses. Next, the mathematical
model of MR brake was simulated and verified with the experimental data. Then, the study
continues with performance evaluation of shaft speed control using MR brake. There are
two controllers implemented and compared in order to study controller performance under
the influence of loads. Two types of controllers, On-Off and PID have been implemented
with MR Brake. According to the performance of both controllers, PID controller shows
better performance compare to On-Off controller.

© Universiti Teknikal Malaysia Melaka

ABSTRAK

Brek Magnetorheological (MR) adalah salah satu teknologi brek-dengan-wayar yang

dibangunkan menggunakan cecair (MR) yang direndam di dalam mekanisma brek MR.
Kajian ini adalah berkaitan dengan pembangunan Brek 'Magnetorheological' (MR) bagi
mencirikan dan melaksanakan sistem kawalan untuk aplikasi kelajuan aci. Ia bermula dari
kajian literatur terdahulu pada brek MR dan seterusnya pembangunan brek MR bersama
pelantar ujian. Brek MR dicirikan dengan pelbagai arus untuk mendapatkan kilasan brek
semasa membrek. Tambahan pula, brek MR dicirikan dengan pelbagai beban untuk
mengkaji tindak balas seperti tindak balas halaju sudut, kilasan brek dan sesaran.
Seterusnya, model matematik brek MR telah simulasi dan disahkan dengan data
eksperimen. Kemudian, kajian ini diteruskan dengan penilaian prestasi kawalan kelajuan
aci menggunakan brek MR. Terdapat dua pengawal yang dilaksanakan dan dibandingkan
dalam usaha membuat kajian prestasi pengawal di bawah pengaruh beban. Dua jenis
pengawal, On-Off dan pengawal PID telah dilaksanakan dengan brek MR. Menurut
prestasi kedua-dua pengawal, pengawal PID menunjukkan prestasi yang lebih baik
berbanding dengan pengawal On-Off.

11

© Universiti Teknikal Malaysia Melaka

ACKNOWLEDGMENTS


In the name of Allah the Most Gracious.

Alhamdulillah, I thank to Allah the Almighty for his blessings. My sincere thanks and
gratitude to my supervisor, Engr. Dr. Mohd Azrnan bin Abdullah for his guidance, words
of encouragement, suggestions and expertise while completing this research. My sincere
thanks to my second supervisor, PM. Dr. Ir. Khisbullah Hudha for his support and
opmions.

I express my appreciation to Abdurahman Dwijotomo, Mohd Hafiz bin Harun, Ubaidillah,
Fitrian Imaduddin, Mohd Alif Zulfakar bin Pokaad, and all of the senior members of Smart
Material and Automotive Control (SMAC) research group for their invaluable help and
comradeship while completing this research. In addition, I thank Mad Nasir bin Ngadiman
and Habirafidi bin Ramly and all Autotronics Lab members for their assistance with the lab
equipment and several technical advices.

My sincere gratitude to the Ministry of Science, Technology and Innovation (MOSTI)
which provided me with the scholarship to pursue this research studies. Last but not least,
my deepest appreciation and love to my parents and sister and brother for their love and
support.


111

© Universiti Teknikal Malaysia Melaka

TABLE OF CONTENTS

PAGE
DECLARATION
APPROVAL
DEDICATION
ABSTRACT •............•........•......•.....•..........•...••......•....•..•.•.•....•.•.•......•....•.•......•..•...••...•......... i
ABSTRAK ......•............................................................•............•................•........•..•....•......... ii
ACKN'"OWLEDGMENTS•.••••••.••••...•..•.•.....•....•..•..•.•••..•...••.•...•.•••.••.•••.•..•••.••.••...•..•.•..•••... iii

TABLE 0 F CONTENTS ......•........•.....•.•....•...........•..•.•....•......•...•.•.•...•..••...•.•..•.••.•....•...... iv
LIST OF TABLES...•......•......•..............•....................••......•...................•...........•.............. viii
LIST OF FIGURES....•..........•.•....•......•.•.•.•..•.•.•..•....•.•...........•.•......•...•..•.•....•..................... x
LIST OF APPENDICES ............•........•.............................•...........................•.................. xiii
LIST OF SY'MBOLS •..•.•.•....•.•.•...••.....•......•......•...........•.•......•...............•......•....•............. xiv

LIST OF ABBREVIATIONS .......•...................••....................•........................................ xvi
LIST OF PUBLICATIONS .•........•........•...•...........•.........•.....••.....•......•..•...•.....•...•.•......• xvii
CHAPTER
1. INTRODUCTION ........................................................................................................... 1
1.1

Overview ................................................................................................................. 1

1.2

Statement of the problem ........................................................................................ 3

1.3

Research Objective ................................................................................................. 3

1.4

Research Scopes ..................................................................................................... 4


1.5

Expected Outcomes ................................................................................................ 4
lV

© Universiti Teknikal Malaysia Melaka

1.6

Thesis Outlines ....................................................................................................... 5

2. LITERATURE REVIEW ............................................................................................... 7
2.1

Introduction ............................................................................................................. 7

2.2

The Class of Vehicle Brake System ....................................................................... 7


2.3

Electronic Brake in Modem Vehicle ...................................................................... 8

2.4

Magnetorheological (MR) Fluid ........................................................................... 10

2.5

Magnetorheological Brake (MR Brake) ............................................................... 12

2.5.1

MR brake basic design and operational ........................................................ 15

2.5 .2

Parametric Approach ..................................................................................... 17


2.5.3

Electromagnetic analysis ............................................................................... 20

2.6

MR brake control .................................................................................................. 20

2. 7

Summary ............................................................................................................... 22

3. DEVELOPMENT OF MAGNETORHEOLOGICAL BRAKE ............................... 23
3 .1

Introduction ........................................................................................................... 23

3.2

MR brake components description ....................................................................... 23

3.3

Assembly Process ................................................................................................. 28

3.4

Finite Element Method ......................................................................................... 30

3.5

Summary ............................................................................................................... 37

4. CHARACTERIZATION OF MAGNETORHEOLOGICAL BRAKE ................... 38
4.1

Introduction ........................................................................................................... 38

4.2

Structural design of test rig ................................................................................... 38

4.3

Actuation system and derivation dynamic motion of test rig ............................... 43

4.4

Controller development ........................................................................................ 47

4.4.1

Sensor information needed for MR brake characterization and shaft speed
control ............................................................................................................ 48
v

© Universiti Teknikal Malaysia Melaka

4.4.2

Current driver ................................................................................... ............. 51

4.5

Data Acquisition System ...................................................................................... 53

4.6

Characteristics of MR brake ................................................................................. 55

4.7

Swnmary ............... ................................................................................................ 59

5. BRAKING

RESPONSE

OF

INERTIA/LOAD

USING

MAGNETORHEOLOGICAL BRAKE .......................................................................... 60
5.1

Introduction........................................................................................................... 60

5.2

Description of the MR brake and Test rig apparatus ............................................ 61

5.3

Mathematical Model of MR Brake with dynamic oftest rig ................................ 63

5.4

Simulation model .................................................................................................. 67

5.5

Model validation with experimental ..................................................................... 72

5.6

Experimental evaluation on MR braking response ............................................... 81

5.7

Summary ............................................................................................................... 88

6. PERFORMANCE EVALUATION ON SHAFT SPEED CONTROL USING MR
BRAKE ............................................................................................................................... 90
6.1

Introduction ........................................................................................................... 90

6.2

Control strategy using MR brake system ............................................................. 90

6.2.1

On-Off controller ........................................................................................... 92

6.2.2

PID controller ................................................................................................ 92

6.3

Experimental Setup ............................................................................................... 93

6.4

Experimental Results .................................................... .. ..... .... ................. ........... . 95

6.5

Performance evaluation on shaft speed response under influence various load by
using PID controller .. ...................................... .................................. .................. I 05

6.6

Model Validation of Shaft Speed Control .......................................................... 106

6. 7

Summary ............................................................................................................. I 09
Vl

© Universiti Teknikal Malaysia Melaka

7. CONCLUSION AND RECOMMENDATION ........................................................ 110
7.1

Conclusion .......................................................................................................... 110

7 .2

Recommendation ................................................................................................ 112

REFERENCES ................................................................................................................ 113
APPENDIX: DETAIL DRAWING OF MR BRAKE .................................................. 118

VII

© Universiti Teknikal Malaysia Melaka

LIST OF TABLES

TABLE

TITLE

PAGE

3.1

MR brake dimension ............................................................................................ 32

4.1

MR Brake Parameter ............................................................................................ 56

4.2

Brake torque experimental data ............................................................................ 58

5.1

RMS value of model and experimental of angular velocity at various current.. .. 77

5.2

RMS value of model and experimental of brake torque at various current ......... 77

5.3

RMS value of model and experimental of load displacement at various current. 78

5.4

RMS value of model and experimental of shaft angular velocity ........................ 80

5.5

RMS value of model and experimental of brake torque ...................................... 80

5.6

RMS value of model and experimental ofload displacement .............................. 80

5.7

Stopping time .......................................................................................... ............. 83

5.8

Load displacement response ................................................................................. 88

6.1

Data for comparison of percentage overshoot (%OS) between On-Off and PID
controller for 50 N ......................................................................... 101

6.2

Data for comparison of percentage overshoot (%OS) between On-Off and PID
controller for 100 N ...................................................................... .102

6.3

Data for comparison of percentage overshoot (%OS) between On-Off and PID
controller for 150 N .... . .. . ................................................. . ............. .102

6.4

Data for comparison of percentage settling time (%ST) between On-Off and PID
controller for 50 N ......................................................................... 103
Vlll

© Universiti Teknikal Malaysia Melaka

6.5

Data for comparison of percentage settling time (%ST) between On-Off and PIO
controller for I 00 N ........... .. ..... .. ............ ..... ... .............................. . I 03

6.6

Data for comparison of percentage settling time (%ST) between On-Off and PID
controller for 150 N ........................................................ ......... ....... I 03

6. 7

RMS value of angular velocity at various load and speed using PIO controller.. I 06

6.8

RMS value of model and experimental of angular velocity ................................. I 08

6.9

RMS value of model and experimental of brake torque ...................................... 108

IX

© Universiti Teknikal Malaysia Melaka

LIST OF FIGURES

FIGURE

TITLE

PAGE

2.1

Vehicle with ABS System (Ayman et al., 2011) ................................................. .... 9

2.2

Dipole alignment of Ferrous Particle (Avraam et al., 2008) ..... ............................. 10

2.3

Cross-Section of MR Brake (Karakoc et al. , 2008) ............................................... 15

2.4

The Operational Principle of the MR Brake (Huang et al. , 2002) ......................... 17

3.1

A disk/rotor ................................................................... .......................................... 24

3 .2

Brake housing ...... ................................................................................................... 25

3.3

Side cover ............................................................................................................... 25

3.4

Seal cap ..................................................... .. ........... ........................................... .. .... 26

3.5

Coil cover ............................................................................................................... 27

3.6

Electromagnetic coil holder ........................................................... ......................... 27

3.7

MR fluid 132AD .................................................................................................... 29

3.8

Sealing process ................................................................... .................................... 29

3. 9

Procedure for magnetostatic analysis ..................................................................... 31

3.10

MRF-132AD (Lord, 2008) ...... ................................. ....... ................................ ....... 33

3.11

Assign material models for each element ......... .................. .. .................................. 34

3.12

Total magnetic field intensity ................................................................................. 35

3.13

The distribution of magnetic flux density .............................................................. 36

3.14

20 flux lines ........................................................................................................... 36

3 .15

The magnetic flux vector potential.. ....................................................................... 37
x

© Universiti Teknikal Malaysia Melaka

4.1

MR Brake test rig ................................................................................................... 39

4.2

Arrangement apparatus of MR brake characterization ........................................... 40

4.3

Pillow block bearing and jaw coupling ................................................................... 41

4.4

The load structure .................................................................................................... 42

4.5

Load shaft ............................................................................................................... 42

4.6

Actuation systems via A-type V-belt and pulley .................................................... 44

4.7

AC motor drive ....................................................................................................... 45

4.8

Dynamic motion of MR brake with a test rig ......................................................... 47

4.9

Arrangement of MR brake with a shaft speed sensor and load sensor................... 48

4.10

Shaft speed sensor .................................................................................................. 49

4.11

FUTEK LCF 451 Load Sensor. .............................................................................. 50

4.12

Bridge Amplifier .................................................................................................... 51

4.13

Current driver circuits ............................................................................................ 52

4.14

Power supply .......................................................................................................... 53

4.15

IMC Devices ........................................................................................................... 54

4.16

IMC Back-Panes ..................................................................................................... 55

4.17

Torque versus rotational speed ............................................................................... 57

4.18

Torque versus current ............................................................................................. 57

4.19

Torque due to applied magnetic field ..................................................................... 59

5.1

Cross-section of MR brake ..................................................................................... 61

5.2

a) Mechanical assembly of the MR brake test rig, and b) Load ............................. 62

5.3

Shear stress as a function of shear rate with no magnetic applied (Lord, 2008) .... 64

5.4

Shifting block diagram of MR brake actuator. ....................................................... 69

5.5

Simulation model of MR brake actuator with motion of a test rig ......................... 70

5.6

Simulation results ................................................................................................... 71
XI

© Universiti Teknikal Malaysia Melaka

5.7

Measured responses at four constant currents ........................................................ 73

5.8

Comparison between model and experimental at several applied current for shaft
angular velocity response .... ........... ..... .... ............. .... ............. ............ 74

5.9

Characteristic of torque response between model and experimental .................... 75

5.10

Comparison between model and experimental of load displacement response at
several applied current. .. ..... ...... .... .................... .. .............................. 76

5.11

Model validation of different mass at constant current 4 A; i) 50 N, and ii) 100 N
............. .................................................................... ......... ....... 79

5.12

Shaft angular velocity response versus time at various current ............................ 82

5.13

Torque response versus time at various current .................................................... 85

5.14

Load displacement response versus time at various current ................................. 87

6.1

Schematic diagram for control system .................................................................. 91

6.2

Superimposed duty cycle of current between the controllers ................................ 91

6.3

Mechanical assembly of the MR brake test rig ..................................................... 94

6.4

Schematic diagram of MR brake arrangement.. .................................................... 95

6.5

An illustration of overshoot and settling time ....................................................... 96

6.6

Comparison speed angular velocity of On-Off with PID controller for 50 N ....... 98

6. 7

Comparison speed angular velocity of On-Off with PID controller for 100 N .... 99

6.8

Comparison shaft angular velocity of On-Off with PID controller for 150 N .... 100

6.9

Comparison angular velocity at various load and speed using PID controller ... 105

6.10

Model validation between simulation and experimental at various speeds ........ 107

Xll

© Universiti Teknikal Malaysia Melaka

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A

DISK/ROTOR .................................................................................................... 119

B

HOUSING .......................................................................................................... 120

C

SIDE COVER ..................................................................................................... 121

D

SEAL CAP ......................................................................................................... 122

E

COIL COVER .................................................................................................... 123

F

COIL HOLDER .................................................................................................. 124

G

MR BRAKE ASSEMBLY ................................................................................. 125

H

TEST RIG ........................................................................................................... 126

Xlll

© Universiti Teknikal Malaysia Melaka

LIST OF SYMBOLS

T

Shear stress
Yield stress

y

Shear stress rate

{3, k

Intrinsic value
Yield stress due to applied magnetic field
Yield stress due to viscosity of the fluid
Constant plastic viscosity
Magnetic field
Outer disk radius
Inner disk radius
MR brake torque
Number of surface

r

Radius
Angular velocity of the shaft

h

Thickness

i, I

Current

a

Proportional gain

JS

Source of current density

A

Cross section
xiv

© Universiti Teknikal Malaysia Melaka

n

Number ofturn' s coils

Tm

Motor torque

TL

Loading torque

m

Mass

B

Gravity acceleration

Wm

Angular velocity of the motor

Pm

Motor power

TL

Radius load

T,

Damping torque

as

Angular acceleration of shaft

fall

Total moment inertia

c

Viscous damping

kp

Proportional gain

ki

Integral gain

kd

Derivative gain

xv

© Universiti Teknikal Malaysia Melaka

LIST OF ABBREVIATIONS

MR

Magnetorheological

PID

Proportional; Integral and Derivative

ST

Settling Time

OS

Overshoot

RMS

Root mean square

XVI

© Universiti Teknikal Malaysia Melaka

LIST OF PUBLICATIONS

M. A. Abdullah, A. Z. Zaino rd in, and Kh. Hudha, Validation and Experimental
Evaluations of Magnetorheological Brake-by-Wire System, Journal of Engineering and
Technology (JET), Penerbit Univesiti, Universiti Teknikal Malaysia Melaka, Volume 4,
No. I, January-June 2013, 109-122 (2013) ISSN 2180-3811.

Ahmad Zaifazlin. Zainordin, Mohd Azman. Abdullah and Khisbullah. Hudha,

Experimental Evaluations on Braking Responses of Magnetorheological Brake,
International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME)
Volume 1, Issue 3, 75-77 (2013) ISSN 2320-4052 (Online), EISSN 2320-4060.

Zainordin, A.Z., Abdullah, M.A., Hudha, K. and Mat Nuri, N.R., Design and

Characterization of Magnetorheological Brake,

Proceeding for the 3rd International

Conference on Engineering & ICT (ICEI2012), Malacca, Malaysia, (April 4th
to 5th, 2012), Vol 1, 249-255 (2012).

Ahmad Zaifazlin bin Zainordin, Mohd Azman bin Abdullah and Khisbullah Hudha,

Modeling and Validation of Magnetorheological Brake Responses using Parametric
Approach, Proceeding of International Conference on Mechanical Engineering Research
(ICMER2013), 1-3 July 2013 Bukit Gambang Resort City, Kuantan, Pahang, Malaysia,

xvii

© Universiti Teknikal Malaysia Melaka

Organized by Faculty of Mechanical Engineering, Universiti Malaysia Pahang, Paper ID:
Pl 16.

Ahmad Zaifazlin. Zainordin, Mohd AZinan. Abdullah and Khisbullah. Hudha,
Experimental Evaluations on Braking Responses of Magnetorheological Brake, Proceeding
for International Conference on Manufacturing and Industrial Engineering (ICMIE ' 13),
International Scientific Academy of Engineering & Technology (ISAET), Penang,
Malaysia, (May 8th to 9th, 2013), Vol. 1, 65-69, 2013.

XVlll

© Universiti Teknikal Malaysia Melaka

CHAPTERl

INTRODUCTION

1.1

Overview
Vehicle performance, safety and cost have become a major research of research in

automotive industries for many years due to potential improvement opportunity.
Researchers have attempted to develop high safety vehicles with low cost production. In
term of safety and cost, the topic of x-by-wire system has become a recent issue in
automotive industries specifically in minimizing the mechanical parts used in vehicle. Xby-wire system has been employed in several vehicle area such as vehicle steering,
suspension and braking system (Park and Jung, 2009; Hudha et al. , 2005; Wang and
Gordaninejad, 2003; Park et al. , 2008; Karakoc et al., 2008).
In conjunction with the x-by-wire technology, a research on brake by wire is

proposed in this study. The proposed of Magnetorheological (MR) brake will utilize a MR
Fluids technologies where the it is employed as a medium to supply the brake torque to the
braking system. MR brake is a pure electronically controlled actuator where it can easily to
implemented a new advanced controller such as speed control and torque control. MR
brake is able to do the same task as conventional brake, more reliable, and effective. Based
on previous studies, MR brake was proposed by Karakoc et al. (2008) and Park et al.
(2006) for passenger car braking systems due to its potential in reducing braking time and
shorter stopping distance.
1

© Universiti Teknikal Malaysia Melaka