The Influence Of Welding Parameter On Butt Joint Welding Strength.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA
THE INFLUENCE OF WELDING PARAMETER ON BUTT
JOINT WELDING STRENGTH
This report submitted in accordance with requirement of the Universiti Teknikal
Malaysia Melaka (UTeM) for the Bachelor Degree of Manufacturing Engineering
(Manufacturing Process)

by

LIM MING HAO
B050710146

FACULTY OF MANUFACTURING ENGINEERING
2011

DECLARATION

I hereby, declared this report entitled “The Influence of Welding Parameter on Butt
Joint Welding Strength” is the results of my own research except as cited in
references.


Signature

: ………………………………………….

Author’s Name

: LIM MING HAO

Date

: 16 May 2011

APPROVAL

This report is submitted to the Faculty of Manufacturing Engineering of UTeM as a
partial fulfillment of the requirements for the degree of Bachelor of Manufacturing
Engineering (Manufacturing Process). The member of the supervisory committee is
as follow:

………………………………

Supervisor

ABSTRAK

Penghasilan barangan kimpalan terus dicabar agar dapat meningkatkan lagi mutu
kimpalan terutama bagi kimpalan keluli lembut. Keluli lembut mempunyai sifat
kimpalan tersendiri berbanding dengan bahan lain. Oleh itu, satu kajian mengenai
mengoptimumkan kimpalan temu bagi keluli lembut dilakukan dengan menggunakan
pemodelan matematik, Response Surface Methodology (RSM). Response Surface
Methodology merupakan kaedah lanjutan pengoptimuman dan teknik sampel
statistik yang dapat membantu memahami interaksi parameter. Eksperimen
dilakukan untuk mengkaij pengaruhan tiga parameter iaitu voltan, arus dan kelajuan
kimpalan terhadap kekuatan kimpalan temu keluli lembut. Projek ini bermula dengan
mengkaji kimpalan parameter kemudian diikuti dengan proses kimpalan dengan
kombinasi parameter yang berbeza tahap. Ujian tarik dijalankan untuk mendapatkan
kekuatan tarik maing-masing. Kekuatan tarik seterusnya dianalisis bersama dengan
tiga kimpalan parameter dan bermodelan dengan Response Surface Methodology.
Kombinasi parameter terbaik akan dinilai. Dengan tetapan parameter yang tepat, ia
mampu menghasilkan kimpalan yang mempunyai kekuatan dinamik dan kualiti
kimpalan dapat dijaminkan.


i

ABSTRACT

Producing good welded components are continually challenged in order to improve
the welding quality especially for mild steel welding. Mild steel has their unique
welding characteristic compare with other material. Therefore, a research on
optimizing the mild steel welded butt joints was carried out by using mathematically
modelling, Response Surface Methodology (RSM). Response Surface Methodology
is an advanced optimization methods and statistical sampling techniques which can
significantly help in understanding the interaction of parameter. Experiments were
carried out to study the influence of three MIG welding parameters that is welding
current, welding voltage and welding speed on the strength of welded mild steel butt
joints. This project is been started by study the welding parameter for mild steel then
follow with a welding process with different combination of parameter level. A
tensile test was done to find out the respectively tensile strength. This tensile strength
wills analysis together with three parameters and modelling by Response Surface
Methodology. A best combination of welding parameter will evaluate. With the right
welding parameters setting, it able to produce a sufficiently dynamic strength and the

best weld quality, was ensured.

ii

ACKNOWLEDGEMENT

I owe a debt of thanks to all whose time, concern and efforts were given during my
project period. Thus, I would like to extend my heartfelt gratitude to my beloved
supervisor that is Dr. Ahmad Kamely bin Mohamad for given me constructive advice
and encouragement. Besides that, I am also greatly indebted to my academic
supervisor, Mr. Ammar bin Abd. Rahman. He always gave me the inspiration on
this research.

iii

DEDICATION

For my family and friends as the endless concern, financial support, moral support,
understanding and inspired me to complete this project successfully.


iv

TABLE OF CONTENT

Abstrak

i

Abstract

ii

Acknowledgement

iii

Dedication

iv


Table of Content

v

List of Tables

viii

List of Figures

ix

List of Abbreviations

xi

1.

INTRODUCTION


1

1.1

Background

1

1.2

Problem Statement

2

1.3

Objective

2


1.4

Scopes

2

1.5

Organization

3

1.6

The Importance of Study

3

2.


LITERATURE REVIEW

4

2.1

Introduction

4

2.2

Arc Welding

5

2.2.1 Gas Metal Arc Weld

5


2.2.2 Advantages of Gas Metal Arc Weld

6

2.2.3 Limitation of Gas Metal Arc Weld

7

2.2.4 Metal Transfer Modes

7

2.2.5 Welding Parameter

10

2.2.5.1 Welding Current

13


2.2.5.2 Welding Voltage

13

2.2.5.3 Welding Speed

13

2.2.5.4 Welding Shielding Gases

14

2.2.5.5 Electrode Orientation

16
v

2.2.5.6 Consumable Electrode

17

2.3

18

Welding Material

2.3.1 Mild Steel

18

2.3.2 Designation of Steel

19

2.4

Tensile Test

19

2.5

Design of Experiment (DOE)

20

2.5.1 Response Surface Methodology (RSM)

20

2.5.2 Central Composite Design

22

3.

METHODOLOGY

24

3.1

Response Surface Methodology (RSM)

24

3.2

Robot Welding

24

3.3

Flow Chart of Study

29

3.3.1

Define the Objective of the Experiments

30

3.3.2 Determine the Welding Parameter Level

30

3.3.3 Identify the Response Variable

30

3.3.4

30

Preparation for Welding Process

3.3.4.1 Workpiece Preparation

30

3.3.5 Running the Welding Process

31

3.3.5.1 Joint Geometries

32

3.3.5.2 Parameter Setting

34

3.3.6 Tensile Test

35

3.3.6.1 Standard Test Methods of Tension Testing Wrought Mild Steel

35

3.3.7 Develop Mathematical Model of Response Surface

36

3.3.8 Finding the Optimum Set of Parameter and Result Analysis

36

3.3.9 Conclusion

37

3.4

Welding Setup

37

3.5

Standard Operation Procedure (SOP) of Robot Welding

39

3.6

Tensile Test Setup

40

3.7

Designs-Expert Software Setup

41

4.

RESULT AND DISCUSSION

43

4.1

Result and Discussion

43

4.2

Design Summary

45
vi

4.3

Evaluation Model Screen

46

4.3.1 Design Matrix Evaluation for Response Surface Quadratic Model

46

4.4

49

Fit Summary

4.4.1 Sequential Model Sum of Squares

49

4.4.2 Lack of Fit Tests

50

4.4.3 Model Summary Statistics

50

4.5

Analysis of Variance (ANOVA)

51

4.6

Diagnostics

52

4.7

Model Graphs

56

4.8

Optimization

60

4.8.1

Numerical Optimization

60

4.9

Confirmation Run

62

4.10

Average Deviation Percentage Value

63

4.11

Welding Bead

64

5.

CONCLUSION AND RECOMMENDATIONS

67

5.1

Conclusion

67

5.2

Recommendation for Future Research

68

REFERENCES

69

APPENDICES
A

Gantt Chart for Final Year Project 1

B

Gantt Chart for Final Year Project 2

vii

LIST OF TABLES

2.1

Variation of Transfer Mode for GMAW Process

9

2.2

Important Parameters Affecting the Performance of GMAW-P

11

2.3

Effect of Change in Process Variables on Weld Attributes

12

2.4

Recommended Shielding Gas Selection for GMAW

15

2.5

Composition Requirement for GMAW Electrode

17

2.6

Mechanical Property Requirements for Weld Metal Deposit of GMAW

18

Electrode
2.7

Central Composite Design

23

3.1

Basic Specifications of the Manipulator

25

3.2

Model DR-4000 Basic Configuration

26

3.3

26

3.4

��2 / MAG Welding Components

Dimensions of Rectangular Tension Test Specimen

31

3.5

Combination of Welding Parameters

24

3.6

Welding Parameters, Units and Level values

41

3.7

Replication Point and Alpha Value

42

4.1

Maximum Stress for Welding Parameter Combinations

43

4.2

Design Summary

45

4.3

Design Summary

45

4.4

Degree of Freedom for Evaluation

46

4.5

Result of Power Calculation

47

4.6

Sequential Model Sum of Squares

49

4.7

Lack of Fit Tests

50

4.8

Model Summary Statistics

50

4.9

Analysis of Variance

51

4.10

Summarize Value of Analysis of Variance

52

4.11

Prediction of Numerical Optimization

61

4.12

Maximum Stress Value for Random Trials

63

4.13

Average Deviation Percentage Value

63

viii

LIST OF FIGURES

2.1

GMAW Process

6

2.2

Schematic of Metal Transfer Process in GMAW

8

2.3a

Different Modes of Metal Transfers in GMAW, Globular

9

2.3b

Different Modes of Metal Transfers in GMAW, Spray

9

2.3c

Different Modes of Metal Transfers in GMAW, Pulse

9

2.4

Central Composite Design

23

3.1

28

3.2

��2 / MAG Welding Robot System Standard Configuration

Flow Chart of Conducting Experiments

29

3.3

Rectangular Tension Test Specimens

31

3.4

OTC DR 4000 Welding Robot

32

3.5

Typical Joint Geometries used for GMAW

33

3.6

Universal Tensile Machine

35

3.7

Flow Chart of Tensile Experiment Procedures

36

3.8

The Installment of Filler Metal

37

3.9

The Clamped Workpiece

38

3.10

The Control Unit (DR Control)

38

3.11

The Welding Process

39

4.1

Fraction of Design Space Graph

48

4.2

Normal Plot of Residuals

53

4.3

Studentized Residual versus Predicted Values

53

4.4

Externally Studentized Residuals

54

4.5

Box-Cox Plot for Power Transforms

56

4.6

One Factor Graph of Welding Current (A) versus Maximum Stress

57

4.7

One Factor Graph of Welding Voltage (B) versus Maximum Stress

57

4.8

One Factor Graph of Welding Speed (C) versus Maximum Stress

58

4.9

Cube Plot

59

4.10

3D Surface

59

4.11

Ramp Function Graph

60

4.12

The Penetration for Second Experiment Run

64

ix

4.13

The Top View for Sixth Specimen

64

4.14

The Bottom View for Sixth Specimen

64

4.15

The Top View for Seventh Specimen

65

4.16

The Bottom View for Seventh Specimen

65

4.17

The Penetration for Seventh Experiment Run

66

4.18

The Penetration for Tenth Experiment Run

66

4.19

The Top View for Tenth Specimen

66

4.20

The Bottom View for Tenth Specimen

66

x

LIST OF ABBREVIATIONS

A

-

Ampere

AC

-

Alternating Current

ANOVA

-

Analysis of Variance

Ar

-

Argon

ASTM

-

American Society for Testing and Materials

BDMS

-

Bright Drawn Mild Steel

CCD

-

Central Composite Design

��2

-

Carbon Dioxide

CV

-

Constant Voltage

dB

-

Decibel

df

-

Degree of Freedom

DCEN

-

Direct Current Electrode Negative

DCEP

-

Direct Current Electrode Position

DOE

-

Design of Experiments

FDS

-

Fraction of Design Space

GMAW

-

Gas Metal Arc Welding

HAZ

-

Heat Affected Zone

MAD

-

Mean Absolute Deviation

MAG

-

Metal Active Gas

MIG

-

Metal Inert Gas

�2

-

Oxygen

PRESS

-

Prediction Error Sum of Squares

RH

-

Relative Humidity

RSM

-

Response Surface Methodology

Std. Dev.

-

Standard Deviation

V

-

Voltage

VIF

-

Variance Inflation Factor

vs

-

Versus

W

-

Wat

xi

CHAPTER 1
INTRODUCTION

This chapter describes the introduction to the title of the project and briefly explains
the problem faced for mild steel welding. In addition, the planning of completing
final year project was discussing. It also covers the scope and importance of this
project.

1.1

Background

The recent manufacturing technologies developments have enable the manufacturers
to make parts, components and products faster, better quality, and more complexity.
From car manufacturing to the production of niche products, industrial robotics was
widespread applied in welding industry. Robotics welding with high power density,
high degree of automation and high production rate are extremely advantageous in
automotive application and revolutionized the welding industrial workplace. Good
robotic welding system able to decrease the welding cost and production time for a
desired product.

According to Tewari et al., (2010) an investigation into the relationship between the
welding process parameters began in the mid 1900s and regression analysis was
applied to welding geometry and research by Lee and Raveendra. The selection of
the appropriate welding process parameters for robot welding is required in order to
obtain the desired welding quality. Rapid growths in the manufacturing industry
driven by the advances of computer and technologies have introduced a
mathematically modeling method, response surface methodology which can apply
into welding industry for welding optimizing. Response surface methodology is an
1

advanced statistical and mathematical technique which useful in modelling,
improving, and optimizing processes.

1.2

Problem Statement

Nowadays, producing good welded components are continually challenged in order
to improve the welding quality and maintain their competitiveness. Good welds are
essentially a result of optimization welding parameter (Holimchayachotikul et al.,
2007). Without an optimum welding condition, a good joint or perfect arc is
impossible to achieve. Traditionally, the welding parameters were optimize depend
on the welder experience and it is lack of precision.

1.3

Objective

The objectives of this research project are:
i. To study the effect of welding parameter on mild steel weldment physical
properties.
ii. To model the relationship of welding parameter and physical properties by using
RSM.

1.4

Scopes

For this research, the robot welding which is model OTC DR 4000 was selected to
perform the gas metal arc weld welding task. The welding parameters that selected
are welding current, welding voltage and welding speed. Material that selected for
welding parameter optimizing is mild steel. Type of joint was selected is butt joint.
Mathematically modeling, Response Surface Methodology (RSM) was applying to
get the optimum parameters. The factors that would not cover are torch angle,
shielding gas, wire feed rate and electrode diameter.

2

1.5

Organization

The report begins with a Chapter 1 Introduction and this chapter presents the
background, problem statement, introduction, scopes of this project. Then follow
with Chapter 2 Literature Review which presents literature research of researchers
and summarizing point of its. The Chapter 3 Methodology presents the methodology
that adopted to conduct the overall final year project, including the method and
sequence of process flow of this project. Then follow with Chapter 4 Result and
Discussion which presents a best optimizing welding parameter setting result and
discussion on the results. The last chapter is Chapter 5 Conclusion and
Recommendations which summarize the important points of overall report and
recommendations for future research.

1.6

The Importance of Study

Holimchayachotikul et al., (2007) concluded that when the process parameters are
not carefully controlled, the welding quality might be affected which results in low
tensile strength at the joint area or the damage of welding area. Therefore, this study
is important as a guideline to perform welding task in future.

3

CHAPTER 2
LITERATURE REVIEW

This literature review is discussing the points, ideas and knowledge that have been
previously studied by other researchers. The main objective of the literature review is
to summarize the important points of the related journal as the depth evaluation for
this project research.

2.1

Introduction

The robots can be classified depending on their function and the market needs. Two
major classes of robots were classified that is industrial robots and service robots.
According to the Robotic Industries Association, an industrial robot can define as an
automatically controlled, reprogrammable, multipurpose manipulator programmable
in three or more axes that may be either fixed in place or mobile for use in industrial
automation applications. The first industrial robot is manufactured by Unimate and
installed by General Motors in 1961. Nowadays, majority of robot were applying in
material handling or welding usage (Bekey and Yuh, 2008).

Moore, (1985) mention that welding robots have to be 'taught' how to do the job
either by leading them through the complete job or by the use of teaching points,
which can then be interpolated by the robot. The natural unpleasantness of the job
has made the arc welder an endangered species. However, the robots will possibly
alter this danger situation for the better by making the job more varied and, once
safety standards have been established, a lot less hazardous. Furthermore, robots can
certainly free workers from unpleasant, stressful and hazardous jobs, but in many
cases this implies the phasing out of semiskilled and unskilled jobs in some areas.
4

However, the skilled welder still required to teach and operate the arc-welding robot,
and to carry out repairs or alterations on robot welds.

Wang, (2009) highlighted the importance of welding in industry as one of the
material processing method. With the development of technology and the realization
of the welding process, the requirements of welding quality are getting higher and
higher. The application of welding robot seen as a revolutionary development, which
totally changes the typical mode of rigid atomization to the flexible mode .Welding
robot consists of few major components that is robot controller and welding power
and other equipments. Welding robots have high stability of function and can
enhance welding quality greatly, so it is an important application area for industrial
robots. In addition, Alfaro and Drews, (2006) state that the welding automation able
to guide the robot movements. Besides that, the automation in welding allowing the
welding torch to be always inside the welding joint and controlling the welding
parameters such as current, voltage, wire feed rate, heat input, and many.

2.2 Arc Welding
Arc welding is a materials joining technique whereby two or more surfaces are fuse
together by exposure to the intense heat of an electric arc created between an
electrode and the workpiece to be welded. The technique used and electrode type
vary, depending on the welding process chosen (Moore, 1985).

2.2.1

Gas Metal Arc Weld

Bowditch et al., (2005) highlighted gas metal arc welding (GMAW) is a welding
process in which metals are joined by heating them with a welding arc between a
continuous consumable electrode and the base metal. A shielding gas or gas mixture
is used to prevent the atmosphere from contaminating the weld. Furthermore, gas
metal arc welding using a wire as an electrode. A welding arc is struck between the
electrode and the base metal. The electrode melts as it is continuously fed to maintain
the welding arc.
5

Weglowski et al., (2008) indicate that the increasing of gas metal arc welding
(GMAW) employed for fabrication industries (Figure 2.1). This process is versatile,
since it can be applied for all position welding. It can easily be integrated into the
robotized production canters. Furthermore, this process is used an externally supplied
of shielding gas and without the application of a pressure. MIG welding refers to the
use of an inert gas while metal active gas welding (MAG) involves the use of an
active gas (i.e. carbon dioxide and oxygen). A variant of the GMAW process uses a
tubular electrode filled with metallic powders to make up the bulk of the core
materials (metal core electrode). Normally, the commercially important metals such
as carbon steel, high-strength low alloy steel, stainless steel, aluminium, copper,
titanium, and nickel alloys can be welded in all position with GMAW process by
choosing appropriate shielding gas, electrode, and welding variables.

Figure 2.1: GMAW process (Weglowski et al., 2008).

2.2.2

Advantages of Gas Metal Arc Weld

The MIG welding provides a controlled weld pool for welding thin material in any
position. It produces a smooth weld and minimum spatter and has become very
popular. The major advantages of gas metal arc welding are high operator factor,
high deposition rates, high use of filler metal, elimination of slag and flux removal,.
Moreover, other advantages are reduction in smoke and fumes, lower skill level in a
semiautomatic method of application than that required for manual shielded metal
arc welding and automation possible (Cary and Helzer, 2004).

6

2.2.3

Limitation of Gas Metal Arc Weld

The GMAW process, like any other welding process, has certain limitations that
restrict its use. First, the welding equipment is more complex, usually more costly,
and less. Then, GMAW process is more difficult to apply in hard-to-reach places
because the welding gun is larger than a small holder and must be held close to the
joint within 10 to 19 mm. Lastly, its shielding gas limits outdoor applications unless
protective (Ferjutz and Davis, 1993).

2.2.4

Metal Transfer Modes

Weglowski et al., (2008) defines the metal transfer in GMAW as a process of
transferring material of the welding wire in the form of molten liquid droplets to the
work-piece (Figure 2.2). According to Ferjutz and Davis, (1993) the optimum
transfer mode depends in part on the thickness of the base metal being welded. For
example, very thin sections (in all positions) require the short-circuiting mode (with
low current levels and appropriate settings of voltage and other operating parameters,
including shielding gas composition). Thicker sections show best results with spray
or streaming transfer. These transfer modes also produce high heat input, maximum
penetration, and a high deposition rate.

Metal transfer plays an important role in determining the process stability and weld
quality. Depending on the welding conditions, metal transfer can take place in few
principal modes: globular, spray, and short circuiting (Figure 2.3). Globular transfer,
where the droplet diameter is larger than the wire diameter, occurs at relatively low
currents. Since it is often accompanied by extensive spatters, globular transfer is
typically used in welding parts which has relatively loose quality requirements.
Spray transfer, where the droplet diameter is smaller than the wire diameter, occurs
at medium and high currents. It is a highly stable and efficient process, and is widely
used in welding thick steel plates and aluminium parts. Short – circuiting transfer is a
special transfer mode where the molten droplet on the wire tip makes direct contact
with the work-piece or the surface of the weld pool. It is characterized by repeated,

7

intermittent arc extinguishment and re-ignition. It requires low heat input hence it is
commonly used in welding thin sheets (Weglowski et al, 2008).

During the mid 1960s, an alternative transfer technique of metal transfer that is
pulse-spray metal transfer mode was invented. This mode of metal transfer able to
overcomes the drawbacks of globular mode while achieving the benefits of spray
transfer. This metal transfer mode is characterized by pulsing of current between
low-level background current and high-level peak current. It provides stability by
operates mostly in one drop per pulse to the arc. It also produces lesser distortions
and fumes. Pulse-spray metal transfer mode able reduces the heat input to the base
material and operates mostly in one drop per pulse which provides good stability to
the arc. Furthermore, it operates with large diameter electrode wire for wider
application ranges and reduces wire feeding problems in welding equipment and
porosity incidence because of smaller surface area to volume ratio (Praveen and
Yarlagadda, 2005). Variation of transfer mode for GMAW process was illustrated in
the Table 2.1.

Figure 2.2: Schematic of metal transfer process in GMAW (Weglowski et al., 2008).

8

Figure 2.3: Different modes of metal transfers in GMAW (a) globular, (b) spray, and (c) pulse
(Weglowski et al., 2008).

Table 2.1: Variation of transfer mode for GMAW process (Cary and Helzer, 2004).

Metal

Globular

Transfer
Shielding
gas

Short-

Spray

Pulsed-Spray

Argon + oxygen

Argon +

and other

oxygen and

Circuiting
��2

��2 or ��2 +
argon (C-25)

other
Metals to

Low-carbon

Low-carbon

Low-carbon and

All steels,

be welded

and medium-

and medium-

medium-carbon

aluminium

carbon steel,

carbon steel,

steel, low-alloy

and many

low-alloy high-

low-alloy high-

high-strength

alloys

strength steels

strength steels,

steels

some stainless
steels
Metal

10 gauge

20 gauge

0.25 to 0.5 in.

Thin to

thickness

(0.140 in); up

(0.038 in); up

with no

unlimited

to 0.5 in.

to 0.25 in. ;

preparation;

thickness

without bevel

economical in

maximum

preparation

heavier metals

thickness

for vertical and

practically

overhead

unlimited

welding
Welding

Flat and

All position

Flat and

positions

horizontal

(also pipe

horizontal with

welding)

small electrode

9

All position