Sumber Data Kesimpulan PEMBAHASAN DAN HASIL

3.3 Sumber Data

Dalam penelitiaan ini data yang digunakan adalalah data primer dan data sekunder. Data primer bersumber dari hasil wawancara terstruktur terhadap responden denggan menggunakan kuisoner. Kuesioner yang digunakan adalah kuisioner berstruktur dalam bentuk pernyataan yang telah disertai dengan pilihan jawaban dalam bentuk sekala. Sekala yang digunakan adalah sekala telah dimodifikasi dalam bentuk pernyataan diberi range skor anatara 1 sampai dengan 5, masing - masing adalah: 1 = Sangat tidak setuju 2 = Tidak setuju 3 = Tidak tahuNetral 4 = Setuju 5 = Sangat setuju 3.4 Pengolahan Data 3.4.1 Input Data Mentah Penentuan matriks input data mentah yang terdiri 100 sampel responden dan 9 variabel adalah sebagai berikut: Universitas Sumatera Utara Tabel 3.3 Data Hasil Kuisioner Nomor responden X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 1 5 2 5 2 2 2 2 5 2 2 4 2 4 2 4 2 2 4 2 3 4 3 4 3 4 4 2 2 4 4 5 1 2 2 4 2 1 4 1 5 5 1 2 2 4 2 1 4 4 6 4 2 5 2 4 5 4 4 2 7 5 2 5 4 4 2 4 4 5 8 4 4 3 4 3 4 3 5 2 9 5 4 1 2 2 4 2 2 5 10 5 2 2 1 4 2 1 1 5 11 5 2 2 1 2 2 2 4 2 12 5 1 1 1 2 4 4 4 2 13 4 4 3 3 2 3 3 4 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4 2 2 2 2 2 2 2 5 Data mentah secara keseluruhan dapat dilihat di dalam lampiran 1 A.

3.4.2 Penskalaan Data Ordinal Menjadi Data Interval

Dari data mentah hasil kuesioner dibuat suatu matriks data yang telah dilakukan penskalaan menjadi skala interval. Teknik penskalaan yang digunakan dalam penelitian ini adalah Methods Successive Interval dengan bantuan Microsoft Office Excel 2007. Berikut ini adalah perhitungan penskalaan Methods Successive Interval Universitas Sumatera Utara Tabel 3.4 Penskalaan Variabel 1 No. variab el Kategori Skor Jawaban Ordinal Frekuensi Proporsi Proporsi Kumulatif Z Densita s {fz} Nilai Hasil Penskala an 1 2,000 6,000 0,060 0,060 -1,555 0,119 1,000 3,000 4,000 0,040 0,100 -1,282 0,175 1,576 4,000 30,000 0,300 0,400 -0,253 0,386 2,283 5,000 60,000 0,600 1,000 0,000 1,000 Jumlah 100 Langkah-langkah Methods Successive Interval : 1. Menghitung frekuensi skor jawaban dalam skala ordinal. 2. Menghitung proporsi dan proporsi kumulatif untuk masing-masing skor jawaban. 3. Menentukan nilai Z untuk setiap kategori, dengan asumsi bahwa proporsi kumulatif dianggap mengikuti distribusi normal baku. Nilai Z diperoleh dari Tabel Distribusi Normal Baku. 4. Menghitung nilai densitas dari nilai Z yang diperoleh dengan cara memasukkan nilai Z tersebut ke dalam fungsi densitas normal baku sebagai berikut: √ √ 5. Menghitung Scale Value SV dengan rumus : Universitas Sumatera Utara 6. Menentukan Scale Value min sehingga | | Scale Value terkecil = | | | | 7. Mentransformasikan nilai skala dengan menggunakan rumus : | | Selanjutnya dengan melakukan cara yang sama, maka semua variabel akan ditransformasikan ke dalam data interval. Tabel 3.5 Penskalaan Variabel 1 X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 1 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 2 1,000 2,221 1,746 2,331 2,254 2,091 1,926 1,794 2,518 3 1,576 2,835 2,124 3,190 2,949 2,712 2,445 2,244 3,277 Universitas Sumatera Utara 4 2,883 3,352 2,870 3,906 3,600 3,351 3,047 3,417 3,789 5 3,629 4,409 4,028 4,981 4,730 4,450 4,068 4,966 4,784

3.4.3 Uji Validitas

Validitas menunjukkan sejauh mana ketepatan dan kecermatan suatu alat ukur dalam melakukan fungsi ukurnya. Untuk mengetahui valid atau tidak dilihat dari nilai korelasi hitung dibandingkan dengan tabel korelasi product moment untuk N = 100 dan α = 5 adalah 0,195. Dari hasil uji validitas, terlihat bahwa seluruh variabel dinyatakan valid karena nilai r-hitung r tabel, r-hitung 0,195. Dari bantuan SPSS diproleh hasil seperti tablel berikut ini Tabel 3.6 Uji Validitas Variable Penelitian No. Variabel r hitung r tabel Kesimpulan 1 X 1 = Pupuk Kandang 0,197 0,195 Valid 2 X 2 = Luas Lahan 0,364 0,195 Valid 3 X 3 = Pestisida 0,291 0,195 Valid 4 X 4 = Kesuburan Tanah 0,514 0,195 Valid 5 X 5 = Tenaga Kerja 0,424 0,195 Valid 6 X 6 = Jarak Tanaman antar Kentang 0,381 0,195 Valid 7 X 7 = Bibit 0,576 0,195 Valid 8 X 8 = Pupuk 0,348 0,195 Valid 9 X 9 = Modal 0,388 0,195 Valid Secara manual perhitungan korelasi product moment antara variabel X 9 dengan skor total variabel lainnya Y dapat dilihat pada tabel berikut: Universitas Sumatera Utara

3.7 Contoh Perhitungan Korelasi Product Moment

No Responden X Y XY X 2 Y 2 1 2,518 23,50131 59,1763 6.34032400 552.3117 2 2,518 20,74018 52,2317 6.34225307 430.155 3 3,789 21,84884 82,7926 14.35909101 477.3718 4 1,000 18,81489 18,8148 1.00000000 354,000 5 3,789 18,81489 71,2959 14.35909101 354,000 6 2,518 25,43103 64,0450 6.34225307 646.7371 7 4,784 25,99452 124,3553 22.88574785 675.715 8 2,518 25,37673 63,9083 6.34225307 643.9785 9 4,784 19,63726 93,9427 22.88574785 385.622 10 4,784 16,28807 77,9206 22.88574785 265.3014 11 2,518 18,28527 46,0493 6.34225307 334.351 12 2,518 18,69854 47,0901 6.34225307 349.6352 13 4,784 21,77678 104,1780 22.88574785 474.2279 . . . . . . . . . . . . . . . . . . 100 4,784 16,64635 79,63457 22.88574785 277.1011 JUMLAH 338,304 2387,866 8237,443 1241.071022 58766.2 ∑ ∑ ∑ √{ ∑ ∑ }{ ∑ ∑ } √{ }{ } √ √ Universitas Sumatera Utara √

3.4.4 Uji Reliabilitas

Uji Reliabilitas menunjukkan sejauh mana hasil suatu pengukuran dapat dipercaya. Metode yang digunakan untuk menguji reliabilitas adalah metode Alpha Cronbach. Variabel dikatakan reliabel jika memberikan nilai Alpha Cronbach 0,6 Ghozali, 2005. Hasil uji reliabilitas terhadap variabel-variabel penelitian menunjukkan bahwa data mempunyai tingkat reliabilitas yang tinggi karena nilai Alpha Cronbach untuk ke 9 variabel 0,6. Dengan demikian, data dapat memberikan hasil pengukuran yang konsisten reliabel. Tabel 3.8 Uji Reliabilitas Variabel Penelitian No Variabel Alpha Cronbach Kesimpulan 1 X 1 = Pupuk Kandang 0,720 Reliabel 2 X 2 = Luas lahan 0,693 Reliabel 3 X 3 = Pestisida 0,707 Reliabel 4 X 4 = Kesuburan Tanah 0,665 Reliabel 5 X 5 = Tenaga Kerja 0,682 Reliabel 6 X 6 = Jarak tanaman antar kentang 0,690 Reliabel 7 X 7 = Bibit 0,651 Reliabel 8 X 8 = Pupuk 0,696 Reliabel 9 X 9 = Modal 0,689 Reliabel Universitas Sumatera Utara

3.5 Analisis Data

Metode analisis data yang digunakan adalah teknik analisis faktor dengan pendekatan komponen utama. Langkah-langkah dalam analisis faktor adalah sebagai berikut :

3.5.1 Membentuk Matriks Korelasi

Proses analisis didasarkan pada suatu matriks korelasi antar variabel. Agar analisis faktor bisa menjadi tepat dipergunakan. Variabel-variabel yang akan dianalisis harus berkorelasi. Apabila koefisien korelasi antar variabel terlalu kecil berarti hubungannya lemah, maka metode analisis faktor kurang tepat untuk dipergunakan. Peneliti mengharapkan selain variabel awal berkorelasi dengan sesama variabel lainnya juga berkorelasi dengan faktor sebagai variabel terakhir yang didapat dari variabel-variabel awal. Perhitungan nilai korelasi masing-masing variabel diperoleh dengan memakai rumus korelasi product moment : ∑ ∑ ∑ √{ ∑ ∑ }{ ∑ ∑ } Contoh perhitungan korelasi antara variabel X 1 dengan X 9 . Misalkan X 1 adalah X dan X 9 adalah Y.

3.9 Perhitungan Korelasi Antara Variabel X

1 Dengan X 9 No Responden X Y XY X 2 Y 2 1 3,629 2,518 9,139935 13,1717239520275 6,3422530729171 2 2,283 2,518 5,748382 5,2101200893299 6,3422530729171 3 2,283 3,789 8,649427 5,2101200893299 14,3590910131709 Universitas Sumatera Utara 4 3,629 1,000 3,629287 13,1717239520275 1,0000000000000 5 3,629 3,789 13,7526 13,1717239520275 14,3590910131709 6 2,283 2,518 5,748382 5,2101200893299 6,3422530729171 7 3,629 4,784 17,36216 13,1717239520275 22,8857478450558 8 2,283 2,518 5,748382 5,2101200893299 6,3422530729171 9 3,629 4,784 17,36216 13,1717239520275 22,8857478450558 10 3,629 4,784 17,36216 13,1717239520275 22,8857478450558 11 3,629 2,518 9,139935 13,1717239520275 6,3422530729171 12 3,629 2,518 9,139935 13,1717239520275 6,3422530729171 13 2,283 4,784 10,91959 5,2101200893299 22,8857478450558 . . . . . . . . . . . . . . . . . . 100 2,283 4,784 10,91959 5,2101200893299 22,8857478450558 298,538 338,304 1.033,007 962,542 1.241,073 ∑ ∑ ∑ √{ ∑ ∑ }{ ∑ ∑ } √{ }{ } √ √ √ Universitas Sumatera Utara Dengan perhitungan di atas, maka diperoleh nilai korelasi antara variabel X 1 dengan X 9 adalah 0,278. Hasil tersebut sesuai dengan output SPSS. Dengan melakukan cara yang sama dengan di atas atau dengan menggunakan SPSS maka akan diperoleh korelasi antara variabel.Hasil perhitungannya dapat disajikan dalam bentuk matriks. Pada penelitian ini matriks korelasi yang dibentuk dari data yang diperoleh untuk mengectahui faktor-faktor yang mempengaruhi hasil produksi kentang memperlihatkan korelasi yang cukup kuat antara variabel X 1 dengan X 9 sehingga diharapkan nantinya bahwa variabel-variabel ini akan berkorelasi dengan faktor yang sama. Data mengenai 9 variabel yang berasal dari jawaban 100 orang responden kemudian dianalisa pada anti image correlation. Uji ini dilakukan dengan memperhatikan angka KMO MSA. Angka MSA Measure of Sampling Adequecy berkisar antara 0 sampai 1 dengan kriteria : Santoso, 2005 MATRIK KORELASI X 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 1 1 0,102 -0,005 0,077 0,174 -0,005 0,135 0,154 0,278 X 2 0,102 1 0,162 0,375 0,184 0,159 0,172 0,225 0,253 X 3 -0,005 0,162 1 0,288 0,214 0,276 0,295 0,094 -0,007 X 4 0,077 0,375 0,288 1 0,383 0,261 0,381 0,205 0,253 X 5 0,174 0,184 0,214 0,383 1 0,314 0,328 0,01 0,268 X 6 -0,005 0,159 0,276 0,261 0,314 1 0,456 0,198 0,031 X 7 0,135 0,172 0,295 0,381 0,328 0,456 1 0,351 0,347 X 8 0,154 0,225 0,094 0,205 0,01 0,198 0,351 1 0,32 X 9 0,278 0,253 -0,007 0,253 0,268 0,031 0,347 0,32 1 Universitas Sumatera Utara MSA = 1, variabel dapat diprediksi tanpa kesalahan oleh variabel lain. MSA 0,5, variabel masih bisa diprediksi dan bisa dianalisis lebih lanjut. MSA 0,5, variabel tidak bisa diprediksi dan tidak bisa dianalisis lebih lanjut. Tabel 3.10 Kaiser-Meyer- Olkin KMO dan Barlett’s Test Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0,721 Bartletts Test of Sphericity Approx. Chi-Square 150,262 Df 36 Sig. 0.000 Hasil output SPSS seperti tabel di atas menunjukkan angka KMO dan Barlett’s test adalah 0,721 lebih besar dari 0,5 dengan signifikansi 0,000 lebih kecil dari 0,05 maka variabel dan sampel sudah layak untuk dianalisis lebih lanjut.Perhitungan secara manual nilai KMO dan Barlett’s test dapat dilihat pada lampiran. Hipotesis untuk uji diatas adalah :  H = sampel belum memadai untuk dianalisis lebih lanjut  H 1 = sampel sudah memadai untuk dianalisis lebih lanjut  Kriteria dengan melihat probabilitas tingkat signifikansi : Angka Sig. 0,05, maka H diterima Angka Sig. 0,05, maka H ditolak Tabel 3.11 Nilai Measure of Sampling Adequecy MSA No Variabel Nilai MSA 1 X 1 = Pupuk kandang 0.713 2 X 2 = Luas lahan 0,742 3 X 3 = Pestisida 0,779 4 X 4 = Kesuburan tanah 0,783 5 X 5 = Tenaga Kerja 0.707 Universitas Sumatera Utara 6 X 6 = Jarak tanam anatar kentang 0,685 7 X 7 = Bibit 0,736 8 X 8 = Pupuk 0,690 9 X 9 = modal 0,657 Dengan melihat anti image correlation diketahui ke 9 variabel menunjukkan kriteria angka MSA lebih besar dari 0,5, yang berarti semua variabel masih bisa diprediksi untuk dianalisa lebih lanjut. Dari kedua hasil pengujian di atas, semua variabel mempunyai korelasi yang cukup tinggi dengan variabel lain, sehingga analisis layak untuk dilanjutkan dengan mengikutkan 9 variabel. Perhitungan secara manual dapat dilihat pada lampiran 4.

3.5.2 Ekstraksi Faktor

Dalam penelitian ini metode ekstraksi yang digunakan adalah Principal Component Analysis Analisis Komponen Utama. Di dalam Principal Component Analysis jumlah varians data dipertimbangkan yaitu diagonal matriks korelasi, setiap elemennya sebesar satu dan full variance dipergunakan untuk dasar pembentukan faktor, yaitu variabel-variabel lama, yang jumlahnya lebih sedikit dan tidak berkorelasi lagi satu sama lain, seperti variabel-variabel asli yang memang saling berkorelasi. Tabel 3.12 Komunalitas No Variabel Initial Extraction 1 X 1 = Pupuk Kandang 1,000 0.522 2 X 2 = Luas lahan 1,000 0,286 3 X 3 = Pestisida 1,000 0,475 4 X 4 = Kesuburan Tanah 1,000 0,519 5 X 5 = Tenaga Kerja 1,000 0,721 6 X 6 = Jarak tanaman antar kentang 1,000 0,567 7 X 7 = Bibit 1,000 0,602 Universitas Sumatera Utara 8 X 8 = Pupuk 1,000 0.806 9 X 9 = Modal 1,000 0,643 Tabel 3.13 Initial Eigenvalue Faktor atau komponen Initial Eigenvalues Total of Variance Cumulative 1 2,810 31,220 31,220 2 1,329 14,770 45,990 3 1.003 11,142 57,132 4 0,944 10,489 67,621 5 0,781 8,676 76,297 6 0,687 7,635 83,932 7 0,556 6,180 90,111 8 0,496 5,509 95,620 9 0,394 4,380 100,00 Sumbangan Masing-Masing Faktor Terhadap Varians Seluruh Variabel Asli Faktor atau Komponen Extraction Sums of Squared Loadings Total of Variance Cumulative 1 2,810 31,220 31,220 2 1,329 14,770 45,990 3 1,003 11,142 57,135 Komunalitas pada dasarnya adalah jumlah varians bisa dalam persentase dari suatu variabel mula-mula yang bisa dijelaskan oleh faktor yang terbentuk. Universitas Sumatera Utara a. Untuk variabel pupuk kandang, nilai komunalitasnya adalah 0.522 atau sekitar 52,2 varians dari variabel pupuk kandang bisa dijelaskan oleh faktor yang terbentuk. b. Untuk variabel luas lahan, nilai komunalitasnya adalah 0,286 atau sekitar 28,6 varians dari variabel luas lahan bisa dijelaskan oleh faktor yang terbentuk. c. Untuk variabel pestisida, nilai komunalitasnya adalah 0,475 atau sekitar 47,5 varians dari variabel pestisida bisa dijelaskan oleh faktor yang terbentuk. d. Untuk variabel kesuburan tanah, nilai komunalitasnya adalah 0,519 atau sekitar 51,9 varians dari kesuburan tanah bisa dijelaskan oleh faktor yang terbentuk. e. Untuk tenaga kerja, nilai komunalitasnya adalah 0,721 atau sekitar 72,1 varians dari variabel tenaga kerja bisa dijelaskan oleh faktor yang terbentuk. f. Untuk variabel jarak tanaman antara kentang, nilai komunalitasnya adalah 0,567 atau sekitar 56,7 varians dari variabel jarak tanaman antara kentang bisa dijelaskan oleh faktor yang terbentuk. g. Untuk variabel bibit, nilai komunalitasnya adalah 0,602 atau sekitar 60,2 varians bibit bisa dijelaskan oleh faktor yang terbentuk. h. Untuk variabel pupuk, nilai komunalitasnya adalah 0,806 atau sekitar 80,6 varians dari variabel pupuk bisa dijelaskan oleh faktor yang terbentuk. i. Untuk variabel modal, nilai komunalitasnya adalah 0,643 atau sekitar 64,3 varians dari variabel modal bisa dijelaskan oleh faktor yang terbentuk. Pada tabel 3.13 menunjukkan nilai eigen value untuk setiap faktor, yang pada awalnya terdiri dari 9 faktor yaitu sebanyak variabel aslinya. Suatu eigen value menunjukkan besarnya sumbangan dari faktor terhadap varians seluruh variabel asli. Kemudian diproses berikutnya dipilih faktor-faktor yang eigen value nya minimal 1. Ternyata ada 3 faktor atau komponen yang eigen value nya lebih dari 1 yaitu faktor 1, 2, dan 3 masing-masing dengan eigen value nya adalah 2,810; 1,329 dan 1 Universitas Sumatera Utara

3.5.3 Menentukan Banyaknya Faktor

Penentuan banyaknya faktor yang dilakukan dalam analisis faktor maksudnya adalah mencari variabel terakhir yang disebut faktor yang saling tidak berkorelasi, bebas satu sama lainnya, lebih sedikit jumlahnya daripada variabel awal akan tetapi dapat menyerap sebagian besar informasi yang terkandung dalam variabel awal atau yang dapat memberikan sumbangan terhadap varians seluruh variabel. Ada beberapa prosedur yang dapat dipergunakan dalam menentukan banyaknya faktor, antara lain adalah sebgai berikut :

1. Dilihat dari Initial Eigen Value Total

Untuk menentukan banyaknya faktor dari initial values dilihat dengan metode pendekatan, hanya faktor dengan eigen value lebih besar dari satu yang dipertahankan, jika lebih kecil dari satu, faktornya tidak diikutsertakan dalam model. Suatu eigen value menunjukkan besarnya sumbangan dari faktor terhadap varians seluruh variabel asli. Hanya faktor dengan varians lebih besar dari satu yang dimasukkan dalam model. Berdasarkan tabel 3.13 ternyata diperoleh banyaknya faktor yang dapat mempengaruhi hasil produksi kentang menurut persepsi penduduk atau asumsi responden adalah 3, karena ada 3 faktor atau komponen yang eigen value nya lebih dari 1, yaitu Faktor dengan eigen value 2,810 , Faktor 2 dengan eigen value 1,329 , Faktor 3 dengan eigen value dan 1,003. Perhitungan secara manualnya untuk mencari nilai ini dapat di lihat di lampiran. Berdasarkan tabel 3.13 dapat diketahui bahwa besarnya sumbangan yang diberikan dari masing-masing faktor terhadap varians seluruh variabel asli. Faktor 1 memberikan sumbangan varians sebesar 31,22 , faktor 2 sebesar 14,770, dan yang terakhir faktor 3 sebesar 11,142 . Sehingga total sumbangan varians dari ketiga faktor tersebut adalah sebesar 57,132. Universitas Sumatera Utara

2. Menentukan Banyaknya Faktor dengan Scree Plot

Suatu Scree Plot adalah plot dari eigen value melawan banyaknya faktor yang bertujuan untuk melakukan ekstraksi agar diperoleh jumlah faktor. Scree plot berupa suatu kurva yang diperoleh dengan memplot eigen value sebagai sumbu vertikal dan banyaknya faktor sebagai sumbu horizontal. Bentuk kurva atau plotnya dipergunakan untuk menentukan banyaknya faktor. Jika tabel total varians menjelaskan dasar jumlah faktor yang didapat dengan perhitungan angka, maka scree plot memperlihatkan hal tersebut dengan grafik. Terlihat bahwa dari sutu ke dua faktor daris dari sumbu Component 1 ke 2, arah garis cukup menurun tajam. Kemudian dari 2 ke 3 garis juga menurun. Pada faktor 4 sudah dibawah angka 1 dari sumbu eigen value. Hal ini menunjukkan bahwa ada 3 faktor yang mempengaruhi hasil produksi kentang, yang dapat diekstraksi berdasarkan scree plot. Gambar 3.1 Scree Plot Universitas Sumatera Utara

3.5.4 Melakukan Rotasi Faktor

Output terpenting dalam analisis faktor adalah Matriks Faktor atau yang disebut juga dengan Komponen Matriks. Matriks faktor memuat koefisien yang dipergunakan untuk mengekspresikan variabel yang dibakukan dinyatakan dalam faktor. Koefisien ini merupakan factor loading, mewakili koefisien korelasi antara faktor dengan variabel. Koefisien dengan nilai mutlak absolute yang besar menunjukkan bahwa faktor dan variabel sangat terkait. Koefisien dari matriks faktor dapat dipergunakan untuk menginterpretasi faktor. Matriks faktor atau matriks komponen dapat dilihat sebagai berikut : Tabel 3.14 Matriks Faktor a Sebelum Dirotasi Faktor Komponen 1 2 3 X 1 0,294 0,578 0,319 X 2 0,519 0,131 0,012 X 3 0,457 -0,515 -0,012 X 4 0,690 -0,121 0,168 X 5 0,597 -0,132 0,589 X 6 0,569 -0,460 -0,180 X 7 0,742 -0,086 -0,209 X 8 0,497 0,337 -0,668 X 9 0,540 0,590 0,051 Walaupun matriks faktor atau matriks komponen awal sebelum dirotasi menunjukkan hubungan antara faktor komponen dengan variabel secara individu, akan tetapi masih sulit diambil kesimpulannya tentang banyaknya faktor yang dapat diekstraksi. Hal ini disebabkan karena faktor komponen berkorelasi dengan banyak variabel lainnya atau sebaliknya variabel tertentu masih berkorelasi dengan banyak fakor. Sehingga dalam keadaan ini terkadang membuat peneliti kesulitan dalam penentuan suatu variabel kedalam suatu faktor. Korelasi Universitas Sumatera Utara dianggap cukup kuat jika koefisien korelasi yang diwaliki factor loading mempunyai nilai lebih besar dari 0,30. Juga variabel berkorelasi dengan banyak faktor, seperti variabel X 1 berkorelasi dengan faktor 2 dan 3 variabel X 8 berkorelasi dengan faktor 1 dan 2 variabel X 9 berkorelasi dengan faktor 1 dan 2. Situasi seperti ini membuat kesimpulan mengenai banyaknya faktor yang diekstraksi dari variabel menjadi sulit. Untuk mengatasi hal tersebut dapat dilakukan proses rotasi pada faktor yang terbentuk agar memperjelas posisi sebuah variabel, akankah dimasukkan pada faktor yang satu ataukah ke faktor lainnya. Beberapa metode rotasi yang bisa digunakan adalah orthogonal rotation, varimax rotation, dan oblique rotation. Proses rotasi terhadap faktor pada penelitian ini menggunakan metode varimax rotation. Dan hasil rotasi dapat dilihat pada matriks faktor setelah dirotasi dibawah ini : Tabel 3.15 Matriks Faktor a Setelah Dirotasi Faktor Komponen 1 2 3 X 1 -0,105 0,714 0,009 X 2 0,327 0,370 0,207 X 3 0,676 -0,134 -0,006 X 4 0,627 0,352 0,044 X 5 0,589 0,493 -0,362 X 6 0,718 -0,116 0,198 X 7 0,621 0,228 0,406 X 8 0,136 0,118 0,868 X 9 0,062 0,727 0,333 Tujuan dilakukan rotasi adalah untuk memperlihatkan distribusi variabel yang lebih jelas dan nyata. Dapat dilihat perbedaan antara matriks faktor sebelum dirotasi dengan matriks faktor setelah dirotasi. Universitas Sumatera Utara

3.5.5 Interpretasi Faktor

Setelah rotasi dilakukan langkah selanjutnya adalah interpretasi faktor. Interpretasi faktor dipermudah dengan mengidentifikasi variabel yang loadingnya besar pada faktor yang sama. Faktor tersebut kemudian dapat diinterpretasi menurut variabel-variabel yang memiliki loading tinggi dengan faktor tersebut. Atau penentuan variabel yang dimasukkan ke dalam faktor dengan cara melihat factor loading yang terbesar. a. Variabel pupuk kandang : Korelasi antara variabel dengan faktor 2 sebelum dirotasi adalah 0,578; dengan rotasi korelasi menjadi 0,714 dengan faktor 2. Jadi variabel ini masuk faktor 2. b. Variabel luas lahan : Korelasi antara variabel luas lahan dengan faktor 1 sebelum dirotasi adalah 0,519; dengan rotasi korelasi menjadi 0,370 dengan faktor 2. Jadi variabel ini masuk faktor 2. c. Variabel pestisida : Korelasi antara variabel pestisida dengan faktor 1 sebelum dirotasi adalah 0,457; dengan rotasi korelasi menjadi 0,676 dengan faktor 1. Jadi variabel ini masuk faktor 1. d. Variabel kesuburan tanah: Korelasi antara variabel kesuburan tanah dengan faktor 1 sebelum dirotasi adalah 0,690; dengan rotasi korelasi menjadi 0,627dengan faktor 1. Jadi variabel ini masuk faktor 1. e. Variabel tenaga kerja : Korelasi antara variabel tenaga kerja dengan faktor 1 sebelum dirotasi adalah 0,597; dengan rotasi korelasi menjadi 0,589 dengan faktor 1. Jadi variabel ini masuk faktor 1. f. Variabel jarak tanam antar kentang: Korelasi antara variabel jarak tanam antara kentang dengan faktor 1 sebelum dirotasi adalah 0,569; dengan rotasi korelasi menjadi 0,718 dengan faktor 1. Jadi variabel ini masuk faktor 1. g. Variabel bibit: Korelasi antara variabel bibit dengan faktor 1 sebelum dirotasi adalah 0,742; dengan rotasi korelasi menjadi 0,621 dengan faktor 1. Jadi variabel ini masuk faktor 1. Universitas Sumatera Utara h. Variabel pupuk: Korelasi antara variabel pupuk dengan faktor 1 sebelum dirotasi adalah 0,497; dengan rotasi korelasi menjadi 0,868 dengan faktor 3. Jadi variabel ini masuk faktor 3. i. Variabel modal: Korelasi antara variabel modal dengan faktor 2 sebelum dirotasi adalah 0,590; dengan rotasi korelasi menjadi 0,727 dengan faktor 2. Jadi variabel ini masuk faktor 2. Dengan demikian ke 9 variabel telah direduksi menjadi tiga faktor yang dapat mempengaruhi hasil produksi kentang di kecamatan Naman Teran yaitu: 1. Faktor 1 F 1 terdiri atas variabel X 3 = pestisida, variable X 4 = kesuburan tanah, variable X 5 = tenaga kerja, variabel X 6 = jarak tanam antar kentang, variabel X 7 = bibit. Sehingga faktor ini diberi nama: FAKTOR CARA PEMELIHARAAN KENTANG. 2. Faktor 2 F 2 terdiri atas variabel X 1 = Pupuk kandang, Variabel X 2 = luas lahan, Variabel X 9 = modal. Faktor ini diberi nama : FAKTOR MODAL DAN LUAS LAHAN. 3. Faktor 3 F 3 terdiri atas variabel X 8 = Pemupukan Faktor ini diberi nama FAKTOR PEMUPUKAN. Interpretasi dipercepat melalui variabel-variabel yang memiliki loading lebih besar pada faktor yang sama yang kemudian dapat diinterpretasikan dalam batasan variabel-variabel yang loadingnya tinggi. Variabel-variabel yang berkorelasi kuat nilai faktor loadingnya besar dengan faktor tertentu akan memberikan inspirasi nama faktor bersangkutan. Faktor Pertama Faktor pertama hasil rotasi faktor didukung oleh 5 variabel. Urutan variabel- variabel tersebut mulai dari nilai bobot paling besar sampai yang paling kecil adalah dan Bobot masing-masing variabel pendukung faktor pertama tersebut sesuai dengan tabel berikut. Universitas Sumatera Utara Tabel 3.16 Variabel yang Mendukung Faktor Pertama No Variabel Pendukung Nama Variabel Bobot Variabel 1 Jarak tanam antar kentang 0,718 2 Pestisida 0,676 3 Kesuburan tanah 0,627 4 Bibit 0,621 5 Tenaga kerja 0,589 Dari tabel 3.16 diatas, faktor pertama didukung oleh variabel-variabel jarak tanam antar kentang, pestisida, kesuburan tanah, bibit dan banyaknya tenaga kerja. Dari data tersebut bahwa X 6 = jarak antara tanaman kentanglah yang mempunyai factor loading terbesar yaitu 0,718. Hal ini menunjukan bahwa variable ini berpengaruh paling kuat terhadap hasil produksi kentang di tempat penelitiaan. Faktor pertama yaitu Faktor Cara dan Pemeliharaan kentang menyumbangkan varians yaitu sebesar 31,220 . Dari hasil factor loading yang paling dominan untuk menghasilkan hasil produksi yang tinggi tergantung pada saat ingin menanam kentang bahwa jarak tanam itu sangat besar pengaruhnya terhadap panen penghasilanya kentang. Faktor Kedua Tabel 3.17 Variabel yang Mendukung Faktor Kedua No Variabel Pendukung Nama Variabel Bobot Variabel 1 Modal 0,727 2 Pupuk Kandang 0,714 3 Luas lahan 0,370 Universitas Sumatera Utara Dari tabel dapat dilihat bahwa bobot variable yang paling tinggi adalah variable X 9 = Modal sehingga dari beberapa varibel yang berada di faktor 2 maka varibel X 9 = Modal yang dominan dimana factor loading sebesar 0,727 . Faktor ke dua merupakan faktor Modal dan luas lahan yang memberikan pengaruh yang cukup besar untuk hasil produksi kentang yaitu memberi sumbangan varian sebesar 14,77 . Perlu diperhatikan bahwa ketika ingin melakukan penanaman kentang pasti membutuhkan modal, jadi dari hasil penelitiaan yang dilakukan bahwa ketika semakin besar modal yang akan di gunakan maka hasil produksi juga akan meningkat. Faktor Ketiga Faktor ketiga hasil rotasi bahwa hanya 1 variabel yang mendukung yaitu variable X 8 = pemupukan. Variabel ini mempunyai faktor loding sebesar 0,868. Pada faktor Ketiga interval pemupukan yang mempengaruhi hasil produksi kentang pada saat diadakan penelitian. Faktor pemupukan ini mempengaruhi hasil produksi kentang sesuai asumsi petani yang di dapat oleh peneliti yaitu memberi sumbangan varian sebesar 11,142 . Dari ketiga Faktor yang dominan tersebut memberikan proporsi keragaman kumulatif sebesar 57,132 artinya ketiga faktor tersebut menurut asumsi petani kentang yang berada di kecamatan Naman Teran dengan responden oleh peneliti, bahwa yang dapat mempengaruhi hasil produksi kentang adalah sebesar 57,132 dan sisanya dapat dipengaruhi faktor-faktor lainya yang tidak teridentifikasi oleh model penelitiaan. Universitas Sumatera Utara

3.5.6 Menentukan Ketepatan Model

Proses akhir dari analisis faktor adalah menguji ketepatan model, dengan menggunakan output program SPSS. Perbedaan antara korelasi yang diobservasi pada matriks korelasi sebelum analisis faktor dengan korelasi analisis faktor yang diestimasi dari matriks faktor yaitu yang disebut dengan residual. Kalau banyak residual yang nilainya lebih besar dari 0,05 residual 0,05, berarti model tidak tepat, model dipertimbangkan kembali. Sebaliknya, jika banyak residual yang nilainya lebih kecil dari 0,05 residual 0,05, berarti model sudah tepat. Tabel 3.18 selisihresidual antara matriks korelasi sebelum analisis faktor dengan analisis setelah analisis factor x1 x2 x3 x4 x5 x6 x7 x8 x9 x1 - x2 -0,131 - x3 0,029 -0,235 - x4 -0,034 -0,651 -0,437 - x5 -0,308 -0,199 -0,292 -0,623 - x6 0,077 -0,229 -0,375 -0,276 -0,529 - x7 -0,168 -0,081 -0,462 -0,549 -0,42 -0,805 - x8 -0,243 -0,346 -0,1 -0,263 0,208 -0,311 -0,558 - x9 -0,455 -0,402 0,151 -0,311 -0,46 0,163 -0,597 -0,536 - Terlihat pada tabel 3.18, nilai residual yang lebih besar dari 0,05 adalah 4 komponen, 9,3 50. Dengan keadaan residual tersebut diatas, maka model dapat dinyatakan sudah tepat dan layak untuk digunakan. Universitas Sumatera Utara BAB 4 KESIMPULAN DAN SARAN

4.1 Kesimpulan

Pengolahan data dengan menggunakan analisis faktor pada penelitian ini adalah untuk mengetahui seberapa besar pengaruh dari faktor faktor yang di pertimbangkan oleh petani untuk meningkatkan hasil produksi kentang di kecamatan Naman Teran. Dari penelitian ini maka penulis dapat membuat kesimpulan-kesimpulan sebagai berikut : 1. Dari hasil penelitiaan 100 responden dan 9 variabel penelitiaan memberikan proporsi keragaman kumulatif sebesar 57,132 dengan tiga faktor ekstraksi yang terbentuk. Ketiga faktor tersebut menurut asumsipersepsi dari petani kentang yang di teliti di kecamatan Naman Teran bahwa yang mempengaruhi hasil produksi kentang sebesar 57,132 dan sisanya dapat dipengaruhi faktor-faktor lainnya yang tidak teridentifikasi oleh model penelitian. 2. Faktor yang paling dominan mempengaruhi hasil produksi kentang di kecamatan Naman Teran. Faktor dominan pertama cara dan pemliharaan yaitu memberikan sumbangan variansi sebesar 31,22, faktor dominan kedua adalah permodalan dan lahan memberikan sumbangan varians sebesar 14,77, faktor dominan ketiga adalah faktor Pemupukan memberikan sumbangan varians sebesar 11,42. 3. Model faktor yang ada ternyata valid dan layak digunakan. Karena perbedaan antara korelasi yang diobservasi pada matriks korelasi sebelum analisis faktor dengan korelasi analisis faktor yang diestimasi dari matriks faktor yaitu yang disebut dengan residual, terdapat 4 komponen 9,3 50 yang mempunyai nilai absolut lebih besar dari 0,05. Universitas Sumatera Utara

4.2 Saran