Improved Rice Stram as Elephant Grass (Pennisetum purpureum Schumach) Substitute for Ruminants
INTRODUCTION
About
Ihdonesia
t h e human a n d rctmi n a n t p o p u l a t i o n s
of
kc:)%
in
are
Java
i nc:rea!si n g
annt-tal 1 y
e:.:pl o s i ctrl
tends
and t h e
hctnlan
of
p o p ~ t l a t i o n is
at. t h e r a t e o f 2.34%. T h e popctl a t i o n
to
decrease
the
agricctl tur-al
larld
avai lable
+or c:rc~p ancj g r a s s pr-odctct.i o n whi 1e
t h e demand
fur
and
Theref ore,
meat
milk
keeps
on
irtcreasing.
producztion i n J a v a h a s t o r e l y h e a v i l y f o r
ruminant.
feed
a n agro--i rtdust.ri a 1 by-.-products and c r o p residl-ces.
,
R i c e s t r a w i s t h e : l a r g e s t c r o p resitjice f o c t n d i n
being
17
However,
tcms
million
annually
(Anonymous,
Java
1982a)
.
it h a s l o w nutritional value due t o t h e -following
factors:
1.
Being
a matctr-e
proportion
a n d Aman,
2.
microbes.
7
.-t
.
*
It
it: c o n t a i n s a
cell wall s (Jackson,
of
amctng
cell wall
iC::eegstr-a e t a l .
,
1.986)
to
1904;
rumen
1973).
( R o x a s et a l . ,
1985a;
Hart
and
.
I t h a s a l o w m i n e r a l a n d v i t:.amir, c o n t e r ) t
a n d Aman,
through
1973; H a r t l e y ,
K s h a n i !::a S a n n a s g a l a a n d J a y a s c c r i y a ,
4.
Theander
cortcjti t u e n t s
b o n d s redctces t h e i r a v a i l a b i 1i t y
has a l o w nitrogen content
Manapat:,
1977a;
high
1984)
Inter1inking
chemical
plant residue,
1.9E14)
(Theander
Consequently, rice s t r a w a l o n e h a r d l y provides maintenance
f o r - r u m i n a n t s a n d r e q u i r e s .to b e t r e a t e d a n d
regui rement5
s u p p l e m e n t e d i n o r d e r t:o i n c r e a s e i t ' s n u t r i t i o n a l
Currently,
the
treatments
i n c r e a s e t h e a v a i l a b i l i t y of
physical
,
chemical
,
or i n c o m b i n a t i o n .
I b r a h i m ( 1 983)
some
However
literature.
Firstly,
of
,
W a l l-::er
(
major- d e f i c i e n t a r e a s a r e
in
the
recognized.
r i c e s t r a w p o r t i o n s measured i n
of
.Fi.tr-ther s t u d y w o u l d b e t o
nutritional
val. u e as + e e d .
s e l e c t i n g t.hose p o r t i o n s
S e c o n d 1y ,
s t r a w c h e m i s t r y is sti 11 s l i g h t .
to
increase
vivo.
The
provide
an
with
greatest
knowledge of
Alkali
straw
However,
used f a r treatment.
a
c h e m i c a l 1y
information
cell
will
a c i d s or o t h e r c h e m i c a l s a r e t o
T h i r d 1y ,
nutritionally
treated
more
is
organic
through d i s r u p t i u n of chemical bonds between
constituents.
rice
treatments,
t h e a v a i l a b i 1i t y of
c e r t a i n 1y h e needed i f
produce
( 19 8 4 ) .
t h e r e is n o i n f o r m a t i o n a b o u t t h e n u t r i t i v e v a l u e
for
wall
either
u s e d e i t h e r s e p a r a t e 1y
1 9 8 4 ) a n d F ' r e s t o n and Lxng
opportctnity
matter
,
t o
'These h a v e b e e n t h o r o u g h l y r e v i e w e d b y
Three
advantage
thoi.tght
used
b a s i c i n f o r m a t i o n is s t i l l l a c k i n g
different
main
be
can
c e l l w a l l s are
str-aw
biological
or
%hat
value.
t r e a t m e n t u s u a l 1y d o e s
balanced feed
s t r a w !should
be
and
be
not
t h e r e f ore,
supplemented
with
o t h e r i n g r e d i e n t s i n o r d e r t o ~ ~ t p p o ra nt i m a l p r o d u c t i o n .
-
aims of the research described below was ( 1 )
The
evaluate
straw
the nutritive value fur cattle of different rice
portions,
( 2 ) to
maximize
the
coef+icient of rice straw through treatments
combinations of alkalis,
r
vitro
to
in
value
of lime
with various
acids and white rot fungi
condition and then to test
under
digestibility
v i v o conditions,
under
selected
treatment
( 3 ) t o compare t h e
nutritive
treated rice straw with elephant grass
in
diets enrichecl with local I. y avai X able concentrates such as
cassava leaves and onggok.
LITERATURE REVIEW
to
Accor-ding
Bir-o
Pusat S t a t i s t i k
(1984)
62% o f
I n d o n e s i a n r i c e s t r - a w product.ion is p r o v i d e d b y J a v a .
1981
paddy f i e l d i n J a v a w e r e p l a n t e d w i t h
varieties
s h o w n i n T a b l e 1.
as
Government.
35
released
v a r i et.i e s
o b t a i rted
from
c u l t i h v a r s or v a r i e t i e s
crossing
(Anonymous,
new
rice
various
Further,
different
In
i n 1983
improved
between
the
rice
local
the
1983a). Rice s t r a w i n
I n d a n e s i a obv:i o u s l y i s a v a r - i a b l e p r o c l u c t w h i c h coma5 f r ' o m
a
c o n t i n u a l 1y e v o l v i n g m i x t u r e o f
var'ieties
when
arid c u l t i v a r s ,
long and s h a r t
and t h i s must b e k e p t
strawed
in
a t t e t n p t i n g t o re1a.k.e w o r l t j l i t e r a t ~ t r ec3n r i c e
mind
straw
t n t h e I n d u r i e s i a n si ti.tal.:i o n .
I.
R i c e Straw
Rice
i s t h e a e r i a l p a r t 0.f t h e r i c e
straw
l e f t after the grain
plant
There are a
h a s been harvested.
number o f r i c e s t r a w v a r i e t i e s h u t i n g e n e r a l t h e s t r a w
p o r t i o n s a r e as, r e p r e s e n t e d b y F ' i g ~ t r e 1.
1. Straw
P o r t i o n s and Their
The
of
lnwer p o r t i o n of
stems
which
w i t h a number- o f
Nutritive
Value.
s t r a w is composed
internodes
mainly
and
nodes,
are t h e p o i n t s w h e r e t h e l e a v e s e m e r g e .
upper
material
pc3rtion
is
c o n s t i t ~ t t e d mainly
c o n s i s t i n g of
and t h e l e a f
blade.
two parts,
The
of
leafy
t h e leaf
sheath
B n t a n i c a l p o r t i o n s of
various
T a b l e 1.
Percentage
distribution
of
varieties
planted
in
Java
(Siwi and K a r t ~ o w i n u t o , 1984)
--- -.----
---------.-.-------.
-.-
----..----
"---"----.-----W e s t
-----------.-
.-.--
-------- ----
JAVA
---------.--------------
Central
------- --.-.- -------.----.
-.-----------.---.-----------.-
rice
in
1981
East
--------------------
T o t a l rice f i e l d
( . 05)0 h a )
Pel it a
(% 1
0 3
.
1.8
Semeru
(%)
5.6
0.3
Ci s a d a n e
(%)
14.2
2. 1
1.5
17.5
13.2
0.2
L-ocal v a r i e t i e s
Local c u l t i v a r s (%)
T a ta1
N,
negligable.
25. O
------
.
1 (:)0 0
18.2
------
.
1 (:)a 0
.
0 5
IL
7
.-
(-)
6.7
---.---
100.0
Rachis
Leaf b 1ade
Internode
Node
Leaf sheath
F i g u r e 1.
Rice p l a n t ( O r y r a s a t i r ~ a )
s t r a w s a r e a s s ~ t m m a r i z e di n T a b l e 2 .
cereal
predominant
,
strrar-J,
.for t h e o t h e r c e r e a l s t r a w s .
chemical
3.
composition
and
higher
was
v i tri.)
krt
Prubabl y,
because
leaves
rice
have
the lower
d i g e s t i b i l i t y val.ue l o w e r t h a n t h e s t e m ,
portion
For
t h e ! s t r a w por.t.ior-1s a r e p r e s e n t e d i r s
d i g e s t i b i : l i t y of
Table
t h e s.traw shauld have a n u t r i t i v e
of
than
is
r i c e s t r a w b u t i n c o n t r a s t , s t e m is
for-
t h e fna.jor- p o r t : i o n
rice
Leaf
the
'T'hi a
upper portion.
suppor.ted
Hart
by
and
value
hypothesis
(1986)
Wanapat
who
r e p o r t e d % h a t t h e l o w e r p o r t i o n oS r i c e s t r a w h a d a n
irt
r j i t r o d r y matter d i g e s t i b i l i t y v a l u e h i g h e r t h a n
(42 v s 29%).
t h e upper portion
This
M a s
t.houyht t o
b e mmairll y d u e t o t h e h i g h e r c o r - t c e n t r - a t i o n o f
in
the
available
].paves.
i t should be noted
But
C r o m t h e l i t e r a t u r e are
data
silica
that
the
based
on
T e s t i n g c-tnder . i n r./ic/o c o n d i t i o n
labor-ator-y s t u d i e s .
i s r ~ ? q u i r e dt p c l a r i f y t h i s h y p o t h e s i s .
2.
The H i s t o l o g y o f
Schematic
internode
presented
tubular
C e r e a l Straws
d r a w i n g s o+ t y p i c a l s l e n d e r
cereal
straws
are
(Staniforth,
1979).
The
c:rass-.sections
in
part
2
Figure
is
made
a
stemmed
of
up o f
of
small
v a s c ~ t l a r t:)undl e s e m b e d d e d i n p a r e r i c h y r n a t o n s
tissue
over
with
o~cter layer
numerous
epidermis
layer
an
'Table 2.
.------
".--.--
Botanical
portiol-1s
(% dry matter)
-------
of
cereal
.-..----------------
-----.-----------.-.---------.----.--.--
Str'aws
Internode
ldnde
Sten)
..-.-------------.--"-"----"-.---.---.----"-"-------------------------------
straws
Leaf
Reference
-
40
6C.)
( 2 ) 'T'hearider and
A m a n (1984)
50
8
58
42
(:L)
Spring
58
4
62
38
Winter
65
7
72
28
Oat
I54
4
58
42
E a r l ey
.-J
€3
7
65
-*
3 .J
Rye
72
r
'7 7
Wheat
3
,=.
(2)
C:hemical
compnsi t i o n and
in
vitro
d i g e . - i t . i b i l i t y oS r i c e s t r a w p o r t i o n s
-..--- "-----------..-----------------.---------------.---.--.
--.--Stem
Leaf
R i c e st.raw
---.---. --- .---- -----. ..-----.-....-----KeCerences
I
N
S
b
CJ
L.
C
T a b l e 3.
--
...y
Crude
prot.ei n
5
4
b
- .- - ---------------.----NDfz
ADF
..Z
IVDMD
IVUMU
-
( 1 ) t:::shanil::a
S a n n a s g a la and
J a y a s u r i y a (1984)
7
-
( 2 ) H a r t a n d Wanapat
(1YNh)
4
---.-----.--------.--------------------
'73
76
73
.
.-.
-
(1)
-
--
.--
-"
...-
-
73
(4) Jackson
5C)
ZjU
r
45
--
-.
..-
(
-
-
-..
54
56
..-
(2)
34
80
56
.-
-
-
(3)
6
6
6
-
.--
.-..
(31
'7
i4 !
8
J
"
)
-----.----.--.--------..--- Silica
-.
74
-48
Lignin
-..
2
4
h
-."-"
6
----
-..
-.
1
---.-
.....
2 9 LIZ
.--..---------------------.--"----------------.-.----------------7..,-,
-..
31
.ad.
.--..
44 4'7
(1977)
-"
-- ----- -----
(I)
(2)
(1)
I, i n t e r n o d e ; N, n o d e ; S , s h e a t h ; B , b l a d e ; U, u p p e r ;
L , lower; C? complete;
I\IDF, n e u t r a l d e t e r g e n t f i b r e ;
HDF,
acid
detergent
fibre;
TVDMU, i n v i t v o d r y
matteldigestibility;
IVOlblD, i r t v . i t r o o r g a n i c
matter d i g e s t . i b i l i t y
Winter
Winter
t
Oats
Rice
Densely lignified tissue
Lignified parenchyma
Vascular tissue
Figure
2.
1Unlignified
tissue
Central lumen
15)Air
cavity
1-ransverse s e c t i o n s of t h e i n t e r n o d e s of
c e r e a l s t r a w s ( S t a n i f o r t h , 1979)
11
( t h i n-wall l e d
layer
and
t h e t i s s u e s of
.
The
occur
scl er-enchymatous
t h e vascular bundles
m o s t ligniCied tissues.
the
But l i g n i n
e l s e w h e r e and t h e d e g r e e of
increased
(
1 i v i ng c e l l s )
1984)
were
with plant maturity.
found
may
of
also
lignification
Theander and
e p i der-mi s ,
5.-7%
s c l e r - e n c h y m a t o ~ t st i s s u e a n d 65-69% a f
is
Aman
straws
t h a t tl?e i n t e r n o d e s o f cereal
cornposed
are
25-27%
parenchyrnatous
t.i s s u e s .
Y o s h i d a et al.
blade,
s h e a t h and s t e m of
:Leaf
deposited
bundle
i n t h e epidermal
sheaths,
layer
a
bullifornl
i n t h e leaf
si 1 i c a
rice,
a n d s c l e r e n c l - l y f n a t o u s artd
of
The
leaf
cells
epidermal
vascular
is s u r r o u n d e d
including
which are o f t e n d e s c r i b e d a s
cells,
was
bul l i f o r m cells,
cells,
( F i g u r e 3).
bundle cells;
by
(1962) r e p o r t e d t h a t
the
the
c e l l s t h a t a r e r e s p o n s i b l e f o r t h e f o l d i n g movements
of
t h e 1e a v e ' s .
phloem
and xylem s y s t e m s ,
sheaths
most1y
Vascular bundles,
ar-e
present.
containing
both
and surrounded by bundle
The
embedded i n mesophyl 1
vascular
but
bundles
are
scl er-enchymatous
t i s s u e is o f t e n l o c a t e d a b o v e and below t h e b u n d l e s .
In t h e leaf
that
90%
blade,
of
the
epidermal t i s s u e s .
Y o s h i d a et a l .
si 1 i c a w a s
(1962) estimated
deposi t e d
in
A r e p r e s e n t a t i v e p i c t u r e of
the
rice
Leaf b l a d e
Leaf sheath
Internode
F i g u r e 3.
Schematic
r e p r e s e n t a t i o n of t h e s t r u c t u r e s of
l e a f b l a d e , l e a f s h e a t h and s t e m of rice straw
i n r e l a t i c ~ nt o ~ iliica d e p n s i t i o n ( I-ocation
o f si l i c a d e p a s i t i o r t ; B , F L Il ~i , F o r m c e l l s ;
P,
Parenchyma;
US, b ~ t n del s h e a t h ;
V , V a s c ~ t al r
bc.tndXe ( P h l o e m 8z X y l e m ) : S , S c l e r e n c h y m a ; M ,
M e s u p h y l l ; SL, S i l i c a l a y e r ;
E , Empty s p a c e )
( Y o s t ~ i c l a e t a]. , 1 9 h 2 )
,
13
e p i d e r m a l t i s s u e is p r e s e n t e d i n F i g u r e 4.
I t shows
how c l i f f i c ~ t - 1 1 ti t ir;
f u r p l a n t d i s e a s e s or i n s e c t s t o
attack:
:L n c w t : . ~ .o n
t.he
main
where
photosynthesis
occc-tr-s.
Akin
in
(19'79) t r a t a g o r i z e d d i f f e r e n t p l a n t t i s s u e s
r e 1 a t i o n t.t:,
G r a s s e s w e r e shown t o f o l l a w a
organisms.
pattern:
mesophyll
degraded,
bundle
sheath
e p id e r i l i s
cells,
and
was
and
then
slowly
and
F'robably,
its;
conski tctents,
due
1 inl.::ages
general
most
readily
parenchymal
-Followed
by
degraded,
t i sst-tes w h i c h w e r e t h e m a s t
digestion.
content.
by
which
lignified
t o
phloem w e r e
and
f 011 owed
s c l er-enchyma
micro-
t h e i r d a g r a c l a b i 1 j. t y b y r u m e n
resistant
t o t h e h i g h
w i t.h
other
and
silica
cell
wall
t h e p a t t e r n s h o u l d b e recor-f irmed
in
rice s t r a w .
3. C e l l Wall C o n s t i t u e n t s
a
R e i rlc~
predominantly
8(3%),
t.he
r esi d u e ,
h a s a h i g h cell w a l l
constituents
hemi c e l l ul a s e ,
predominating
senile
lignin,
(Jacksun,
attached to t h e w a l l
being
straw
content.
(about
most1 y
minerals
1977a) ,
rice
cellulose,
with
silica
a n d some n i t r o g e n
( T h e a n d e r a n d Aman,
1 9 8 4 ) . The
n u t r i t i v e v a l u e of rice s t r a w l a r g e l y depends
upon
Figure
4.
-
Schematic
representation
of
rice
leaf
e p i d e r m i s in relation t o si 1 ikon deposition
(
, Location of silicon deposition; C,
Cuticle;
SL,
S i l i c a layer;
SC,
Silica
c e l l u l o s e membranes
(Yoshida et al., 1962)
15
the
a v a i l a b i 1i t y
of
t h e cell w a l l c o n s t i % u e n t s
to
d i g e s t i a n i n t h e ri.tmen.
(:elli.tlose is a l i n e a r p o l y m e r c o m p o s e d o f u p t o
10,000 p1,4 .- 1 i n k e d g l yct:)pyr-anosyl ~ t ntis ( F i g u r e 91
(Theander
largely
and
&man,
crystalline
1984)
.
form,
I t
occurs
as
organized
a
in
fibrils,
w h e r e t h e c e l l ~ t l o s ec h a i n i s t i g h t l y p a c k e d t o g e t h e r
in
compact
a g g r e g a t e s st.trrounded
of
matrix
The g l u c a n c h a i n s are
other cell w a l l constituents.
held
a
by
t o g e t h e r by hydrogen bonds both between
sugar
u n i t s i n t h e c h a i n and between a d j a c e n t c h a i n s .
Xylans
a s t h e main u n i t nf
straws,
cereals
backbone
of
h)
'
p o l y m ~ rzi a t i o n
and
Aman,
generally
to
1984).
>: y l a n 5
of
t h a n t h a t of
conformation,
grasses
is
The
cellulose.
cellulose
it
degree
of
(50-2C)C)
Havi n g
can
a
(Figure
1o w e r
much
from
have
1 , 4 1i n k e d : . c y l o p i r a n o s y l u n i t s
{Theander-
residues)
and
hemicellulose
si m i 1 a r
be
strongly
associat.ed with o t h e r polysiaccharides.
P;~?owleclge a b o u t
reviewed
1i y n i n
by Jung and Fahney
has
been
(1983).
c u r r e n t 1y
s t r u c t u r a l s t ~ t d i e ss o f a r h a v e b e e n o n wood
( F i g u r e 7).
o+
a
most
However,
lignins
L i g n i n is a f a m i l y o f r e l a t e d p o l y m e r s
three--dimensional
phenylpr-apane u n i t s .
structure,
made
up
of
I t i s g e n e r a l l y a g r e e d t h a t p-
0-
-
\
7f-op(-),o
-O
F i g u r e 5.
OH
H
H
O O H
H
C e l l c r l ose s t r c r c t c r r a
H
-I-
(Theander and Aman,
1984)
X = D-XYLOSE
A = 1-ARABINOSE
GA = D-GLUCURONIC A C I D ( R = H)
OR4-D-METHYL
I'
(R = CH3)
-
F i g u r e 6.
S c h e m a t i c s t r u c t u r e o f a :.:ylan
( T h e a n d e r a n d A m a n , 1984)
-
( h e r n i c e 1l u l o s e )
-I
H C - 0 [CH~OH]
I
I
HCOU
HOCH2
I
HC
I
HCOH
I
HCOH
F i g ~ t r e7.
I
C =0
Schematic s t r u c t u r e o f
the
main
u n i t s irt
g y m n a s p e r m 1 i g n i n ( I t ? r a n d e r a n d Aman, 1984)
19
coumaryl
are
,
important
1i g n i n
precursors i n
a
via
complex
( T h e a n d e r - a n d Aman,
of
1984)
t:.he
(Plorrison,
Table
.
process
digestibility
Linberg et
some
h e r n i c e l l u l o s e , as w e l l
of
The b i g g e r t h e c o n t e n t
19'7Yts,
gives
4
biosynthesis
dehydrogenation
monomers t h e l o w e r t h e
these
straws
( F i g u r e 8)
c o n i f e r y l and s i n a p y l a l c o h o l s
values
al.
for
,
of
1984).
cellulose,
a s cell w a l l s a n d l i g n i n - f r o m
s t r a w s and some o t h e r agr-icult u r a l r e s i d u e s .
Average
is
presented
mineral
o f m i n e r a l s i n cereal
content
in
T a b l e 5.
v a r - i es
content
agronomical
factors
and
mineral
widely
content of
depending
on
amount
cc~ntertts of
straw
1 e v e 1 s. C o b a l t
of
Leng
s t r a w s is g e n e r a l l y l o w
,
are
Calcium and
be1o w
u s u a l 1y
copper,
sulphur
and
rice s t r a w
the
s o d i ~ t m may a l s u b e
limiting.
average
a s h is a b o u t t h r e e t i m e s h i g h e r
c o n t e n t of
Xn
Cor
adequate
m a i n t e n a n c e a n d f o r wor-k b y r u m i n a n t s .
reczommended
the
According t o P r e s t o n and
i m b a l a n c e d b u t t h i s may b e q u i t e
phosphor(-ls
that
also with t h e
and
con t a m i n a t i n y s o i 1 .
(1984),
I t i s known
straws
t h a n i n t h e o t h e r s t r a w s a n d t h i s is m a i n l y d u e t o a
h i g h e r si 1 i c a c o n t e n t .
Althouqh
i t is a c c e p t e d t h a t s i l i c a is o n e
t h e major f a c t c ~ r sl i m i t i n g t h e d i g e s t i b i l i t y
of
values
Figure
8.
Schematic
str~lctt.tr.e o f
p-Co~tmaryl(I1,
C o n i f e r y l ( 1 1 ) and
S i n a p y l (111)
alcohols
(T'heander and Aman, 1984)
Tab 1(zl! 4.
- -..
--
Ch(sfit1c a l composi t.1on
o f some roctghages
(Theartder and Aman, 1984)
-
Rot-lghage
.._._ ..--..--.-..-- -.---...-----.-.-.-.--
Cell wall s
-----------.-..--
t4erni c e l l c t l o s e
------
C e l l u l ase
L ig n i n
44
'7
36
39
10
3(1)
31
11
14
39
11
15
C'
..JCI'..
13
Hat- 1ey s t r a w
81
27
Oat s t r a w
73
Ib
Paddy s t r a w
'79
26
Wheat s t r a w
130
Sor-ghum s t o v e r
74
Chickpea s t r a w
62
Li.tcerne s t r a w
b9
Sugarcane bagasse
82
29
Sugarcane t . r a s h
80
26
Faddy h u l l s
(36
C:c~tton seed h u l l 5
V1
_-__--_------------"_-_--"--__-----.---_.-.--------
-..--.-.- - - --- --.-
.-.-------
----------
I
-
T a b l e 5.
Contents of m i n e r a l s i n c e r e a l straws
(Theander and Aman, 1984)
-----------------------------.--------.----------------------------Mineral
Unit
B a r 1ey
Oats
-------------.---.-------.-.---.---
Rice
Rye
----------------..--------------
Spring
wheat
Winter
wheat
---------
Gsh
g /' I:g
:
60
59
1t39
3 (7
61
50
Silica
g / k ~
15
11
130
34
31
32
C::
g / I::g
9.B
11.8
10. O
Na
g i I::g
-"
0 5
.
0.5
0.5
S
g / I:(3
:
3.
2,
1.2
1.4
1.6
-
0. 0 5
Cn
111(7 /'::.I
g
.
14. (1)
.4
- ..-
(->
.
2,
21.9
13.2
-
-
2.5
1
.
0 09
....-
-
0.08
23
of
its
straws,
known.
chem:ical + o r m u l a i n p l a n t s is
J o n e s and Handreck
not
(1978)
(1967) and J o n e s
specrt-(1a t e d t . h a t i n s o i 1 ,
monosi 1i c i c a c i d s ( H 4 S i 0 4 )
could
atom v i a a
jain
t o a n a:.:ygen
hydrogen
bond
t h a t . b r i d g e s t w o i r o n atoms a s :
. ..O ( F e x Q 4 H 4 )
( O H ) :&i -0-H.
i t is l i k e l y t h a t s i l i c a c o u l d also b i n d
ThereSore,
iron
or
atoms s i n t i l a r t o t h a t i n
other
h e n c e may r e d u c e t h e i r a v a i l a b i l i t y i n
that
is t h e case,
silicates
in
The
and
straws.
If
c o n s i d e r a b l e l o s s e s of
are d u e t o
faeces
si 1 i c a i n s t r a w
soil
the
( T h e a n d e r a n d Aman,
content: of
salts
presence
as
of
1984).
straws
c r u d e p r o t e i n i n cereal
i s 1o w ,
4.--7% d e p e n d i n g ccpon v a r i e t i e s a n d f e r t i 1i z e r
applied
(Koxas e t d l . ,
and
Aman
most
(1984),
1i k : e l y
Meanwhile
t h e major p a r t o f t h e p r o t e i n
a s s n c i alred
van S u e s t
insoluble
1.985a). A c c o r d i n g t o T h e a n d e r
in
with
the
(1985) r e p o r t e d
acid-detergent
cell
that
is
walls.
nitrogen
e s s e n s i a 1 1y
is
i n d i g e s t i b l e i n ruminant d i g e s t i o n .
S t r c r c t u r e o f C e l l Walls
Rased
sitrc.tct.ures
si 1 i c a ,
re11
on
c3+
knuwledge
(:el 1 c.tl o s e ,
t:I-)~?1 cherni c a l
wall
o+
the
of
l-terni c e l 1 u l o s e ,
chemical
1i g n i n and
b o n d s t h a t i n t e r l i nl::i n g
ccmsti tctent
are p r o b a b l y
depicted
each
in
24
Figctre
C e l l ~ t l o s e may b e e i t h e r
9.
hydrogen
hnnded w i t h s i l i c a
Hydr-ugen
9).
hemi c e l l u l ose
arrd
S e t t e r - f i e l d and
Harley
Lignin
be
may
(1973)
Figure
to
attached
by
9).
cellulose
si 1 i ca br-i d g e s (see b a n d c i n F i g c t r e 9 ) .
through
may be
Lignin
throt-tgh 0-Si
of
indirect1y
between
suggested
see d i n
(
Figure
B a u e r e t al.
(1961),
(1973)
linkages
were
cell u l o s e
K e e g s t r a et a l .
and
(see g a n d c i n
or e s t e r
bindings
or
covalently
bond
c o v a l e n t 1y
with silica
linked
l i n l . : : a g e s (see b i n F i g u r e 9 ) . T h i s t y p e
be a l s o f o u n d
could
si 1 i c a
between
and
g l u c o r o n i c a c i d i n h e m i c e l l u l a s e s t r u c t u r e (see i i n
Figure
ester
?
L.i y n i n
(see a i n F i g u r e 9 )
linkage
through
may 1i n k h e m i c e l l u l o s e
ether
(see
linkage
j
and
in
through
cellulose
9).
Figure
H e m i c e l l u l o s r i s 1 i n k e d w i t h si 1 i c a p r o b a b l y t h r o u g h
c o v a l e n t u r h y d r o g e n bond
[see e a n d c i n F i g u r e 9).
In a d d i t i o n , hydrogen band between t w o g l u c u s e u n i t s
in
t h e c e l l u l o s e s t r c t c t t - t r e (nay b e f o r m e d b y
plants
of
(see k i n F i g u r e 9). I n m i c : r o s c o p i c a l s t u d i e s
J o n e s ct a l .
oat plants,
s i l i c a w a s a n i n t e g r a l p a r t of
cell
mature
wal.1
deposi t e d
and
in
c o n s t i tc.tents
they
(19h5) i n d i c a t e d
t h e t h i c k e n i n g of t h e
suggested
that
intimate association with
of
the
wall.
that
A
silica
was
the
other
p o s s i b i 1i t y
that
I = ' i g ~ t r e9.
F"o~jsi
bl e
c h e m i c a l 1i nk:ages between c e l l
wall
-.. , w a t e r - f o r m a t i o n ; a , ester
c a n s t i t ~ t e r t t s(
1 i n k a g e s b e t w e e n h e m i c e l l u l o s e a n d 11 i g n i n ; b ,
1 i nC::ages b e t w e e n 1 i g n i n a n d
si l i c a ;
c
S i -C1
h y d l - o g e n h a n d h e t w e e n si 1i c a a n d
c e l l u l ose
(however,
t . h e t:)ortd c o c ~ l db e a l s o p c l s s i b l e i n
f o r m o f c:ovaler-lt 1 i n k a g e s u c h a 5 i n b a n d e ) ;
d,
ester
1i n k a g e between
c e l l t.11ase
and
hemi e e l l u l ose; e , c o v a l ei-11:. b o n d b e t w e e n si 1 i ca
ancJ
hemi c e l l u l ose
( t h e bond
co~th
d
b e a 1so
possible
i n f o r m of h y d r o g e n bond s u c h a s i n
c j ; f,=c;
g , ;
h , hydrogen
br.nd b e t w e e n
5
1i a
a n d i ror.1 ( a d o p t e d f ram s o i 1
science) ;
i = ;
j , ether
1 i n k a g e b e t . w e e n 1i g n i n
and
I ,
hydrogen
bond
between
two
e e l l ul o s e ;
g l . u c n s e u n i t s i n cel l i r l a c ~ es t r u c t ~ l r e i
:.-:
,
26
p h e n o l i c tnoncxners o r - 1i g n i n ar-e 1i n k e d .to u t . h e r c e l l
t h r t 1e y
corsst i t u e n t . s wa5i r e p n r t e d b y
wall
(
1 9 7 5 ) who
ct!sed 1.01.ium m u 1 tif'lorum + ( w a g e .
I t i s n o t known how many b a n d s e a c h c o n s t i t u e n t
can
tu
use link
other
cell
wall
constituents.
1i n k a g e s are
Prohahl y the m o r e f r e q u e n t t h e chemical
t h e m o r e c l i f f i c t - t l t i t i s f t ~ rrt-{men m i c r o o r g a n i s m s t o
digest
t.he
cell
wall.
Morris a n d
Bacon
(1977)
s u g g e s t . e d the need t o c o n c e n t r a t e a t t e n t i o n upon t h e
I: y
a
l a n s t r u c t i . t r e r a t h e r t h a n a n t h e t l e r n i c e l l ul ose
as
d i g e s t i h i l i t : ~w a s r e p o r t . e d t a
be
whole.
Xylan
l o w e r when h i g h e r a r a h i n o s e c h a i n s w e r e f o u n d o n t h e
>: y l an
s2:ructure
enzyme
becat-tse o f
t h e redi.tc:ed
a t t a c k between a d j a c e n t ,
sites
unat.tached
for
xylose
~ t nt.s.
i
T h i s is r e p r e s e t - j t e d i n F i g u r e 1.0 I M o r r i s o n ,
1979b.
However,
xylose
ikself
Morris a n d H a c o n
(19'7'7) f o u n d t h a t
w a s less d i g e s t i b l e t . h a n
arabinase.
Hnrided ~ i l l c aw a s t h o u g h t t o b e s t a b l e i n
weal::
al1::al.i
slightly
anel
acid
r5:jcn:Lubil i z e d
(Jones,
1978)
t o Sor-m
si 1 i c a t e
when t h e ptl w a s n i n e o r m o r e
ct a 1 . ,
'1-hi s
c o ~ tdl
198r:i;
sctggests
be
(Ja(:l::son,
H a r b e r et a.1.
t.l-rat
(..\zed t o
d i g e s t i b i l i t y c:aused b y s i l i c a .
it
but
campounds
1981.; H a r t l e y ,
t:he
was
1977a; M~tdgal
ei t . h e r s t r c m g a c i d
reduce
both
or
hi ndrance
19f31).
a 1 l::al i
to
In a d d i t i o n , silica
F i g u r e 10.
The e f f e c t . of a r a b i n o s e suhr;t.itution an
the
d e g r a d a t i c ~ n o.f : . : y l a n s (
=
xylose;
0 =
arabinose;
& = sites of. m i c r o b i a l a t t a c k )
( M o r r i s a n , 177Yb)
can
h e d i s s o l v e d by h y d r a f l u a r i c a c i d
f 1uor.ide-csi 1 i c a t e
but
(HF) t o
c o m p o u n d is
this
form
toxic
to
a n i ma1 s.
Our k n o w l e d g e on t h e c h e m i s t r y o f
of
is 1i n r i t e d and w e h a v e t o
c r - c ~ phy-procli.tc:ts
~tporl i n f o r - m a t i on
d e r i ved from
wood.
In
major
deposit.iun l a y e r s namely,
wall,
of
the
secondary
According
af
componentv
to
the
Noqg1.e
hemicel l u l o s j e s ,
e
Keegstra
cell
primary
consi s t i n g
wall
.
and
Fritz
cel l u l a s e
(19761,
of
the
Sycamore
nricrof i b r i ls,
pectic. pol ysacchar i d e s and protein.
a].
(
1973)
st-tggested
that
occur i n t h e primary cell w a l l
cnmponerits
of
is d i v i d e d i n t o 2
primary cell w a l l
p s e u b o p l a t a n ~ l s ) are
rel y
str-c-tcture
the
cell
s e v e r a l l a y e r - s ( F i g u r e 11)
(Acer
the
p r i n c i p l e t h e cell w a l l
and
t h e cell w a l l
these
of
other
p1ant.s and t h e y proposed a t e n t a t i v e primary
higher
c e l l w a l l s t r u c t u r e shown
12.
i n Figure
t-lowever
,
it
seems t h a t t h i s a r r a n g e m e n t i s f o r y o u n g p l a n t s .
At
m a t u r i t:y
m o s t 1y
been tr-anslacated from t h e v e g e t a t i v e
to
parts
197'7b
)
p r o t e i n a n d s o l ~ t b l ec a r b o h y d r a t e s
.
the
grains
(Qnderson,
Consequently,
the
1978;
plant
have
plant
Morrison,
residue
c o r i s i st m a i n l y s t r ~ t c ~ t ~ t cr aarlb o h y d r a t e s p r o b a b l y
form of
c:rysta:lline.
w i l l
in
I t i s n o t known w h e t h e r l i g n i n
Warty l a y e r
1
PW,
Secondary w a l l l a y e r s
Primary w a l l
P
Ml,
F i g u r e 11.
Middle l a m e l l a
Schematic represent.ation of t h e v a r i o u s l a y e r s
of
an u n l i g n i f i e d cell w a l l of a h i g h e r p l a n t
( J u n i p e r , 1978)
11 111 Ill
F i g u r e 12.
11 Ill 111 111'1 1 - 1
A
-
t e n t a t i v e molecular s t r u c t u r e of
Sycamore
cell
walls
primary
, cellulose
el e m e n t: a r y
fibril
, xyloglucan
(hemicellulose)
protein
with
4*
a r a b inosy1
tetrasaccharides
glycosidicall y
to
t h e hydroxyprol i n e
residues;
attached
,total
pectic
pol ysaccharides;
,r h a ~ n r t o y aal c t u r o r t a r t m a i n c h a i rr o f
t.he p e c t r i c
pol ysaccharide;
1 , a r a b i n a n and
4-1 inl::ed g a l a c t a n
s i d e c h a i n s r ~ ft h e p e c t i c
p o l ymer- ;
-C$- , 3 r b - l i n L : e d a r a b i n o g a l a c t a n
a t t a c : h e d .to s e r i r t e o f t h e w a l l p r a t e i n ; --r-.
~ c n s c t b sit t t . \ t ~ ? ( S
ser y l
resi dc.ces o f
t1-t~ w a l l
p r o t . e i n 1 I f : I e e g s t r a e t a l . , 19.73)
-
-d+*
7-Y
,
31
and s i l i c a are d e p o s i t e d i n t h e p r i m a r y cell w a l l of
plant residues.
a
Rlt.hough
very ordered arrangement h a s
~3astc.tlated for- p r i m a r y c e l l w a l l s ,
I.::nown
;Jt..rni per-
(
19781 ,
anci T a l m a d g e et
t h a t s e c o n d a r y cel l w a l l
suggested
very little
the s e c o n d a r y
a b o u t t h e a r c h i t:ec: t ~ t r - . eo f
wall.
.j
type
is
palyphenylproparloid,
encr~rsted
liynin,
deposited
are
aromatic
i t r e a d i l y forms
and
(J~rnipcr-, 1978).
cell
(1Q73)
dl.
the
chemical bonds with a wide r a n g e of
constituernts
is
Into a certain
a f t e r - t h e cell h a s c e a s e d expanding.
cell
been
o t h e r cell
wall
Apart from l i g n i n ,
s e c o n d a r y c e l l w a l l s are m a r k e d b y a g r e a t a m o u n t o f
el l u l o s e d e p o s i t i o n (A1 b e r s h e i m ,
t o J o n e s et al.
Acccrrcliny
Handreck
(19'78)
(
136'7)
and
,
van
1965).
(19631,
v a n Soest a n d J o n e s
Eys
(1982)
(
silica
Jones
1968) , J o n e s
may
play
import.ant role i n l i m i t i n g cell d i g e s t . i b i l i t y
silica
in
t h e cell w a l l
is t h o u g h t
b e t w e e r 1 cell{-rlose m i c r o f i b r i 1 5 ,
pectins,
h e m i c e l l u l asp
and
to
analysis
c n n s t i t u e n % s of
can
since
o r t o i n t e r a c t wit.h
phenol ic
compounds
t h e r e are nu a v a i l a b l e methods of
which
an
polymerize
t h e r e b y d e c r e a s i n g t h e d i g e s t i b i l i t y n+ f o r a g e
present,
and
determine
the
t h e v a r i o u s w a l I. 1 a y e r - 5 .
.
At
chemical
cell
wall
5. F a c t o r s
Affecting
Chemical
D i g e s t i b i 1i t y o f C e r e a l S t r a w s .
One
v a r i a b i 1i t y
in
d i g e s t i b i 1i % y
respnnsibl e
their
chemical
for
the
The main
ar-e
v a r i a b i 1i t y
and
a p p l i c a t i o n of
fertilizer.
nlanagernent
practices
a n d K s h a n i l::a S a n n a s g a l a a n d J a y a s u r i y a
€3).
and
factors
genotype,
as
such
f a c t t h a t t h e r e is v a r i a t i o n between
g e n o t . y p e s w a s s h o w n b y R o e a s et
straw
the
is
composition
( T a b l e h a n d 7).
e n v i rc3nmen.t.,
The
cereal s t r a w s
t h e f e a t u r e s of
of
and
Composition
In
R o x a s c t al.
t h e work o f
v a r i et i es
al.
(
rice
(1985b)
1 9 8 4 ) ( T a b 1e
(1904),
rice
15
w e r - c g r o w n a t t h e same 1 o c a t i o n a n d h e n c e
environmental e f f e c t s w e r e minimized.
The
obtained
in
considerable
v a r i at.ion
i r l t h e c h e m i c a l c o r n p o s i t i o n a n d irr
digestibility
In
rice.
this
of
%he
Jayasuriya
st.t..rdy
indicate
results
~ ~ i t r c ~
s t r a w from d i f f e r e n t v a r i e t i e s
o.F
work
(1984),
C::shani l::a
Sannasgala
9 r i c e v a r i e t i e s w e r e grown
t w o main r i c e b r e e d i n g s t a t i o n s ,
so t h a t
of
and
at
variation
w o ~ tdl h a v e i n c l ~ r d e d e n v i r u n m e n t a l a s we1 1 a s g e n e t i c
d if +erences.
van
S o e s t . ef al.
o f f e r t i 1 i. z e r ,
light
(1.978) s u m m a r i z e d t h e e f f e c t
w a t e r appl ication,
intensity
on
chemical
temperature
compasit.ion
and
and
d i g e s t i b i l i t y i n f o r a g e s ( ' T a b l e 9 ) . However t h e y d i d
T a b l e 6.
V a r i a b i 1i b t y i n
chemical
composition
i%d r y
m a t t e r ) and in v i t r o
organic
matter d i g e s t i b i l i t y (IVOMD) of cereal
s t r a w s ( v a n Soest method)
---------------.------.-.-------------.---------.----------------.-----
-
Straw
-.-----.-----------------------Wheat
Oat
NDF
Range
Lignin
Range
-
-
76-03
79-82
8-10
8-15
-.
--
8-15
4(:).-45
40-43
40-45
40-43
49-63
43-53
49-&1
43-50
43.-55
43-58
Hemi c e l l u l o s e 17-28
25-26
Range
ADF
-
-
Range
-
Range
17-28
-
-
-
25-26
Silica
Range
-
-
1-8
1-3
Range
*
3!:)-50
References
Rice
- P e a r c e et a l . ( 1 9 7 9 )
54-71 Hoxas e t a l . (1985a)
'72-81 Kshani k a Sannasgal a
and J a y a s u r i y a ( 1984)
49-80 Anonymous ( 1982a)
49-81
5-12
3-16
5-16
-
8-10
(:el 1u l ose
Barley
-
P e a r c e e t a I . (1979)
Roxas e t a1. (1985a)
Anonymous (1982a)
Pearce et a l . ( 1 9 7 9 )
21-39 Anonymous ( 1982a)
3 1-35)
L
-
Pearce et a1.(1979)*
Cilderman (1776)
40-.71 Anon ymous ( 1982a)
40-7 1.
P e a r c e e t a1.(1979)
10-36 4nonymous ( 1982a)
10-36
- Pearce e t a l . ( 1 9 7 9 )
16-22 Roxas e t a l . (1985a)
5-8
E s h a n i k a Sannasgal a
and J a y a s u r i ya ( 1984)
4-24 Anonymous (1982a)
4-24
Winuqroho (1781)
Pearce et a l . ( 1 9 7 9 )
A1 derman ( 1976)
Roxas e t a l . (1985a)
Roxas e t a l . (1985b)
K s h a n i k a Sannasgal a
and J a y a s u r i ya (1784)
Anonymous ( 1982b)
34-48
C a l c u l a t e d b y a d d i n g l i g n i n t o c e l l u l o s e and s i 1 i c a c o n t e n t s 3
NDF,
neutral
detergent
fibre;
ADF, a c i d d e t e r g e n t f i b r e
Table 7 .
Variability
i n
chemical
composition
i%d r y
m a t t e r ) and i n v i t r ~ . ) o r g a n i c
m a t t e r d i g e s t i b i l i t y (IVOMD) o f c e r e a l
straws
!Weende
method)
(Anonymous,
1982a)
Crude
Ether
fibre
e:.:tra:.:t.
..................................................................................
s-irLaw
-T DhI
Crude
Ash
p r o t e i r~
P VUMD
------------------------
5-
Rice
24-38
1
Corn
--77--34
Sweet
p o t a t o e s 14-29
.-
41-51
3-.-7
1-2
4'7--62
:3-'7
I-' .J
35--5'7
8-14
f.7
l ~ - -L,J, - i c 41-.-4'7
17
1i:)-2r+
34-42
4,5--5(:)
26-55
4 1-70
Li3-65
Tabel 8. Vari abi l i t y of chemical composi ti an and
i n v i t r o urganic
matter digestibility
(IVOMD) af rice straw
n varieties
Crude protein
I\IDF' ( % )
15
5 - 9
(%)
54
Lignin ( % )
Silica
(%)
IVOMD I % )
f.~efe!e-~-~e.
Roxas
5
I&
--
71
- ;la
-
22
31 - 4 6
et ai.
(
1985a)
I.::shani
k a Sannasgal a
and Jayasuri ya ( 1984)
T a b l e 9.
I n . f l c t e n c e u.f e n v i r o n m e n t a l f a c t o r s upon
cocnposition
and
digestibility
oS
f o r a g e ( v a n S o r s t e t a l . , 1978)
------.----------.---------------------
-----------_--_-....._
-__--.-----_--_
---.
_..-.----
N ltrogen
.-.-
Water
---------------------.--
------------------------
Temp.
L.i g h t
Yield
-4.
.C
+
+
WSC*
-
-
-.
+
Cell w a l l content
+
.....
.+
.t.
-
Lignin content
-4.
-4.
+
-.
Digestibility
+.-.
-
-
+.
+k
Water s o l c t b l e c a r b o h y c i r a t e s
-
s7
not
explain
how
these
factors
influencing
An a t t e m p t t o p r e s e n t r e a s o n s w i l l b e
digestibility.
g i v e n i n t h e f 01 1 o w i n g p a r a g r a p h s .
to
Accord1 ng
increasing
improve
are
either
Jones
and
Handrecl::
e i t h e r I\J or F'
fertilizers
amount of cereal y : i e l d b u t t h e
the
more 5 u s c e p t . i b l e .to f i r n g a l a t t a c k s .
thr
reduce
(19671,
n u t r i . t i v e v a l u e of
the
will
plants
This
crop
will
residues.
from
Increasing t h e nitrogen f e r t i l i z e r application
C::g N / h a t e n d e d t o i n c r e a s e t h e c r u d e
0-120
c:untent
VY't r ~ )
protein
t h e s t r a w f r o m 5.8 t o 6 . 3 % b u t
of
digestihi1it y
not
was
( K o x a ! ~e t
ni trogen appl i c a t i o n
the
increased
by
the
1985b).
dl.,
in
Most
n i t r o g e n is p r o b a b l y a t t a c h e d t o c e l 1 w a l l s t r u c t u r e
and
i t is n o t r e a d i l y a v a i l a b l e f o r rumen
(van
Snest,
available
Nn
1985).
on
the
paddy
s i l i c a when
fieldsheavilywithNandP.
straw
on
J o n e s a n d Handrecl::
t h e addition of
(1967)
fertilizing
Yoshidaet
(1959) d e m o n s t r a t e d a marked i n c r e a s e i n growth
production
silica
such
dl.
and
f a r r i c e p l a n t s grown i n t h e p r e s e n c e of
('Table
apl ication
are
data
e f f e c t of f e r t i l i z e r s
qua1 i t y a f ter h a r v e s t .
suggested
other published
microbes
are
10).
The
advantages
increasecl r e s i s t a n c e
a s b l a s t a n d brown d i s e a s e s ,
and
o.f
to
to
silica
d i 5eases
insects
T a b l e li':).
E + + e c t 0.f: s i 1 i c a p r e s e n c e on g r o w t h o f
r i c e p l a n t s ( Y o s h i d a e t al., 1959)
-------.----------..--
-.-----.--.-.-..---
---.--.-----
-.-----.-------------Si F e r t i l i z e r
-.------.-.---------.---
-----
- ------ ----. --
I
Shooth l e n g t h
----------------------
(app.
1--
rm,
-.. --.--
+
--. --.- ------------.- -----------
..
s ma)
Transpiration*
Grain t o t a l
Leaf b l a d e
15
12
1400
(DM)
(%!
L e a f s h e a t h 8~ stem
Leaves
92
90r:)
number p e r - - g r o u p
SiC12 c o n t e n t
85
("1
.
0.1
(%)
s Grams o f
water
19.2
0 1
(%)
___----_-----_-.-..---..-------.---.-.-----.----
.2
-- ..-.--..--..- -.- --.-.--- -
l o s t p e r gram o f
13.7
12.4
-----------.-
d r y w e i g h t p e r day
39
st-tch
a s r i c e b o r e r anti l e a f
spider,
e f f i c i e r i c ~ y of p:l a n t w a t e r e c o n o m y .
and
increased
They a 1so showed
that
h e i g h t : o f t h e p l a n t was i n t r r o a s e t i b y 8%.
wi II
pr-ovi d e
rrlore
a r e a s exposed t o
si 1 i. c a
Tt~c highest
the
sun1i g h t
were
(:oncentrat.i. o n s
This
in
1e a v e s w h e r e t h e p h o t o s y n t h e s i s m o s t 1y o c c u r .
a l l o w some p r o t e c t i o n a g a i n s t p l a n t
w i l l
.
the
This
parasites
a n d d i seases.
is a b s o r b e d h y r-ice p l . a n t s i n t h e
Silica
of
fnonosi 1 i c i c
The
1967).
acid
,
H 4 S i U4
the
Handrecl::,
Harldreck
p r o c e s s is p a s s i v e d e p e n d i n g upon
silica
15'67;
parts
exposed
yr-own
irr
~cptaC::e b y
dry
plant.%
ta
r
areas
the
and
Plant
t h e s u n l i g h t or p l a n t s
1e
ly
to
have
higher
t . h e r e f ore i t i 5 e x p e c t e d
t.rans[:,ira.tior.l r a t e s ,
this
r n a t ~ ? r i + ~wl o u l d h a v e a h i g h e r
than
shaded
plant
(Jones
1 9 7 11 .
S a n g s t e r and P a r r y ,
directly
,
1"tie h i g h e r t h e r - a t e , t h e
p l a n t t r a n s p i r a t i o n rate.
higher
( J o n e s and
form
p a r t or p l a n t s
si I i c a
grown
that
content
in
cool
areas.
According
deposited
in
to
van
three
Eys
1ocati o n s
i n t r a c e l l ~ ~ l a r ,i n t e r c : e l l u l a r ,
which
w a s mainly responsi bl e f
digestibility.
(1982),
silica
being
cJr i n t h e c e l l
01-
was
ei t h e r
wall
r e d { - c c in g c e l 1 w a l I.
S t ~ t des
i whi c h sc.tggest.ed
t h a t si 1 i c a
40
tji
d n a t r-edctcze t h e d i g e 5 t . i b i 1 i t y o f
t.ha.t
of
mos.t
the
i n t r a c e l . l ul, iar-
and
than
c:ell
in
the
s:i l i c a h a d
Jones,
deposited
(Mlr~son, 19'71).
Qther
r;i 1 i c a h a d r e c i u c e d
imp1 y t h a t l a r g e q u a n t i t i e s o f
et
Smith,
19hB;
in
rather
b e e n d e p o s i t e d i n the c e l l w a l l s
had
imp1 i e d
1o c a t i o n s
s t u d i e s wl-jic:h i n d i c a t e d t h a t :
diqestlbility,
beer,
i n % e r c e l1 u l a r
w a l l s
straw,
al.,
the
silica
( v a n Soest a n d
1971).
uni t
One
i n c r e a s e i n si 1 i c a c o n t e n t r e d u c e d d i g e s t i b i 1 i t y
( S m i t h et a l . ,
one u n i t
Soest a n d J o n e s ,
of
a v a i l a b i 1i t y
Water
S ~ C ~ W I It c 3
been
Duantitative determination
f o r e a c h l o c a t i o n is n o t y e t a v a i l a b l e .
silica
was
or t h r e e I - t n i t s ( v a n
9 7 1 ,
1968).
dur-ing t h e growing
lC?B1;
(Jones
and
P~trser,
1982
1985b).
With
rice,
reported
that
lowering
Jones
the
meast-(re
rice
in
the
leaf
.
and
Handr-ech
result
rainfall
in
content
a c c ~ t m ~at tl i o n
blades hut they
did
not
before
and
Based on t h i s n h s e r v a t i a n ,
during t h e
1c)~er-
J rt
growing
~/x'tr.c:r
al.,
(1967)
water
soil
r ~ o t si.ir-131,-is i rlq t . h a t a r e s o i 1 w a t e r c o n t e n t
higher
1967;
a n d H o w a s et
d i g e s t i b i l i . t y ut: t h e l e a f
a f t e r .treatment
have
tiandrecl.::,
r - e d u c e d t r a n s p i r a t i o n ancl r e d u c e d t h e
silica
period
a + +e c t s t r a w qi.tal i t y a f t e r g r a i n s
harvested
Winctql-.ohm,
of
by
i t is
due
period,
organic
to
will
matter
41
d i y e s . t i b j . l it y
1981;
vali.tes
F'c.trser,
1982).
f o r wheat.
straw
H i g h s o i l water
(Win~tgroho,
content allows
t h e t r a n s p j . r a t i on r a k e t o i n c r e a s e hence
the
plant:.
s i l i c a content.
r e p o r t e c l that:
P a t e 1 and
increasinq
Shah
t h e cr(..tde f i h r - e c o n t e n t uf
was h i g h e r when t h e wheat was i r r i g a t e d
(1957)
wheat
straw
(41 v s 31%).
Probably t h e straw obtained from t h e i r r i g a t e d areas
wot-tld
h a v e s i 1i c a c o n t e n t h i g h e r t h a n t h a t o b t a i n e d
+ram t h e n o n - - ir r i g a t e d a r e a s .
al.
had
(1985b) showed t h a t
I n contrast.,
Haxas et
i n t h e wet season r i c e s t r a w
a 17% ! s i l i c a cuntcr-llz v s 15% i n t h e d r y
season,
and t h a t s t r a w o b t a i n e d i n t h e wet season had an
in
cjitro organic matter valire higher than t h a t obtained
i n
t h e d r y seasnn
r - e s u lt s
between
differences
silica
i n
(48 v s 44%).
the
between
two
s t u d i e s may
plant
c e l l walls,
The d i f C e r e n c e
species
i n
It i s
cjue
i n
effect
of
soil
transpiration
different
water
rates
plant
content
and
s i 1i c a
apecirs
upon
the
relative
deposition
i n order t h a t
the
important
a + u r t h e r s t u d y b e undertaken t o observe
that
to
depositing
o r between seasons
r ~ fs a i 1 w a t e r c o n t e n t .
magni t u d e
be
i n
effect
i n
on
s t r a w qua1 it y (ran b e e s t a b l i s h e d .
Higher
transpiratior-I
temperatures
rates
i n
r,timu1a t e s
p l a n t s which i n
higher
turn
are
42
1 ik e l y
t o
higher
c:oncentrations
Higher
1 igt3.t i n t e n s i t y may i n c r e a s e
t.her-eby
plants
i.rnder
reduce
straw
f : > r o v i dng
i
thror-rgh
s i li c a
of
h i gher
i n
I.evels
ca~tsing
cell
walls.
photosynthesis
of
nutrients
i n
i t c o i . ~ l db e t?:.:pected t h a t : st.raw o b t a i n e d
;anc:l
t:ondi t i ons waul d be o f
these
i f
t.iowever-,
qctal it y
t.he
higher
h i qher
light
value.
intensity
i s
accompanied b y a h i g h e r t e m p e r a t u r e t h e n t h e e f f e c t s
of
t h e t w o c l i m a t i c f a c t o r s on s t r a w q u a l i t y w i l l
be
c o n f ounded.
&rite
apart from t h e e f f e c t o f
on st.r-ak~q r - t a l i t y ,
rr,aturity
reduc:ec.J
and d i g e 5 t i b i l i t : y
content
of
increase w i t h
digestibility.
1978;
Morrison,
pr-oceedi ng
with
a
Therefore,
g r a i n harvest.
yrain
decrease
wheat
be
1979a).
harvest
harvest
i n
S t a n i f o r t h and C o l l i n s
date
t h e y d i d not.
straw
i t i s n o t wise t o delay
mentioned a reduct.ian i n t h e q u a l i t y o f
However,
plant
(1978) r e p o r t e d t h a t t h e c r u d e f i b r e
period
si mu1taneoi.ts1 y
the
wall
wheat and b a r l e y s t r a w i n c r e a s e d o v e r a
khr-ee--weel.::
when
i s call
of: t h e m a t e r i a l would
( N i l m a n and D a l y ,
Manl.ey and Wood
the
the proportion that
t h a n c e l l content. w i l l
rather-
climatic factors
was
delayed
(1979)
wheat
straw
one
week.
o b s e r v e t h e same e f f e c t when
w a s grown d u r i n g w i n t e r .
F'robably t h e lower
4J
'7
t..e~nperaki.tr-es
have
wot..tl d
j.
n f 1 uel-tcecj
result
the
t t - I I - C I L I ~ ~~ : ~ ~ ' . . c ~ d ~ t a( : : si nlgc ~ ~ ~c : eh arn g e i n
the
relative
~ ~ r a p c 3 r " t i o n0.f:
s c e l l r - ~ a l . 1 5a n d c e l l c o n t e n t : .
In
lead
addition,
.to
1.oss o.F I:)rit::tle
the
alter
quality
inflc.tencec1
% e a v e s whi'ch
+:.tern r a t . i n a n d
leaf:
t3.f:
straw.
the
timr?
w i l l
:in i:t.tr-n
will.
d e l a y i n g . t h e har-\./er?t
lhe
t ~ y {nethocl of:
af:+ect t h r
ratio
harves.t.
may
end
be
also
Mechanical
and
t h r - e ! s h i n g h a r v e s t : : i t - ~ g m e t h o c l s c a n cat-ts;e h i g h e r d r i e d 1e a f
I c)e;s compar.ec:l t:n rnanctal h a r v e s . t i rtg d o n e w i t t l
a 17cJ
ife
.t:racli t i a n a l
I-t
y
5imt.tl.t:anec:)c.t~l
cart b e ~ t s e d.to el i m i r ~ a . k e rac:hi s C r o m
t h e s%:r-aw.
I.:
F i a c h i s cqc.ta1i.t.y
uii:,:t:.it~,-eof: rit:e
:Leaf a17(:J
~3~ .l r i t e r I - t ~ s e ,
h a v e beet-) har-\cest:.ed
sc3lltble
I t
Re!searcl-t
and
l o s s e ! ~o f
j.
r1ut:r.i t i v e
value
n v e s t i g a t e t:he
tl-Iei r i rltrt.?racI:.i CJIVI
w i l l . t i m e cot-tsc.tming,
a1-1rJ
in~iect
the
.it:.r.aw.
t:here arc
to
or- p o u r
r t c . t t r i c r t t s s u c h as;
seems
the
and
a +t e r g r a i n s
s t r a w .t.cn f u n g a l
j.n
i n f l t..tence
(::oliec:ted
I:)e%ayecj c:o:Llec::%ri(317,
,,
a
(Wir~r..tgrohc:~,
1981).
sterri
car-bc:jhyclratre
that
which
)
abet-tt ha1.f: t h a t : o f
a n d i minec:li a t e l y ,
~ - r i , l l e:.:po:se
a % t a c \ : : sa n d prc3,nol:s
1.5
..;t:rap~shat.tld b e
: % t o r r ~ r al p p r - a p r i a t e l y ,
st:oragc,
t-I
( a n l-ani
a
oil
L.3~ct
many
04:
factors
the
ef f e c t of t h e
straw
qua1i t y
neces!zary i f
the
that
straw.
+;actors
obviously
ultimate
44
goal
is
.f. e e d i r i (1
.
t o mak:e
c t s e cjf s t r a w i n
ma:.:imum
ruminant
I 1 Straw T r e a t m e n t s
A s p r e v i a u s l y ment i o n e d t h e a b u n d a n t e n e r g y s t o r e d
in
c e l l e t l o s e a n d h e m i c e l lr-{lose c o n t e n t
the
cell
is n o t r e a d i l y a v a i l a b l e f o r d i g e s t i o n
w a l l s
trapped with o t h e r c e l l wall
1i g n i n
53.1 i c a
and
pr-ovi d e
t:hr-or-rgh
c:nnstituents
c h e m i c:al
cnnstrain t s
p h y s i cal
by
T h e c e l l ctl u s e a n d h e m i c e l l u l ose
rumen m i c r o o r g a n i ! s m ~ , .
are
straw
of
sctch
as
1 i nC::ages
that
aggai n5.t w i r ~ d or
water
lodginq.
Ef f a r t s h a v e b e e n made u s i n g p h y s i c a l
chemical. t r e a t m e n t s ,
to
combinations
1 i g n o c e l l ul.o s i c:
biological
treatments,
treatments,
and t h e i r
i n c r e a s e t h e e n e r g y a v a i l a b i 1i b t y
in
c r o p resi d u e s .
1. P h y s i c a l T r e a t m e n t s .
The
a i m of
main
t h e treatment
is
t o
reduce
p a r t i c l e s i z e or
t o i n c r e a s e t h e s u r f a c e area p l a n t
ti s s u e
b y - . p r - o d u c t s wktich a r e
of:
crop
microbial. attack:.
Light mechanical
a s m i 1 1i n g , g r i n d i n g ,
more
p1 ar7.t
microbial
t i 8sr-tez
digestion.
e:.:posed
procedt-rres
t o
st-tch
c h o p p i n g ancl c h e w i n g may c a u s e
t.n
be
more
t-lowever
,
a v a i 1a b l e
for
c e l l u l ose
and
45
a r e s t i I. 1 t r a p p e d b e t . w e e n 1 i g n i 1-1
hemi c e l J. ~ . tos;e
1
s i l i c a i n t h e t i s s u e s hence preventing
and
total
their
a v a i l a b j . l i t : . y ,For r u m e n d i g e s t i o n .
If
slrruc.ture is s u b j e c t e d t o v e r y
t.he c e l l w a l l
f i n e m i l : L i n g , f o r e:.:ample
vibratory
ball
constituents
milling,
can
( S t o n e e t al.,
be
all
to
nearly
100%
(1904) mentioned that.
Walker
digestibility
m i 1 1 i n g t i m e was e : . : t e n d e d
a1I
words,
wall
even
up t o 8 h a u r s .
1i n k a g e s
ii984),
effect
This
ball.
on
milling did
chemical
imp1 i e s t h a t
d o e s n o t r e v e a l t h e d e g r e e of
other
between
According
not
between
c:ell
of
composi t i o n
cellulase availability
i % may mean t . h a t a m e t h o d t o m e a s u r e t h e
strength
a
have
composi t i a n
chernical
in
96% i f
In
c o n s t i t u e n k s had b e e n removed.
Walker
s a m p 1 es.
and
chemical and physical
significant
and
m i l l i n q and
p a r t s of t h e c e l l w a l l
d i y e s t e t j up
1969).
67% c a r b o h y d r a t e
t o
ball
woad b a l l rni 1 l e d f o r 1 0 m i n u t e s r e s u l t e d
spruce
cell
through
c:unsti t.uents
wall
bond
in
1i g n o c e l l u l o s i c c r o p r e s i d u e s n e e d s t o b e d e v e l o p e d .
I t is r - c p o r t e d t h a t r e d u c i n g t h e p a r t i c l e s i z e
s t i m ~ t l a t e i n c r e a s e d i n t a k e d u e t o a h i g h e r rate
passage
rat. i on
1972).
but
the digestibility coefficient
i s of t e n decreased
But,
( M i nsan
t h e f i n a l i n t a k e of
p r a c t i c a l 1y i m p r o v e d
,
196i3;
of
will
of
the
Dune+ er
,
d i q e s t i l ~ l ee n e r g y i s
About
Ihdonesia
t h e human a n d rctmi n a n t p o p u l a t i o n s
of
kc:)%
in
are
Java
i nc:rea!si n g
annt-tal 1 y
e:.:pl o s i ctrl
tends
and t h e
hctnlan
of
p o p ~ t l a t i o n is
at. t h e r a t e o f 2.34%. T h e popctl a t i o n
to
decrease
the
agricctl tur-al
larld
avai lable
+or c:rc~p ancj g r a s s pr-odctct.i o n whi 1e
t h e demand
fur
and
Theref ore,
meat
milk
keeps
on
irtcreasing.
producztion i n J a v a h a s t o r e l y h e a v i l y f o r
ruminant.
feed
a n agro--i rtdust.ri a 1 by-.-products and c r o p residl-ces.
,
R i c e s t r a w i s t h e : l a r g e s t c r o p resitjice f o c t n d i n
being
17
However,
tcms
million
annually
(Anonymous,
Java
1982a)
.
it h a s l o w nutritional value due t o t h e -following
factors:
1.
Being
a matctr-e
proportion
a n d Aman,
2.
microbes.
7
.-t
.
*
It
it: c o n t a i n s a
cell wall s (Jackson,
of
amctng
cell wall
iC::eegstr-a e t a l .
,
1.986)
to
1904;
rumen
1973).
( R o x a s et a l . ,
1985a;
Hart
and
.
I t h a s a l o w m i n e r a l a n d v i t:.amir, c o n t e r ) t
a n d Aman,
through
1973; H a r t l e y ,
K s h a n i !::a S a n n a s g a l a a n d J a y a s c c r i y a ,
4.
Theander
cortcjti t u e n t s
b o n d s redctces t h e i r a v a i l a b i 1i t y
has a l o w nitrogen content
Manapat:,
1977a;
high
1984)
Inter1inking
chemical
plant residue,
1.9E14)
(Theander
Consequently, rice s t r a w a l o n e h a r d l y provides maintenance
f o r - r u m i n a n t s a n d r e q u i r e s .to b e t r e a t e d a n d
regui rement5
s u p p l e m e n t e d i n o r d e r t:o i n c r e a s e i t ' s n u t r i t i o n a l
Currently,
the
treatments
i n c r e a s e t h e a v a i l a b i l i t y of
physical
,
chemical
,
or i n c o m b i n a t i o n .
I b r a h i m ( 1 983)
some
However
literature.
Firstly,
of
,
W a l l-::er
(
major- d e f i c i e n t a r e a s a r e
in
the
recognized.
r i c e s t r a w p o r t i o n s measured i n
of
.Fi.tr-ther s t u d y w o u l d b e t o
nutritional
val. u e as + e e d .
s e l e c t i n g t.hose p o r t i o n s
S e c o n d 1y ,
s t r a w c h e m i s t r y is sti 11 s l i g h t .
to
increase
vivo.
The
provide
an
with
greatest
knowledge of
Alkali
straw
However,
used f a r treatment.
a
c h e m i c a l 1y
information
cell
will
a c i d s or o t h e r c h e m i c a l s a r e t o
T h i r d 1y ,
nutritionally
treated
more
is
organic
through d i s r u p t i u n of chemical bonds between
constituents.
rice
treatments,
t h e a v a i l a b i 1i t y of
c e r t a i n 1y h e needed i f
produce
( 19 8 4 ) .
t h e r e is n o i n f o r m a t i o n a b o u t t h e n u t r i t i v e v a l u e
for
wall
either
u s e d e i t h e r s e p a r a t e 1y
1 9 8 4 ) a n d F ' r e s t o n and Lxng
opportctnity
matter
,
t o
'These h a v e b e e n t h o r o u g h l y r e v i e w e d b y
Three
advantage
thoi.tght
used
b a s i c i n f o r m a t i o n is s t i l l l a c k i n g
different
main
be
can
c e l l w a l l s are
str-aw
biological
or
%hat
value.
t r e a t m e n t u s u a l 1y d o e s
balanced feed
s t r a w !should
be
and
be
not
t h e r e f ore,
supplemented
with
o t h e r i n g r e d i e n t s i n o r d e r t o ~ ~ t p p o ra nt i m a l p r o d u c t i o n .
-
aims of the research described below was ( 1 )
The
evaluate
straw
the nutritive value fur cattle of different rice
portions,
( 2 ) to
maximize
the
coef+icient of rice straw through treatments
combinations of alkalis,
r
vitro
to
in
value
of lime
with various
acids and white rot fungi
condition and then to test
under
digestibility
v i v o conditions,
under
selected
treatment
( 3 ) t o compare t h e
nutritive
treated rice straw with elephant grass
in
diets enrichecl with local I. y avai X able concentrates such as
cassava leaves and onggok.
LITERATURE REVIEW
to
Accor-ding
Bir-o
Pusat S t a t i s t i k
(1984)
62% o f
I n d o n e s i a n r i c e s t r - a w product.ion is p r o v i d e d b y J a v a .
1981
paddy f i e l d i n J a v a w e r e p l a n t e d w i t h
varieties
s h o w n i n T a b l e 1.
as
Government.
35
released
v a r i et.i e s
o b t a i rted
from
c u l t i h v a r s or v a r i e t i e s
crossing
(Anonymous,
new
rice
various
Further,
different
In
i n 1983
improved
between
the
rice
local
the
1983a). Rice s t r a w i n
I n d a n e s i a obv:i o u s l y i s a v a r - i a b l e p r o c l u c t w h i c h coma5 f r ' o m
a
c o n t i n u a l 1y e v o l v i n g m i x t u r e o f
var'ieties
when
arid c u l t i v a r s ,
long and s h a r t
and t h i s must b e k e p t
strawed
in
a t t e t n p t i n g t o re1a.k.e w o r l t j l i t e r a t ~ t r ec3n r i c e
mind
straw
t n t h e I n d u r i e s i a n si ti.tal.:i o n .
I.
R i c e Straw
Rice
i s t h e a e r i a l p a r t 0.f t h e r i c e
straw
l e f t after the grain
plant
There are a
h a s been harvested.
number o f r i c e s t r a w v a r i e t i e s h u t i n g e n e r a l t h e s t r a w
p o r t i o n s a r e as, r e p r e s e n t e d b y F ' i g ~ t r e 1.
1. Straw
P o r t i o n s and Their
The
of
lnwer p o r t i o n of
stems
which
w i t h a number- o f
Nutritive
Value.
s t r a w is composed
internodes
mainly
and
nodes,
are t h e p o i n t s w h e r e t h e l e a v e s e m e r g e .
upper
material
pc3rtion
is
c o n s t i t ~ t t e d mainly
c o n s i s t i n g of
and t h e l e a f
blade.
two parts,
The
of
leafy
t h e leaf
sheath
B n t a n i c a l p o r t i o n s of
various
T a b l e 1.
Percentage
distribution
of
varieties
planted
in
Java
(Siwi and K a r t ~ o w i n u t o , 1984)
--- -.----
---------.-.-------.
-.-
----..----
"---"----.-----W e s t
-----------.-
.-.--
-------- ----
JAVA
---------.--------------
Central
------- --.-.- -------.----.
-.-----------.---.-----------.-
rice
in
1981
East
--------------------
T o t a l rice f i e l d
( . 05)0 h a )
Pel it a
(% 1
0 3
.
1.8
Semeru
(%)
5.6
0.3
Ci s a d a n e
(%)
14.2
2. 1
1.5
17.5
13.2
0.2
L-ocal v a r i e t i e s
Local c u l t i v a r s (%)
T a ta1
N,
negligable.
25. O
------
.
1 (:)0 0
18.2
------
.
1 (:)a 0
.
0 5
IL
7
.-
(-)
6.7
---.---
100.0
Rachis
Leaf b 1ade
Internode
Node
Leaf sheath
F i g u r e 1.
Rice p l a n t ( O r y r a s a t i r ~ a )
s t r a w s a r e a s s ~ t m m a r i z e di n T a b l e 2 .
cereal
predominant
,
strrar-J,
.for t h e o t h e r c e r e a l s t r a w s .
chemical
3.
composition
and
higher
was
v i tri.)
krt
Prubabl y,
because
leaves
rice
have
the lower
d i g e s t i b i l i t y val.ue l o w e r t h a n t h e s t e m ,
portion
For
t h e ! s t r a w por.t.ior-1s a r e p r e s e n t e d i r s
d i g e s t i b i : l i t y of
Table
t h e s.traw shauld have a n u t r i t i v e
of
than
is
r i c e s t r a w b u t i n c o n t r a s t , s t e m is
for-
t h e fna.jor- p o r t : i o n
rice
Leaf
the
'T'hi a
upper portion.
suppor.ted
Hart
by
and
value
hypothesis
(1986)
Wanapat
who
r e p o r t e d % h a t t h e l o w e r p o r t i o n oS r i c e s t r a w h a d a n
irt
r j i t r o d r y matter d i g e s t i b i l i t y v a l u e h i g h e r t h a n
(42 v s 29%).
t h e upper portion
This
M a s
t.houyht t o
b e mmairll y d u e t o t h e h i g h e r c o r - t c e n t r - a t i o n o f
in
the
available
].paves.
i t should be noted
But
C r o m t h e l i t e r a t u r e are
data
silica
that
the
based
on
T e s t i n g c-tnder . i n r./ic/o c o n d i t i o n
labor-ator-y s t u d i e s .
i s r ~ ? q u i r e dt p c l a r i f y t h i s h y p o t h e s i s .
2.
The H i s t o l o g y o f
Schematic
internode
presented
tubular
C e r e a l Straws
d r a w i n g s o+ t y p i c a l s l e n d e r
cereal
straws
are
(Staniforth,
1979).
The
c:rass-.sections
in
part
2
Figure
is
made
a
stemmed
of
up o f
of
small
v a s c ~ t l a r t:)undl e s e m b e d d e d i n p a r e r i c h y r n a t o n s
tissue
over
with
o~cter layer
numerous
epidermis
layer
an
'Table 2.
.------
".--.--
Botanical
portiol-1s
(% dry matter)
-------
of
cereal
.-..----------------
-----.-----------.-.---------.----.--.--
Str'aws
Internode
ldnde
Sten)
..-.-------------.--"-"----"-.---.---.----"-"-------------------------------
straws
Leaf
Reference
-
40
6C.)
( 2 ) 'T'hearider and
A m a n (1984)
50
8
58
42
(:L)
Spring
58
4
62
38
Winter
65
7
72
28
Oat
I54
4
58
42
E a r l ey
.-J
€3
7
65
-*
3 .J
Rye
72
r
'7 7
Wheat
3
,=.
(2)
C:hemical
compnsi t i o n and
in
vitro
d i g e . - i t . i b i l i t y oS r i c e s t r a w p o r t i o n s
-..--- "-----------..-----------------.---------------.---.--.
--.--Stem
Leaf
R i c e st.raw
---.---. --- .---- -----. ..-----.-....-----KeCerences
I
N
S
b
CJ
L.
C
T a b l e 3.
--
...y
Crude
prot.ei n
5
4
b
- .- - ---------------.----NDfz
ADF
..Z
IVDMD
IVUMU
-
( 1 ) t:::shanil::a
S a n n a s g a la and
J a y a s u r i y a (1984)
7
-
( 2 ) H a r t a n d Wanapat
(1YNh)
4
---.-----.--------.--------------------
'73
76
73
.
.-.
-
(1)
-
--
.--
-"
...-
-
73
(4) Jackson
5C)
ZjU
r
45
--
-.
..-
(
-
-
-..
54
56
..-
(2)
34
80
56
.-
-
-
(3)
6
6
6
-
.--
.-..
(31
'7
i4 !
8
J
"
)
-----.----.--.--------..--- Silica
-.
74
-48
Lignin
-..
2
4
h
-."-"
6
----
-..
-.
1
---.-
.....
2 9 LIZ
.--..---------------------.--"----------------.-.----------------7..,-,
-..
31
.ad.
.--..
44 4'7
(1977)
-"
-- ----- -----
(I)
(2)
(1)
I, i n t e r n o d e ; N, n o d e ; S , s h e a t h ; B , b l a d e ; U, u p p e r ;
L , lower; C? complete;
I\IDF, n e u t r a l d e t e r g e n t f i b r e ;
HDF,
acid
detergent
fibre;
TVDMU, i n v i t v o d r y
matteldigestibility;
IVOlblD, i r t v . i t r o o r g a n i c
matter d i g e s t . i b i l i t y
Winter
Winter
t
Oats
Rice
Densely lignified tissue
Lignified parenchyma
Vascular tissue
Figure
2.
1Unlignified
tissue
Central lumen
15)Air
cavity
1-ransverse s e c t i o n s of t h e i n t e r n o d e s of
c e r e a l s t r a w s ( S t a n i f o r t h , 1979)
11
( t h i n-wall l e d
layer
and
t h e t i s s u e s of
.
The
occur
scl er-enchymatous
t h e vascular bundles
m o s t ligniCied tissues.
the
But l i g n i n
e l s e w h e r e and t h e d e g r e e of
increased
(
1 i v i ng c e l l s )
1984)
were
with plant maturity.
found
may
of
also
lignification
Theander and
e p i der-mi s ,
5.-7%
s c l e r - e n c h y m a t o ~ t st i s s u e a n d 65-69% a f
is
Aman
straws
t h a t tl?e i n t e r n o d e s o f cereal
cornposed
are
25-27%
parenchyrnatous
t.i s s u e s .
Y o s h i d a et al.
blade,
s h e a t h and s t e m of
:Leaf
deposited
bundle
i n t h e epidermal
sheaths,
layer
a
bullifornl
i n t h e leaf
si 1 i c a
rice,
a n d s c l e r e n c l - l y f n a t o u s artd
of
The
leaf
cells
epidermal
vascular
is s u r r o u n d e d
including
which are o f t e n d e s c r i b e d a s
cells,
was
bul l i f o r m cells,
cells,
( F i g u r e 3).
bundle cells;
by
(1962) r e p o r t e d t h a t
the
the
c e l l s t h a t a r e r e s p o n s i b l e f o r t h e f o l d i n g movements
of
t h e 1e a v e ' s .
phloem
and xylem s y s t e m s ,
sheaths
most1y
Vascular bundles,
ar-e
present.
containing
both
and surrounded by bundle
The
embedded i n mesophyl 1
vascular
but
bundles
are
scl er-enchymatous
t i s s u e is o f t e n l o c a t e d a b o v e and below t h e b u n d l e s .
In t h e leaf
that
90%
blade,
of
the
epidermal t i s s u e s .
Y o s h i d a et a l .
si 1 i c a w a s
(1962) estimated
deposi t e d
in
A r e p r e s e n t a t i v e p i c t u r e of
the
rice
Leaf b l a d e
Leaf sheath
Internode
F i g u r e 3.
Schematic
r e p r e s e n t a t i o n of t h e s t r u c t u r e s of
l e a f b l a d e , l e a f s h e a t h and s t e m of rice straw
i n r e l a t i c ~ nt o ~ iliica d e p n s i t i o n ( I-ocation
o f si l i c a d e p a s i t i o r t ; B , F L Il ~i , F o r m c e l l s ;
P,
Parenchyma;
US, b ~ t n del s h e a t h ;
V , V a s c ~ t al r
bc.tndXe ( P h l o e m 8z X y l e m ) : S , S c l e r e n c h y m a ; M ,
M e s u p h y l l ; SL, S i l i c a l a y e r ;
E , Empty s p a c e )
( Y o s t ~ i c l a e t a]. , 1 9 h 2 )
,
13
e p i d e r m a l t i s s u e is p r e s e n t e d i n F i g u r e 4.
I t shows
how c l i f f i c ~ t - 1 1 ti t ir;
f u r p l a n t d i s e a s e s or i n s e c t s t o
attack:
:L n c w t : . ~ .o n
t.he
main
where
photosynthesis
occc-tr-s.
Akin
in
(19'79) t r a t a g o r i z e d d i f f e r e n t p l a n t t i s s u e s
r e 1 a t i o n t.t:,
G r a s s e s w e r e shown t o f o l l a w a
organisms.
pattern:
mesophyll
degraded,
bundle
sheath
e p id e r i l i s
cells,
and
was
and
then
slowly
and
F'robably,
its;
conski tctents,
due
1 inl.::ages
general
most
readily
parenchymal
-Followed
by
degraded,
t i sst-tes w h i c h w e r e t h e m a s t
digestion.
content.
by
which
lignified
t o
phloem w e r e
and
f 011 owed
s c l er-enchyma
micro-
t h e i r d a g r a c l a b i 1 j. t y b y r u m e n
resistant
t o t h e h i g h
w i t.h
other
and
silica
cell
wall
t h e p a t t e r n s h o u l d b e recor-f irmed
in
rice s t r a w .
3. C e l l Wall C o n s t i t u e n t s
a
R e i rlc~
predominantly
8(3%),
t.he
r esi d u e ,
h a s a h i g h cell w a l l
constituents
hemi c e l l ul a s e ,
predominating
senile
lignin,
(Jacksun,
attached to t h e w a l l
being
straw
content.
(about
most1 y
minerals
1977a) ,
rice
cellulose,
with
silica
a n d some n i t r o g e n
( T h e a n d e r a n d Aman,
1 9 8 4 ) . The
n u t r i t i v e v a l u e of rice s t r a w l a r g e l y depends
upon
Figure
4.
-
Schematic
representation
of
rice
leaf
e p i d e r m i s in relation t o si 1 ikon deposition
(
, Location of silicon deposition; C,
Cuticle;
SL,
S i l i c a layer;
SC,
Silica
c e l l u l o s e membranes
(Yoshida et al., 1962)
15
the
a v a i l a b i 1i t y
of
t h e cell w a l l c o n s t i % u e n t s
to
d i g e s t i a n i n t h e ri.tmen.
(:elli.tlose is a l i n e a r p o l y m e r c o m p o s e d o f u p t o
10,000 p1,4 .- 1 i n k e d g l yct:)pyr-anosyl ~ t ntis ( F i g u r e 91
(Theander
largely
and
&man,
crystalline
1984)
.
form,
I t
occurs
as
organized
a
in
fibrils,
w h e r e t h e c e l l ~ t l o s ec h a i n i s t i g h t l y p a c k e d t o g e t h e r
in
compact
a g g r e g a t e s st.trrounded
of
matrix
The g l u c a n c h a i n s are
other cell w a l l constituents.
held
a
by
t o g e t h e r by hydrogen bonds both between
sugar
u n i t s i n t h e c h a i n and between a d j a c e n t c h a i n s .
Xylans
a s t h e main u n i t nf
straws,
cereals
backbone
of
h)
'
p o l y m ~ rzi a t i o n
and
Aman,
generally
to
1984).
>: y l a n 5
of
t h a n t h a t of
conformation,
grasses
is
The
cellulose.
cellulose
it
degree
of
(50-2C)C)
Havi n g
can
a
(Figure
1o w e r
much
from
have
1 , 4 1i n k e d : . c y l o p i r a n o s y l u n i t s
{Theander-
residues)
and
hemicellulose
si m i 1 a r
be
strongly
associat.ed with o t h e r polysiaccharides.
P;~?owleclge a b o u t
reviewed
1i y n i n
by Jung and Fahney
has
been
(1983).
c u r r e n t 1y
s t r u c t u r a l s t ~ t d i e ss o f a r h a v e b e e n o n wood
( F i g u r e 7).
o+
a
most
However,
lignins
L i g n i n is a f a m i l y o f r e l a t e d p o l y m e r s
three--dimensional
phenylpr-apane u n i t s .
structure,
made
up
of
I t i s g e n e r a l l y a g r e e d t h a t p-
0-
-
\
7f-op(-),o
-O
F i g u r e 5.
OH
H
H
O O H
H
C e l l c r l ose s t r c r c t c r r a
H
-I-
(Theander and Aman,
1984)
X = D-XYLOSE
A = 1-ARABINOSE
GA = D-GLUCURONIC A C I D ( R = H)
OR4-D-METHYL
I'
(R = CH3)
-
F i g u r e 6.
S c h e m a t i c s t r u c t u r e o f a :.:ylan
( T h e a n d e r a n d A m a n , 1984)
-
( h e r n i c e 1l u l o s e )
-I
H C - 0 [CH~OH]
I
I
HCOU
HOCH2
I
HC
I
HCOH
I
HCOH
F i g ~ t r e7.
I
C =0
Schematic s t r u c t u r e o f
the
main
u n i t s irt
g y m n a s p e r m 1 i g n i n ( I t ? r a n d e r a n d Aman, 1984)
19
coumaryl
are
,
important
1i g n i n
precursors i n
a
via
complex
( T h e a n d e r - a n d Aman,
of
1984)
t:.he
(Plorrison,
Table
.
process
digestibility
Linberg et
some
h e r n i c e l l u l o s e , as w e l l
of
The b i g g e r t h e c o n t e n t
19'7Yts,
gives
4
biosynthesis
dehydrogenation
monomers t h e l o w e r t h e
these
straws
( F i g u r e 8)
c o n i f e r y l and s i n a p y l a l c o h o l s
values
al.
for
,
of
1984).
cellulose,
a s cell w a l l s a n d l i g n i n - f r o m
s t r a w s and some o t h e r agr-icult u r a l r e s i d u e s .
Average
is
presented
mineral
o f m i n e r a l s i n cereal
content
in
T a b l e 5.
v a r - i es
content
agronomical
factors
and
mineral
widely
content of
depending
on
amount
cc~ntertts of
straw
1 e v e 1 s. C o b a l t
of
Leng
s t r a w s is g e n e r a l l y l o w
,
are
Calcium and
be1o w
u s u a l 1y
copper,
sulphur
and
rice s t r a w
the
s o d i ~ t m may a l s u b e
limiting.
average
a s h is a b o u t t h r e e t i m e s h i g h e r
c o n t e n t of
Xn
Cor
adequate
m a i n t e n a n c e a n d f o r wor-k b y r u m i n a n t s .
reczommended
the
According t o P r e s t o n and
i m b a l a n c e d b u t t h i s may b e q u i t e
phosphor(-ls
that
also with t h e
and
con t a m i n a t i n y s o i 1 .
(1984),
I t i s known
straws
t h a n i n t h e o t h e r s t r a w s a n d t h i s is m a i n l y d u e t o a
h i g h e r si 1 i c a c o n t e n t .
Althouqh
i t is a c c e p t e d t h a t s i l i c a is o n e
t h e major f a c t c ~ r sl i m i t i n g t h e d i g e s t i b i l i t y
of
values
Figure
8.
Schematic
str~lctt.tr.e o f
p-Co~tmaryl(I1,
C o n i f e r y l ( 1 1 ) and
S i n a p y l (111)
alcohols
(T'heander and Aman, 1984)
Tab 1(zl! 4.
- -..
--
Ch(sfit1c a l composi t.1on
o f some roctghages
(Theartder and Aman, 1984)
-
Rot-lghage
.._._ ..--..--.-..-- -.---...-----.-.-.-.--
Cell wall s
-----------.-..--
t4erni c e l l c t l o s e
------
C e l l u l ase
L ig n i n
44
'7
36
39
10
3(1)
31
11
14
39
11
15
C'
..JCI'..
13
Hat- 1ey s t r a w
81
27
Oat s t r a w
73
Ib
Paddy s t r a w
'79
26
Wheat s t r a w
130
Sor-ghum s t o v e r
74
Chickpea s t r a w
62
Li.tcerne s t r a w
b9
Sugarcane bagasse
82
29
Sugarcane t . r a s h
80
26
Faddy h u l l s
(36
C:c~tton seed h u l l 5
V1
_-__--_------------"_-_--"--__-----.---_.-.--------
-..--.-.- - - --- --.-
.-.-------
----------
I
-
T a b l e 5.
Contents of m i n e r a l s i n c e r e a l straws
(Theander and Aman, 1984)
-----------------------------.--------.----------------------------Mineral
Unit
B a r 1ey
Oats
-------------.---.-------.-.---.---
Rice
Rye
----------------..--------------
Spring
wheat
Winter
wheat
---------
Gsh
g /' I:g
:
60
59
1t39
3 (7
61
50
Silica
g / k ~
15
11
130
34
31
32
C::
g / I::g
9.B
11.8
10. O
Na
g i I::g
-"
0 5
.
0.5
0.5
S
g / I:(3
:
3.
2,
1.2
1.4
1.6
-
0. 0 5
Cn
111(7 /'::.I
g
.
14. (1)
.4
- ..-
(->
.
2,
21.9
13.2
-
-
2.5
1
.
0 09
....-
-
0.08
23
of
its
straws,
known.
chem:ical + o r m u l a i n p l a n t s is
J o n e s and Handreck
not
(1978)
(1967) and J o n e s
specrt-(1a t e d t . h a t i n s o i 1 ,
monosi 1i c i c a c i d s ( H 4 S i 0 4 )
could
atom v i a a
jain
t o a n a:.:ygen
hydrogen
bond
t h a t . b r i d g e s t w o i r o n atoms a s :
. ..O ( F e x Q 4 H 4 )
( O H ) :&i -0-H.
i t is l i k e l y t h a t s i l i c a c o u l d also b i n d
ThereSore,
iron
or
atoms s i n t i l a r t o t h a t i n
other
h e n c e may r e d u c e t h e i r a v a i l a b i l i t y i n
that
is t h e case,
silicates
in
The
and
straws.
If
c o n s i d e r a b l e l o s s e s of
are d u e t o
faeces
si 1 i c a i n s t r a w
soil
the
( T h e a n d e r a n d Aman,
content: of
salts
presence
as
of
1984).
straws
c r u d e p r o t e i n i n cereal
i s 1o w ,
4.--7% d e p e n d i n g ccpon v a r i e t i e s a n d f e r t i 1i z e r
applied
(Koxas e t d l . ,
and
Aman
most
(1984),
1i k : e l y
Meanwhile
t h e major p a r t o f t h e p r o t e i n
a s s n c i alred
van S u e s t
insoluble
1.985a). A c c o r d i n g t o T h e a n d e r
in
with
the
(1985) r e p o r t e d
acid-detergent
cell
that
is
walls.
nitrogen
e s s e n s i a 1 1y
is
i n d i g e s t i b l e i n ruminant d i g e s t i o n .
S t r c r c t u r e o f C e l l Walls
Rased
sitrc.tct.ures
si 1 i c a ,
re11
on
c3+
knuwledge
(:el 1 c.tl o s e ,
t:I-)~?1 cherni c a l
wall
o+
the
of
l-terni c e l 1 u l o s e ,
chemical
1i g n i n and
b o n d s t h a t i n t e r l i nl::i n g
ccmsti tctent
are p r o b a b l y
depicted
each
in
24
Figctre
C e l l ~ t l o s e may b e e i t h e r
9.
hydrogen
hnnded w i t h s i l i c a
Hydr-ugen
9).
hemi c e l l u l ose
arrd
S e t t e r - f i e l d and
Harley
Lignin
be
may
(1973)
Figure
to
attached
by
9).
cellulose
si 1 i ca br-i d g e s (see b a n d c i n F i g c t r e 9 ) .
through
may be
Lignin
throt-tgh 0-Si
of
indirect1y
between
suggested
see d i n
(
Figure
B a u e r e t al.
(1961),
(1973)
linkages
were
cell u l o s e
K e e g s t r a et a l .
and
(see g a n d c i n
or e s t e r
bindings
or
covalently
bond
c o v a l e n t 1y
with silica
linked
l i n l . : : a g e s (see b i n F i g u r e 9 ) . T h i s t y p e
be a l s o f o u n d
could
si 1 i c a
between
and
g l u c o r o n i c a c i d i n h e m i c e l l u l a s e s t r u c t u r e (see i i n
Figure
ester
?
L.i y n i n
(see a i n F i g u r e 9 )
linkage
through
may 1i n k h e m i c e l l u l o s e
ether
(see
linkage
j
and
in
through
cellulose
9).
Figure
H e m i c e l l u l o s r i s 1 i n k e d w i t h si 1 i c a p r o b a b l y t h r o u g h
c o v a l e n t u r h y d r o g e n bond
[see e a n d c i n F i g u r e 9).
In a d d i t i o n , hydrogen band between t w o g l u c u s e u n i t s
in
t h e c e l l u l o s e s t r c t c t t - t r e (nay b e f o r m e d b y
plants
of
(see k i n F i g u r e 9). I n m i c : r o s c o p i c a l s t u d i e s
J o n e s ct a l .
oat plants,
s i l i c a w a s a n i n t e g r a l p a r t of
cell
mature
wal.1
deposi t e d
and
in
c o n s t i tc.tents
they
(19h5) i n d i c a t e d
t h e t h i c k e n i n g of t h e
suggested
that
intimate association with
of
the
wall.
that
A
silica
was
the
other
p o s s i b i 1i t y
that
I = ' i g ~ t r e9.
F"o~jsi
bl e
c h e m i c a l 1i nk:ages between c e l l
wall
-.. , w a t e r - f o r m a t i o n ; a , ester
c a n s t i t ~ t e r t t s(
1 i n k a g e s b e t w e e n h e m i c e l l u l o s e a n d 11 i g n i n ; b ,
1 i nC::ages b e t w e e n 1 i g n i n a n d
si l i c a ;
c
S i -C1
h y d l - o g e n h a n d h e t w e e n si 1i c a a n d
c e l l u l ose
(however,
t . h e t:)ortd c o c ~ l db e a l s o p c l s s i b l e i n
f o r m o f c:ovaler-lt 1 i n k a g e s u c h a 5 i n b a n d e ) ;
d,
ester
1i n k a g e between
c e l l t.11ase
and
hemi e e l l u l ose; e , c o v a l ei-11:. b o n d b e t w e e n si 1 i ca
ancJ
hemi c e l l u l ose
( t h e bond
co~th
d
b e a 1so
possible
i n f o r m of h y d r o g e n bond s u c h a s i n
c j ; f,=c;
g , ;
h , hydrogen
br.nd b e t w e e n
5
1i a
a n d i ror.1 ( a d o p t e d f ram s o i 1
science) ;
i = ;
j , ether
1 i n k a g e b e t . w e e n 1i g n i n
and
I ,
hydrogen
bond
between
two
e e l l ul o s e ;
g l . u c n s e u n i t s i n cel l i r l a c ~ es t r u c t ~ l r e i
:.-:
,
26
p h e n o l i c tnoncxners o r - 1i g n i n ar-e 1i n k e d .to u t . h e r c e l l
t h r t 1e y
corsst i t u e n t . s wa5i r e p n r t e d b y
wall
(
1 9 7 5 ) who
ct!sed 1.01.ium m u 1 tif'lorum + ( w a g e .
I t i s n o t known how many b a n d s e a c h c o n s t i t u e n t
can
tu
use link
other
cell
wall
constituents.
1i n k a g e s are
Prohahl y the m o r e f r e q u e n t t h e chemical
t h e m o r e c l i f f i c t - t l t i t i s f t ~ rrt-{men m i c r o o r g a n i s m s t o
digest
t.he
cell
wall.
Morris a n d
Bacon
(1977)
s u g g e s t . e d the need t o c o n c e n t r a t e a t t e n t i o n upon t h e
I: y
a
l a n s t r u c t i . t r e r a t h e r t h a n a n t h e t l e r n i c e l l ul ose
as
d i g e s t i h i l i t : ~w a s r e p o r t . e d t a
be
whole.
Xylan
l o w e r when h i g h e r a r a h i n o s e c h a i n s w e r e f o u n d o n t h e
>: y l an
s2:ructure
enzyme
becat-tse o f
t h e redi.tc:ed
a t t a c k between a d j a c e n t ,
sites
unat.tached
for
xylose
~ t nt.s.
i
T h i s is r e p r e s e t - j t e d i n F i g u r e 1.0 I M o r r i s o n ,
1979b.
However,
xylose
ikself
Morris a n d H a c o n
(19'7'7) f o u n d t h a t
w a s less d i g e s t i b l e t . h a n
arabinase.
Hnrided ~ i l l c aw a s t h o u g h t t o b e s t a b l e i n
weal::
al1::al.i
slightly
anel
acid
r5:jcn:Lubil i z e d
(Jones,
1978)
t o Sor-m
si 1 i c a t e
when t h e ptl w a s n i n e o r m o r e
ct a 1 . ,
'1-hi s
c o ~ tdl
198r:i;
sctggests
be
(Ja(:l::son,
H a r b e r et a.1.
t.l-rat
(..\zed t o
d i g e s t i b i l i t y c:aused b y s i l i c a .
it
but
campounds
1981.; H a r t l e y ,
t:he
was
1977a; M~tdgal
ei t . h e r s t r c m g a c i d
reduce
both
or
hi ndrance
19f31).
a 1 l::al i
to
In a d d i t i o n , silica
F i g u r e 10.
The e f f e c t . of a r a b i n o s e suhr;t.itution an
the
d e g r a d a t i c ~ n o.f : . : y l a n s (
=
xylose;
0 =
arabinose;
& = sites of. m i c r o b i a l a t t a c k )
( M o r r i s a n , 177Yb)
can
h e d i s s o l v e d by h y d r a f l u a r i c a c i d
f 1uor.ide-csi 1 i c a t e
but
(HF) t o
c o m p o u n d is
this
form
toxic
to
a n i ma1 s.
Our k n o w l e d g e on t h e c h e m i s t r y o f
of
is 1i n r i t e d and w e h a v e t o
c r - c ~ phy-procli.tc:ts
~tporl i n f o r - m a t i on
d e r i ved from
wood.
In
major
deposit.iun l a y e r s namely,
wall,
of
the
secondary
According
af
componentv
to
the
Noqg1.e
hemicel l u l o s j e s ,
e
Keegstra
cell
primary
consi s t i n g
wall
.
and
Fritz
cel l u l a s e
(19761,
of
the
Sycamore
nricrof i b r i ls,
pectic. pol ysacchar i d e s and protein.
a].
(
1973)
st-tggested
that
occur i n t h e primary cell w a l l
cnmponerits
of
is d i v i d e d i n t o 2
primary cell w a l l
p s e u b o p l a t a n ~ l s ) are
rel y
str-c-tcture
the
cell
s e v e r a l l a y e r - s ( F i g u r e 11)
(Acer
the
p r i n c i p l e t h e cell w a l l
and
t h e cell w a l l
these
of
other
p1ant.s and t h e y proposed a t e n t a t i v e primary
higher
c e l l w a l l s t r u c t u r e shown
12.
i n Figure
t-lowever
,
it
seems t h a t t h i s a r r a n g e m e n t i s f o r y o u n g p l a n t s .
At
m a t u r i t:y
m o s t 1y
been tr-anslacated from t h e v e g e t a t i v e
to
parts
197'7b
)
p r o t e i n a n d s o l ~ t b l ec a r b o h y d r a t e s
.
the
grains
(Qnderson,
Consequently,
the
1978;
plant
have
plant
Morrison,
residue
c o r i s i st m a i n l y s t r ~ t c ~ t ~ t cr aarlb o h y d r a t e s p r o b a b l y
form of
c:rysta:lline.
w i l l
in
I t i s n o t known w h e t h e r l i g n i n
Warty l a y e r
1
PW,
Secondary w a l l l a y e r s
Primary w a l l
P
Ml,
F i g u r e 11.
Middle l a m e l l a
Schematic represent.ation of t h e v a r i o u s l a y e r s
of
an u n l i g n i f i e d cell w a l l of a h i g h e r p l a n t
( J u n i p e r , 1978)
11 111 Ill
F i g u r e 12.
11 Ill 111 111'1 1 - 1
A
-
t e n t a t i v e molecular s t r u c t u r e of
Sycamore
cell
walls
primary
, cellulose
el e m e n t: a r y
fibril
, xyloglucan
(hemicellulose)
protein
with
4*
a r a b inosy1
tetrasaccharides
glycosidicall y
to
t h e hydroxyprol i n e
residues;
attached
,total
pectic
pol ysaccharides;
,r h a ~ n r t o y aal c t u r o r t a r t m a i n c h a i rr o f
t.he p e c t r i c
pol ysaccharide;
1 , a r a b i n a n and
4-1 inl::ed g a l a c t a n
s i d e c h a i n s r ~ ft h e p e c t i c
p o l ymer- ;
-C$- , 3 r b - l i n L : e d a r a b i n o g a l a c t a n
a t t a c : h e d .to s e r i r t e o f t h e w a l l p r a t e i n ; --r-.
~ c n s c t b sit t t . \ t ~ ? ( S
ser y l
resi dc.ces o f
t1-t~ w a l l
p r o t . e i n 1 I f : I e e g s t r a e t a l . , 19.73)
-
-d+*
7-Y
,
31
and s i l i c a are d e p o s i t e d i n t h e p r i m a r y cell w a l l of
plant residues.
a
Rlt.hough
very ordered arrangement h a s
~3astc.tlated for- p r i m a r y c e l l w a l l s ,
I.::nown
;Jt..rni per-
(
19781 ,
anci T a l m a d g e et
t h a t s e c o n d a r y cel l w a l l
suggested
very little
the s e c o n d a r y
a b o u t t h e a r c h i t:ec: t ~ t r - . eo f
wall.
.j
type
is
palyphenylproparloid,
encr~rsted
liynin,
deposited
are
aromatic
i t r e a d i l y forms
and
(J~rnipcr-, 1978).
cell
(1Q73)
dl.
the
chemical bonds with a wide r a n g e of
constituernts
is
Into a certain
a f t e r - t h e cell h a s c e a s e d expanding.
cell
been
o t h e r cell
wall
Apart from l i g n i n ,
s e c o n d a r y c e l l w a l l s are m a r k e d b y a g r e a t a m o u n t o f
el l u l o s e d e p o s i t i o n (A1 b e r s h e i m ,
t o J o n e s et al.
Acccrrcliny
Handreck
(19'78)
(
136'7)
and
,
van
1965).
(19631,
v a n Soest a n d J o n e s
Eys
(1982)
(
silica
Jones
1968) , J o n e s
may
play
import.ant role i n l i m i t i n g cell d i g e s t . i b i l i t y
silica
in
t h e cell w a l l
is t h o u g h t
b e t w e e r 1 cell{-rlose m i c r o f i b r i 1 5 ,
pectins,
h e m i c e l l u l asp
and
to
analysis
c n n s t i t u e n % s of
can
since
o r t o i n t e r a c t wit.h
phenol ic
compounds
t h e r e are nu a v a i l a b l e methods of
which
an
polymerize
t h e r e b y d e c r e a s i n g t h e d i g e s t i b i l i t y n+ f o r a g e
present,
and
determine
the
t h e v a r i o u s w a l I. 1 a y e r - 5 .
.
At
chemical
cell
wall
5. F a c t o r s
Affecting
Chemical
D i g e s t i b i 1i t y o f C e r e a l S t r a w s .
One
v a r i a b i 1i t y
in
d i g e s t i b i 1i % y
respnnsibl e
their
chemical
for
the
The main
ar-e
v a r i a b i 1i t y
and
a p p l i c a t i o n of
fertilizer.
nlanagernent
practices
a n d K s h a n i l::a S a n n a s g a l a a n d J a y a s u r i y a
€3).
and
factors
genotype,
as
such
f a c t t h a t t h e r e is v a r i a t i o n between
g e n o t . y p e s w a s s h o w n b y R o e a s et
straw
the
is
composition
( T a b l e h a n d 7).
e n v i rc3nmen.t.,
The
cereal s t r a w s
t h e f e a t u r e s of
of
and
Composition
In
R o x a s c t al.
t h e work o f
v a r i et i es
al.
(
rice
(1985b)
1 9 8 4 ) ( T a b 1e
(1904),
rice
15
w e r - c g r o w n a t t h e same 1 o c a t i o n a n d h e n c e
environmental e f f e c t s w e r e minimized.
The
obtained
in
considerable
v a r i at.ion
i r l t h e c h e m i c a l c o r n p o s i t i o n a n d irr
digestibility
In
rice.
this
of
%he
Jayasuriya
st.t..rdy
indicate
results
~ ~ i t r c ~
s t r a w from d i f f e r e n t v a r i e t i e s
o.F
work
(1984),
C::shani l::a
Sannasgala
9 r i c e v a r i e t i e s w e r e grown
t w o main r i c e b r e e d i n g s t a t i o n s ,
so t h a t
of
and
at
variation
w o ~ tdl h a v e i n c l ~ r d e d e n v i r u n m e n t a l a s we1 1 a s g e n e t i c
d if +erences.
van
S o e s t . ef al.
o f f e r t i 1 i. z e r ,
light
(1.978) s u m m a r i z e d t h e e f f e c t
w a t e r appl ication,
intensity
on
chemical
temperature
compasit.ion
and
and
d i g e s t i b i l i t y i n f o r a g e s ( ' T a b l e 9 ) . However t h e y d i d
T a b l e 6.
V a r i a b i 1i b t y i n
chemical
composition
i%d r y
m a t t e r ) and in v i t r o
organic
matter d i g e s t i b i l i t y (IVOMD) of cereal
s t r a w s ( v a n Soest method)
---------------.------.-.-------------.---------.----------------.-----
-
Straw
-.-----.-----------------------Wheat
Oat
NDF
Range
Lignin
Range
-
-
76-03
79-82
8-10
8-15
-.
--
8-15
4(:).-45
40-43
40-45
40-43
49-63
43-53
49-&1
43-50
43.-55
43-58
Hemi c e l l u l o s e 17-28
25-26
Range
ADF
-
-
Range
-
Range
17-28
-
-
-
25-26
Silica
Range
-
-
1-8
1-3
Range
*
3!:)-50
References
Rice
- P e a r c e et a l . ( 1 9 7 9 )
54-71 Hoxas e t a l . (1985a)
'72-81 Kshani k a Sannasgal a
and J a y a s u r i y a ( 1984)
49-80 Anonymous ( 1982a)
49-81
5-12
3-16
5-16
-
8-10
(:el 1u l ose
Barley
-
P e a r c e e t a I . (1979)
Roxas e t a1. (1985a)
Anonymous (1982a)
Pearce et a l . ( 1 9 7 9 )
21-39 Anonymous ( 1982a)
3 1-35)
L
-
Pearce et a1.(1979)*
Cilderman (1776)
40-.71 Anon ymous ( 1982a)
40-7 1.
P e a r c e e t a1.(1979)
10-36 4nonymous ( 1982a)
10-36
- Pearce e t a l . ( 1 9 7 9 )
16-22 Roxas e t a l . (1985a)
5-8
E s h a n i k a Sannasgal a
and J a y a s u r i ya ( 1984)
4-24 Anonymous (1982a)
4-24
Winuqroho (1781)
Pearce et a l . ( 1 9 7 9 )
A1 derman ( 1976)
Roxas e t a l . (1985a)
Roxas e t a l . (1985b)
K s h a n i k a Sannasgal a
and J a y a s u r i ya (1784)
Anonymous ( 1982b)
34-48
C a l c u l a t e d b y a d d i n g l i g n i n t o c e l l u l o s e and s i 1 i c a c o n t e n t s 3
NDF,
neutral
detergent
fibre;
ADF, a c i d d e t e r g e n t f i b r e
Table 7 .
Variability
i n
chemical
composition
i%d r y
m a t t e r ) and i n v i t r ~ . ) o r g a n i c
m a t t e r d i g e s t i b i l i t y (IVOMD) o f c e r e a l
straws
!Weende
method)
(Anonymous,
1982a)
Crude
Ether
fibre
e:.:tra:.:t.
..................................................................................
s-irLaw
-T DhI
Crude
Ash
p r o t e i r~
P VUMD
------------------------
5-
Rice
24-38
1
Corn
--77--34
Sweet
p o t a t o e s 14-29
.-
41-51
3-.-7
1-2
4'7--62
:3-'7
I-' .J
35--5'7
8-14
f.7
l ~ - -L,J, - i c 41-.-4'7
17
1i:)-2r+
34-42
4,5--5(:)
26-55
4 1-70
Li3-65
Tabel 8. Vari abi l i t y of chemical composi ti an and
i n v i t r o urganic
matter digestibility
(IVOMD) af rice straw
n varieties
Crude protein
I\IDF' ( % )
15
5 - 9
(%)
54
Lignin ( % )
Silica
(%)
IVOMD I % )
f.~efe!e-~-~e.
Roxas
5
I&
--
71
- ;la
-
22
31 - 4 6
et ai.
(
1985a)
I.::shani
k a Sannasgal a
and Jayasuri ya ( 1984)
T a b l e 9.
I n . f l c t e n c e u.f e n v i r o n m e n t a l f a c t o r s upon
cocnposition
and
digestibility
oS
f o r a g e ( v a n S o r s t e t a l . , 1978)
------.----------.---------------------
-----------_--_-....._
-__--.-----_--_
---.
_..-.----
N ltrogen
.-.-
Water
---------------------.--
------------------------
Temp.
L.i g h t
Yield
-4.
.C
+
+
WSC*
-
-
-.
+
Cell w a l l content
+
.....
.+
.t.
-
Lignin content
-4.
-4.
+
-.
Digestibility
+.-.
-
-
+.
+k
Water s o l c t b l e c a r b o h y c i r a t e s
-
s7
not
explain
how
these
factors
influencing
An a t t e m p t t o p r e s e n t r e a s o n s w i l l b e
digestibility.
g i v e n i n t h e f 01 1 o w i n g p a r a g r a p h s .
to
Accord1 ng
increasing
improve
are
either
Jones
and
Handrecl::
e i t h e r I\J or F'
fertilizers
amount of cereal y : i e l d b u t t h e
the
more 5 u s c e p t . i b l e .to f i r n g a l a t t a c k s .
thr
reduce
(19671,
n u t r i . t i v e v a l u e of
the
will
plants
This
crop
will
residues.
from
Increasing t h e nitrogen f e r t i l i z e r application
C::g N / h a t e n d e d t o i n c r e a s e t h e c r u d e
0-120
c:untent
VY't r ~ )
protein
t h e s t r a w f r o m 5.8 t o 6 . 3 % b u t
of
digestihi1it y
not
was
( K o x a ! ~e t
ni trogen appl i c a t i o n
the
increased
by
the
1985b).
dl.,
in
Most
n i t r o g e n is p r o b a b l y a t t a c h e d t o c e l 1 w a l l s t r u c t u r e
and
i t is n o t r e a d i l y a v a i l a b l e f o r rumen
(van
Snest,
available
Nn
1985).
on
the
paddy
s i l i c a when
fieldsheavilywithNandP.
straw
on
J o n e s a n d Handrecl::
t h e addition of
(1967)
fertilizing
Yoshidaet
(1959) d e m o n s t r a t e d a marked i n c r e a s e i n growth
production
silica
such
dl.
and
f a r r i c e p l a n t s grown i n t h e p r e s e n c e of
('Table
apl ication
are
data
e f f e c t of f e r t i l i z e r s
qua1 i t y a f ter h a r v e s t .
suggested
other published
microbes
are
10).
The
advantages
increasecl r e s i s t a n c e
a s b l a s t a n d brown d i s e a s e s ,
and
o.f
to
to
silica
d i 5eases
insects
T a b l e li':).
E + + e c t 0.f: s i 1 i c a p r e s e n c e on g r o w t h o f
r i c e p l a n t s ( Y o s h i d a e t al., 1959)
-------.----------..--
-.-----.--.-.-..---
---.--.-----
-.-----.-------------Si F e r t i l i z e r
-.------.-.---------.---
-----
- ------ ----. --
I
Shooth l e n g t h
----------------------
(app.
1--
rm,
-.. --.--
+
--. --.- ------------.- -----------
..
s ma)
Transpiration*
Grain t o t a l
Leaf b l a d e
15
12
1400
(DM)
(%!
L e a f s h e a t h 8~ stem
Leaves
92
90r:)
number p e r - - g r o u p
SiC12 c o n t e n t
85
("1
.
0.1
(%)
s Grams o f
water
19.2
0 1
(%)
___----_-----_-.-..---..-------.---.-.-----.----
.2
-- ..-.--..--..- -.- --.-.--- -
l o s t p e r gram o f
13.7
12.4
-----------.-
d r y w e i g h t p e r day
39
st-tch
a s r i c e b o r e r anti l e a f
spider,
e f f i c i e r i c ~ y of p:l a n t w a t e r e c o n o m y .
and
increased
They a 1so showed
that
h e i g h t : o f t h e p l a n t was i n t r r o a s e t i b y 8%.
wi II
pr-ovi d e
rrlore
a r e a s exposed t o
si 1 i. c a
Tt~c highest
the
sun1i g h t
were
(:oncentrat.i. o n s
This
in
1e a v e s w h e r e t h e p h o t o s y n t h e s i s m o s t 1y o c c u r .
a l l o w some p r o t e c t i o n a g a i n s t p l a n t
w i l l
.
the
This
parasites
a n d d i seases.
is a b s o r b e d h y r-ice p l . a n t s i n t h e
Silica
of
fnonosi 1 i c i c
The
1967).
acid
,
H 4 S i U4
the
Handrecl::,
Harldreck
p r o c e s s is p a s s i v e d e p e n d i n g upon
silica
15'67;
parts
exposed
yr-own
irr
~cptaC::e b y
dry
plant.%
ta
r
areas
the
and
Plant
t h e s u n l i g h t or p l a n t s
1e
ly
to
have
higher
t . h e r e f ore i t i 5 e x p e c t e d
t.rans[:,ira.tior.l r a t e s ,
this
r n a t ~ ? r i + ~wl o u l d h a v e a h i g h e r
than
shaded
plant
(Jones
1 9 7 11 .
S a n g s t e r and P a r r y ,
directly
,
1"tie h i g h e r t h e r - a t e , t h e
p l a n t t r a n s p i r a t i o n rate.
higher
( J o n e s and
form
p a r t or p l a n t s
si I i c a
grown
that
content
in
cool
areas.
According
deposited
in
to
van
three
Eys
1ocati o n s
i n t r a c e l l ~ ~ l a r ,i n t e r c : e l l u l a r ,
which
w a s mainly responsi bl e f
digestibility.
(1982),
silica
being
cJr i n t h e c e l l
01-
was
ei t h e r
wall
r e d { - c c in g c e l 1 w a l I.
S t ~ t des
i whi c h sc.tggest.ed
t h a t si 1 i c a
40
tji
d n a t r-edctcze t h e d i g e 5 t . i b i 1 i t y o f
t.ha.t
of
mos.t
the
i n t r a c e l . l ul, iar-
and
than
c:ell
in
the
s:i l i c a h a d
Jones,
deposited
(Mlr~son, 19'71).
Qther
r;i 1 i c a h a d r e c i u c e d
imp1 y t h a t l a r g e q u a n t i t i e s o f
et
Smith,
19hB;
in
rather
b e e n d e p o s i t e d i n the c e l l w a l l s
had
imp1 i e d
1o c a t i o n s
s t u d i e s wl-jic:h i n d i c a t e d t h a t :
diqestlbility,
beer,
i n % e r c e l1 u l a r
w a l l s
straw,
al.,
the
silica
( v a n Soest a n d
1971).
uni t
One
i n c r e a s e i n si 1 i c a c o n t e n t r e d u c e d d i g e s t i b i 1 i t y
( S m i t h et a l . ,
one u n i t
Soest a n d J o n e s ,
of
a v a i l a b i 1i t y
Water
S ~ C ~ W I It c 3
been
Duantitative determination
f o r e a c h l o c a t i o n is n o t y e t a v a i l a b l e .
silica
was
or t h r e e I - t n i t s ( v a n
9 7 1 ,
1968).
dur-ing t h e growing
lC?B1;
(Jones
and
P~trser,
1982
1985b).
With
rice,
reported
that
lowering
Jones
the
meast-(re
rice
in
the
leaf
.
and
Handr-ech
result
rainfall
in
content
a c c ~ t m ~at tl i o n
blades hut they
did
not
before
and
Based on t h i s n h s e r v a t i a n ,
during t h e
1c)~er-
J rt
growing
~/x'tr.c:r
al.,
(1967)
water
soil
r ~ o t si.ir-131,-is i rlq t . h a t a r e s o i 1 w a t e r c o n t e n t
higher
1967;
a n d H o w a s et
d i g e s t i b i l i . t y ut: t h e l e a f
a f t e r .treatment
have
tiandrecl.::,
r - e d u c e d t r a n s p i r a t i o n ancl r e d u c e d t h e
silica
period
a + +e c t s t r a w qi.tal i t y a f t e r g r a i n s
harvested
Winctql-.ohm,
of
by
i t is
due
period,
organic
to
will
matter
41
d i y e s . t i b j . l it y
1981;
vali.tes
F'c.trser,
1982).
f o r wheat.
straw
H i g h s o i l water
(Win~tgroho,
content allows
t h e t r a n s p j . r a t i on r a k e t o i n c r e a s e hence
the
plant:.
s i l i c a content.
r e p o r t e c l that:
P a t e 1 and
increasinq
Shah
t h e cr(..tde f i h r - e c o n t e n t uf
was h i g h e r when t h e wheat was i r r i g a t e d
(1957)
wheat
straw
(41 v s 31%).
Probably t h e straw obtained from t h e i r r i g a t e d areas
wot-tld
h a v e s i 1i c a c o n t e n t h i g h e r t h a n t h a t o b t a i n e d
+ram t h e n o n - - ir r i g a t e d a r e a s .
al.
had
(1985b) showed t h a t
I n contrast.,
Haxas et
i n t h e wet season r i c e s t r a w
a 17% ! s i l i c a cuntcr-llz v s 15% i n t h e d r y
season,
and t h a t s t r a w o b t a i n e d i n t h e wet season had an
in
cjitro organic matter valire higher than t h a t obtained
i n
t h e d r y seasnn
r - e s u lt s
between
differences
silica
i n
(48 v s 44%).
the
between
two
s t u d i e s may
plant
c e l l walls,
The d i f C e r e n c e
species
i n
It i s
cjue
i n
effect
of
soil
transpiration
different
water
rates
plant
content
and
s i 1i c a
apecirs
upon
the
relative
deposition
i n order t h a t
the
important
a + u r t h e r s t u d y b e undertaken t o observe
that
to
depositing
o r between seasons
r ~ fs a i 1 w a t e r c o n t e n t .
magni t u d e
be
i n
effect
i n
on
s t r a w qua1 it y (ran b e e s t a b l i s h e d .
Higher
transpiratior-I
temperatures
rates
i n
r,timu1a t e s
p l a n t s which i n
higher
turn
are
42
1 ik e l y
t o
higher
c:oncentrations
Higher
1 igt3.t i n t e n s i t y may i n c r e a s e
t.her-eby
plants
i.rnder
reduce
straw
f : > r o v i dng
i
thror-rgh
s i li c a
of
h i gher
i n
I.evels
ca~tsing
cell
walls.
photosynthesis
of
nutrients
i n
i t c o i . ~ l db e t?:.:pected t h a t : st.raw o b t a i n e d
;anc:l
t:ondi t i ons waul d be o f
these
i f
t.iowever-,
qctal it y
t.he
higher
h i qher
light
value.
intensity
i s
accompanied b y a h i g h e r t e m p e r a t u r e t h e n t h e e f f e c t s
of
t h e t w o c l i m a t i c f a c t o r s on s t r a w q u a l i t y w i l l
be
c o n f ounded.
&rite
apart from t h e e f f e c t o f
on st.r-ak~q r - t a l i t y ,
rr,aturity
reduc:ec.J
and d i g e 5 t i b i l i t : y
content
of
increase w i t h
digestibility.
1978;
Morrison,
pr-oceedi ng
with
a
Therefore,
g r a i n harvest.
yrain
decrease
wheat
be
1979a).
harvest
harvest
i n
S t a n i f o r t h and C o l l i n s
date
t h e y d i d not.
straw
i t i s n o t wise t o delay
mentioned a reduct.ian i n t h e q u a l i t y o f
However,
plant
(1978) r e p o r t e d t h a t t h e c r u d e f i b r e
period
si mu1taneoi.ts1 y
the
wall
wheat and b a r l e y s t r a w i n c r e a s e d o v e r a
khr-ee--weel.::
when
i s call
of: t h e m a t e r i a l would
( N i l m a n and D a l y ,
Manl.ey and Wood
the
the proportion that
t h a n c e l l content. w i l l
rather-
climatic factors
was
delayed
(1979)
wheat
straw
one
week.
o b s e r v e t h e same e f f e c t when
w a s grown d u r i n g w i n t e r .
F'robably t h e lower
4J
'7
t..e~nperaki.tr-es
have
wot..tl d
j.
n f 1 uel-tcecj
result
the
t t - I I - C I L I ~ ~~ : ~ ~ ' . . c ~ d ~ t a( : : si nlgc ~ ~ ~c : eh arn g e i n
the
relative
~ ~ r a p c 3 r " t i o n0.f:
s c e l l r - ~ a l . 1 5a n d c e l l c o n t e n t : .
In
lead
addition,
.to
1.oss o.F I:)rit::tle
the
alter
quality
inflc.tencec1
% e a v e s whi'ch
+:.tern r a t . i n a n d
leaf:
t3.f:
straw.
the
timr?
w i l l
:in i:t.tr-n
will.
d e l a y i n g . t h e har-\./er?t
lhe
t ~ y {nethocl of:
af:+ect t h r
ratio
harves.t.
may
end
be
also
Mechanical
and
t h r - e ! s h i n g h a r v e s t : : i t - ~ g m e t h o c l s c a n cat-ts;e h i g h e r d r i e d 1e a f
I c)e;s compar.ec:l t:n rnanctal h a r v e s . t i rtg d o n e w i t t l
a 17cJ
ife
.t:racli t i a n a l
I-t
y
5imt.tl.t:anec:)c.t~l
cart b e ~ t s e d.to el i m i r ~ a . k e rac:hi s C r o m
t h e s%:r-aw.
I.:
F i a c h i s cqc.ta1i.t.y
uii:,:t:.it~,-eof: rit:e
:Leaf a17(:J
~3~ .l r i t e r I - t ~ s e ,
h a v e beet-) har-\cest:.ed
sc3lltble
I t
Re!searcl-t
and
l o s s e ! ~o f
j.
r1ut:r.i t i v e
value
n v e s t i g a t e t:he
tl-Iei r i rltrt.?racI:.i CJIVI
w i l l . t i m e cot-tsc.tming,
a1-1rJ
in~iect
the
.it:.r.aw.
t:here arc
to
or- p o u r
r t c . t t r i c r t t s s u c h as;
seems
the
and
a +t e r g r a i n s
s t r a w .t.cn f u n g a l
j.n
i n f l t..tence
(::oliec:ted
I:)e%ayecj c:o:Llec::%ri(317,
,,
a
(Wir~r..tgrohc:~,
1981).
sterri
car-bc:jhyclratre
that
which
)
abet-tt ha1.f: t h a t : o f
a n d i minec:li a t e l y ,
~ - r i , l l e:.:po:se
a % t a c \ : : sa n d prc3,nol:s
1.5
..;t:rap~shat.tld b e
: % t o r r ~ r al p p r - a p r i a t e l y ,
st:oragc,
t-I
( a n l-ani
a
oil
L.3~ct
many
04:
factors
the
ef f e c t of t h e
straw
qua1i t y
neces!zary i f
the
that
straw.
+;actors
obviously
ultimate
44
goal
is
.f. e e d i r i (1
.
t o mak:e
c t s e cjf s t r a w i n
ma:.:imum
ruminant
I 1 Straw T r e a t m e n t s
A s p r e v i a u s l y ment i o n e d t h e a b u n d a n t e n e r g y s t o r e d
in
c e l l e t l o s e a n d h e m i c e l lr-{lose c o n t e n t
the
cell
is n o t r e a d i l y a v a i l a b l e f o r d i g e s t i o n
w a l l s
trapped with o t h e r c e l l wall
1i g n i n
53.1 i c a
and
pr-ovi d e
t:hr-or-rgh
c:nnstituents
c h e m i c:al
cnnstrain t s
p h y s i cal
by
T h e c e l l ctl u s e a n d h e m i c e l l u l ose
rumen m i c r o o r g a n i ! s m ~ , .
are
straw
of
sctch
as
1 i nC::ages
that
aggai n5.t w i r ~ d or
water
lodginq.
Ef f a r t s h a v e b e e n made u s i n g p h y s i c a l
chemical. t r e a t m e n t s ,
to
combinations
1 i g n o c e l l ul.o s i c:
biological
treatments,
treatments,
and t h e i r
i n c r e a s e t h e e n e r g y a v a i l a b i 1i b t y
in
c r o p resi d u e s .
1. P h y s i c a l T r e a t m e n t s .
The
a i m of
main
t h e treatment
is
t o
reduce
p a r t i c l e s i z e or
t o i n c r e a s e t h e s u r f a c e area p l a n t
ti s s u e
b y - . p r - o d u c t s wktich a r e
of:
crop
microbial. attack:.
Light mechanical
a s m i 1 1i n g , g r i n d i n g ,
more
p1 ar7.t
microbial
t i 8sr-tez
digestion.
e:.:posed
procedt-rres
t o
st-tch
c h o p p i n g ancl c h e w i n g may c a u s e
t.n
be
more
t-lowever
,
a v a i 1a b l e
for
c e l l u l ose
and
45
a r e s t i I. 1 t r a p p e d b e t . w e e n 1 i g n i 1-1
hemi c e l J. ~ . tos;e
1
s i l i c a i n t h e t i s s u e s hence preventing
and
total
their
a v a i l a b j . l i t : . y ,For r u m e n d i g e s t i o n .
If
slrruc.ture is s u b j e c t e d t o v e r y
t.he c e l l w a l l
f i n e m i l : L i n g , f o r e:.:ample
vibratory
ball
constituents
milling,
can
( S t o n e e t al.,
be
all
to
nearly
100%
(1904) mentioned that.
Walker
digestibility
m i 1 1 i n g t i m e was e : . : t e n d e d
a1I
words,
wall
even
up t o 8 h a u r s .
1i n k a g e s
ii984),
effect
This
ball.
on
milling did
chemical
imp1 i e s t h a t
d o e s n o t r e v e a l t h e d e g r e e of
other
between
According
not
between
c:ell
of
composi t i o n
cellulase availability
i % may mean t . h a t a m e t h o d t o m e a s u r e t h e
strength
a
have
composi t i a n
chernical
in
96% i f
In
c o n s t i t u e n k s had b e e n removed.
Walker
s a m p 1 es.
and
chemical and physical
significant
and
m i l l i n q and
p a r t s of t h e c e l l w a l l
d i y e s t e t j up
1969).
67% c a r b o h y d r a t e
t o
ball
woad b a l l rni 1 l e d f o r 1 0 m i n u t e s r e s u l t e d
spruce
cell
through
c:unsti t.uents
wall
bond
in
1i g n o c e l l u l o s i c c r o p r e s i d u e s n e e d s t o b e d e v e l o p e d .
I t is r - c p o r t e d t h a t r e d u c i n g t h e p a r t i c l e s i z e
s t i m ~ t l a t e i n c r e a s e d i n t a k e d u e t o a h i g h e r rate
passage
rat. i on
1972).
but
the digestibility coefficient
i s of t e n decreased
But,
( M i nsan
t h e f i n a l i n t a k e of
p r a c t i c a l 1y i m p r o v e d
,
196i3;
of
will
of
the
Dune+ er
,
d i q e s t i l ~ l ee n e r g y i s