TUGAS AKHIR ANALISIS DESAIN VERTIKAL WIND TURBIN DENGAN AIR Analisis Desain Vertikal Wind Turbin Dengan Air Foil Naca 0016 Modified Menggunakan Software Ansys 14.5.

TUGAS AKHIR
ANALISIS DESAIN VERTIKAL WIND TURBIN DENGAN AIR
FOIL NACA 0016 MODIFIED MENGGUNAKAN SOFTWARE
ANSYS 14.5.

Disusun Sebagai Syarat Untuk Mencapai Gelar Sarjana Teknik
Jurusan Teknik Mesin Fakultas Teknik
Universitas Muhammadiyah Surakarta

Disusun oleh:
JEHAN ROSADI IRAWAN
NIM : D200090062

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK
UNIVERSITAS MUHAMMADIYAH SURAKARTA
2015

ii

iii


HALAMAN PENGESAHAN

Tugas akhir berjudul “ANALISIS DESAIN WIND TURBIN BENTUK AIR
FOIL NACA 0016 MODIFIED PADA VERTIKAL AXIS WIND TURBINE
DENGAN SOFTWARE ANSYS 14.5”, telah dipertahankhan dihadapan
dewan penguji dan disahkan sebagai syarat untuk memperoleh gelar
Sarjana Teknik Mesin Fakultas Teknik Universitas Muhammadiyah
Surakarta.
Dipersiapkan oleh:
Nama

: Jehan Rosadi Irawan

Nim

: D 200 090 062

Disetujuai pada :
Hari


:

Tanggal

:

Tim Penguji
Ketua

: Nur Aklis, ST., M.Eng.

(_________________)

Anggota 1

: Wijianto, ST, M.Eng, Sc.

(_________________)

Anggota 2


: Supriyono, Ph. D

(_________________)

Mengetahui,
Dekan

Ketua Jurusan

Dr. H. Sri Sunarjono MT. Ph.D

Tri Widodo BR. ST. MSc., Ph.D

iv

v

MOTTO


Yang paling jauh dari kita adalah masa lalu,
Yang paling dekat dari kita adalah kematian,
Bekali diri kita dengan ilmu yang bermanfaat,
Wajib berusaha dan berdo’a di setiap langkah kita.

Yakinlah, bahwa di setiap kerja keras kita hari ini,
akan membuat kita tersenyum manis di suatu hari nanti,
karna ALLAH SWT MAHA ADIL

bermimpi& berangan-anganlah setinggi yang kita mau,
karna mimpi & angan-angan kita adalah awal dari rencana hidup kita,
rencana hidup kita adalah salah satu usaha kita,
berusaha dan berdo’a adalah kewajiban setiap manusia,
maka
bermimpi& berangan-anganlah setinggi yang kita mau.

vi

HALAMAN PERSEMBAHAN
Dengan penuh harap ridho Allah SWT, dengan perasaan syukur

dan sabar yang mendalam serta penghargaan yang tinggi, setelah
melewati berbagai ujian dalam perjuangan yang tak kenal lelah, Saya
mempersembahkan Tugas Akhir ini kepada :


Bapak dan Ibu yang dengan segala kasih sayang, kesabaran,
keikhlasan dan pengorbanannya yang senantiasa membimbing dan
mendo’akanku.



Sahabatku (teman-teman semua angkatan dan KMTM teknik mesin
yang selalu kompak, dan saling menyemangati )



Almamater ( Universitas Muhammadiyah Surakarta )




Dosen Universitas Muhammadiyah Surakarta Teknik Mesin yang telah
membimbing saya didalam perkuliahan.



Bapak Dosen pembimbing akedemik M AlFatih Hendrawan, ST, MT.
Bapak Dosen pembimbing satu tugas akhir Nur Aklis, ST. .MEng.,.dan
Bapak Dosen pembimbing dua tugas akhir Wijianto, ST, M.Eng,
Sc.saya berterima kasih atas pengarahan dan bimbingannya yang
telah

banyak

saya

terima

selama

Muhammadiyah Surakarta.


vii

berada

di

Universitas

KATA PENGANTAR
Assalamu’alaikum. Wr. Wb
Segala puji syukur ke hadirat Allah SWT atas segala rahmat dan
karunia- Nya yang telah terlimpahkan kepada penulis, sehingga Tugas
Akhir ini dapat terselesaikan dengan baik. Adapun Tugas Akhir ini disusun
untuk memenuhi persyaratan Sidang Sarjana S-1 pada Jurusan Teknik
Mesin, Fakultas Teknik Universitas Muhammadiyah Surakarta.
Dalam penyusunan Tugas Akhir ini, penulis banyak mendapat
bantuan dari berbagai pihak, pada kesempatan ini, penulis dengan penuh
keikhlasan hati ingin menyampaikan terima kasih kepada :
1. Bapak Dr. H. Sri Sunarjono MT. Ph.D selaku Dekan Fakultas Teknik

Universitas Muhammadiyah Surakarta.
2. Bapak Tri Widodo BR. ST. MSc., Ph.D selaku Ketua Jurusan Teknik
Mesin Fakultas Teknik Universitas Muhammadiyah Surakarta.
3. Bapak Nur Aklis, S.T., M.Eng. selaku Dosen Pembimbing I yang telah
membimbing, mengarahkan, memberi petunjuk dalam penyusunan
Tugas Akhir ini
4. Bapak Wijianto, ST, M.Eng, Sc.selaku Dosen Pembimbing II yang
telah meluangkan waktunya untuk memberikan bimbingan dan
arahannya.
5. Bapak M. AlFatih Hendrawan, ST, MT. selaku Pembimbing Akademik.
6. Dosen jurusan Teknik Mesin beserta Staf Tata Usaha Fakultas Teknik
7. Bapak dan Ibu tercinta dan teristimewa yang senantiasa mencintai,
menyayangi, memberikan dukungan dan mendo’akan penulis dalam
menyelesaikan Tugas Akhir.
8. Teman angkatan 2009 dan adik kelas yang sudah banyak membantu
saya dan mendukung saya dalam perkuliahan selama di Universitas
Muhammadiyah Surakarta.

viii


Akhir kata, penulis mohon maaf sebelum dan sesudahnya, jika
sekiranya terdapat kesalahan dan kekurangan dalam penulisan Tugas
Akhir ini, yang disebabkan adanya keterbatasan-keterbatasan antara lain
waktu, dana, literatur yang ada, dan pengetahuan yang penulis miliki.
Harapan penulis semoga laporan ini bermanfaat untuk pembaca.
Tugas Akhir ini semoga dapat bermanfaat khususnya bagi penulis
dan pihak lain yang membutuhkan, Amin ya Robbaallamin.

Surakarta,

April 2016

Penulis

ix

ANALISIS DESAIN VERTIKAL WIND TURBIN DENGAN AIR FOIL NACA
0016 MODIFIED MENGGUNAKAN SOFTWARE ANSYS 14.5.
Jehan Rosadi Irawan, Nur Aklis, Wijianto
Teknik MesinUniversitas Muhammadiyah Surakarta

Jl. A. Yani Tromol Pos 1 Pabelan, Kartasura
Email : jehanrosadi@gmail.com
ABSTRAKSI
Tujuan dari penelitian ini adalah untuk mengetahui performa blade
vertikal wind turbin tipe Darrieus-H dengan airfoil naca 0016 modified
dengan variasi jumlah sudu dan sudut serang dengan menggunakan
software Ansys Moving Reference Frames (MRF), dan mengetahui
pengaruh distribusi tekanan, kecepatan, perbandingan koefisien lift (C L),
koefisien drag (CD) dan untuk mengetahui hasil dari koefisien power (Cp),
solidity jumlah sudu pada vertikal turbin angin.
Penelitian dilakukan dengan menggunakan dimensi geometri
dengan airfoil naca 0016 modified, verifikasi jumlah sudu yang disimulasi
meliputi sudu 2, 3 dan 4 untuk parameter variasi sudut serang -100, 00,
100, percobaan diawali dengan pembuatan model jumlah sudu dan
membuat daerah simulasi dengan panjang 4000 mm, lebar 8000 mm dan
lingkaran interface 1920 mm menggunakan SolidWorks, setelah itu
meshing menggunakan ukuran dengan minimum spacing 0,005 dan
maximum spacing 0,05 m dan proses hasil perhitungan yang dilakukan
software Ansys. Ada pun penelitian yang akan dilakukan dengan
menggunakan simulasi 2D steady–state solver dengan menggunakan

Moving Reference Frames (MRF) pada ansys fluent.
Hasil penelitian menunjukkan bahwa disetiap sudu dan sudut
serang turbin angin vertikal mengalami kecepatan dan tekanan yang
berbeda dan menghasilkan gaya yang berbeda, pada desain turbin angin
sumbu vertikal tipe Darrieus-H dengan airfoil naca 0016 modified dapat
diketahui bawah, dengan bentuk airfoil yang besar membuat kecepatan
yang besar pada sisi airfoil, dan menghasilkan tekanan yang besar pada
ujung depan airfoil, dapat dipengaruhi pada sudut serang yang akan
menimbulkan aliran turbulensi yang sangat besar. Hasil dari desain turbin
angin mampu menghasilkan nilai koefisien power pada sudu 2 dengan
sudut serang -100 sebesar 0,531, 00 sebesar 0,555 dan 100 sebesar
0,581, untuk sudu 3 dengan sudut serang -100 sebesar 0,313, 00 sebesar
0,367 dan 100 sebesar 0,278, pada sudu 4 dengan sudut serang -100
sebesar 0,329, 00 sebesar 0,406 dan 100 sebesar 0,461. Dan untuk hasil
pada solidity jumlah sudu untuk sudu 2 sebesar σ = 1,9625 dan untuk
sudu 3 sebesar σ = 2,8875 untuk sudu 4 sebesar σ = 3,85 dengan
kecepatan angin sebesar 3 m/s.
Kata Kunci : Jumlah sudu, sudut serang, Cl,Cd,Cp dan solidity

x

ANALYSIS OF VERTICAL WIND TURBINE DESIGN AIRFOIL NACA
0016 MODIFIED BY USING SOFTWARE ANSYS 14.5.
Jehan Rosadi Irawan, Nur Aklis, Wijianto
Teknik MesinUniversitas Muhammadiyah Surakarta
Jl. A. Yani Tromol Pos 1 Pabelan, Kartasura
Email : jehanrosadi@gmail.com
ABSTRACT
The purpose of this study was to determine the performance of
blade vertical wind turbine-type Darrieus-H with airfoil naca 0016 modified
by varying the amount of the blade and the angle of attack by using the
software Ansys Moving Reference Frames (MRF), and determine the
influence of pressure distribution, velocity, comparison of the coefficient of
lift (CL), the coefficient of drag (CD) and to know the results of the power
coefficient (Cp), solidity number of blades on a vertical wind turbine.
The study was conducted by using dimensional geometry with
modified airfoil naca 0016, verify the number of simulated blade includes
blade 2, 3 and 4 to parameter variations of angle of attack -100, 00, 100,
the experiment begins with making the model number of the blade and
make the simulation area with a length of 4000 mm, width 8000 mm and
1920 mm circle using SolidWorks interface, after the meshing using size
with a minimum spacing of 0.005 and a maximum spacing of 0.05 m and
the results of calculations performed Ansys software. There is also
research that will be conducted using 2D steady-state simulation solver
using Moving Reference Frames (MRF) on ANSYS fluent.
The results showed that each of the blade and the angle of attack
of wind turbine vertical experience speeds and pressures are different and
produce different style, the design of vertical axis wind turbine-type
Darrieus-H with airfoil naca 0016 modified can be seen below, the airfoil
shape is great to make great velocity on the side of the airfoil, and
generate tremendous pressure on the front end of the airfoil, can be
influenced at an angle of attack that will cause huge turbulence flow. The
results of the design of wind turbines capable of generating power
coefficient value at the blade 2 with the angle of attack equal to 0,531 -100,
00 at 0.555 and 100 amounted to 0.581, for the blade 3 with angle of attack
for 0,313 -100, 00 for 0,367 and 100 amounted to 0.278, the blade -100 4
with the angle of attack of 0.329, 0.406 and 0 0 of 100 of 0.461. And to the
results of the solidity of the blade to the blade number 2 for σ = 1.9625 and
for blade 3 for σ = 2.8875 for the blade 4 of σ = 3.85 with a wind speed of
3 m / s.
Keywords: The amount of the angle, angle of attack, Cl, Cd, Cp and
solidity

xi

DAFTAR ISI

Halaman Judul .............................................................................................i
Pernyataan Keaslian Skripsi ........................................................................ ii
Halaman Persetujuan .................................................................................. iii
Halaman Pengesahan ................................................................................. iv
Lembar Soal Tugas Akhir ............................................................................ v
Halaman Motto............................................................................................. vi
Halaman Persembahan ............................................................................... vii
Kata Pengantar ............................................................................................ viii
Abstraksi ...................................................................................................... x
Abstraksi Inggris .......................................................................................... xi
Daftar Isi ...................................................................................................... xii
Daftar Gambar ............................................................................................. xiv
Daftar Tabel.............................................................................................. xvii
Daftar Grafik................................................................................................. xviii
Daftar Diagram............................................................................................. xix
Daftar Lampiran .......................................................................................... xxi
BAB I PENDAHULUAN
1.1 Latar Belakang .............................................................................. 1
1.2 Rumusan Masalah......................................................................... 4
1.3 Batasan Masalah ........................................................................... 5
1.4 Tujuan Penelitian ........................................................................... 5
1.5 Manfaat Penelitian ......................................................................... 6
1.6 Sistematika Penulisan ................................................................... 7
BAB II KAJIAN PUSTAKA DAN DASAR TEORI
2.1 KajianPustaka................................................................................ 9
2.2 Dasar Teori .................................................................................... 12
2.2.1 Definisi Energi Angin ............................................................ 18
2.2.2 Asal Energi Angin ................................................................... 10
2.2.3 Definisi Turbin Angin ............................................................... 17
2.2.4 Jenis Turbin Angin ............................................................... 21
2.2.5 Teori Momentum Betz .......................................................... 26
2.3 Airfoil ............................................................................................. 29
2.3.1 Pengertian ............................................................................ 29

xii

2.4 Bilangan Reynold .......................................................................... 31
2.5 Sudut Serang (angel of atteck) dan Sudut Pitch ............................ 32
2.6 Gaya Aerodinamika ....................................................................... 33
2.6.1 Gaya Hambat (drag force).................................................... 33
2.6.2 Gaya Angkat (lift force)......................................................... 34
2.7 Fenomena Stall ............................................................................. 36
2.8 Computation Fluid Dynamic (CFD) ................................................ 37
BAB III METODOLOGI PENELITIAN
3.1 Diagram Alir Penelitian .................................................................. 42
3.2 Langkah-langkah Penggunaan Metode Komputasi Fluida ............ 43
3.3 Data Profil Airfoil Naca 0016 ......................................................... 44
3.3.1 Keterangan Hasil Gambar Mash Airfoil Naca 0016 dengan
Serang -10o........................................................................... 46
3.3.2 Keterangan Hasil Gambar Mash Airfoil Naca 0016 dengan
Sudut Serang 0o ................................................................... 48
3.3.3 Keterangan Hasil Gambar Mash Airfoil Naca 0016 dengan
Sudut Serang 10o ................................................................. 50
3.4 Pre-Processing .............................................................................. 52
3.6 Proses Starting Fluent In Workbench ............................................ 62
BAB IV ANALISA DATA DAN PEMBAHASAN
4.1. Verifikasi Software dan Validasi Data ........................................... 69
4.2.Hasil Simulasi Streamline, Vektor Kecepatan dan
Tekanan dengan Airfoil Naca 0016 Modified Pada
Turbin Angin Vertikal. .................................................................... 72
4.2.1. Hasil simulasi Streamline Turbin Angin Vertikal Dua
Sudu ..................................................................................... 73
4.2.2. Hasil Simulasi Streamline Turbin Angin Vertikal Tiga
Sudu ..................................................................................... 76
4.2.3. Hasil Simulasi Streamline Turbin Angin Vertikal Empat
Sudu ..................................................................................... 79
4.2.4. Hasil Simulasi Vektor Kecepatan Turbin Angin Vertikal
Dua Sudu .............................................................................. 83
4.2.5. Hasil Simulasi Vektor Kecepatan Turbin Angin Vertikal
Tiga Sudu ............................................................................. 85
4.2.6. Hasil Simulasi Vektor Kecepatan Turbin Angin Vertikal
Empat Sudu .......................................................................... 87
4.2.7. Hasil Simulasi Tekanan Turbin Angin Vertikal Dua
Sudu ..................................................................................... 89

xiii

4.2.8. Hasil Simulasi Tekanan Turbin Angin Vertikal Tiga
Sudu ..................................................................................... 92
4.2.9. Hasil Simulasi Tekanan Turbin Angin Vertikal Empat
Sudu .................................................................................... 96
4.3 Gaya – gaya yang terjadi pada Turbin Angin
Vertikal .......................................................................................... 100
4.3.1. Grafik hubungan antara koefisien Lift dan koefisien Drag
dengan sudut serang -100, 00, dan 100 pada Sudu 2 .......... 101
4.3.2. Grafik hubungan antara koefisien Lift dan koefisien Drag
dengan sudut serang -100, 00, dan 100 pada Sudu 3 .......... 102
4.3.3. Grafik hubungan antara koefisien Lift dan koefisien Drag
dengan sudut serang -100, 00, dan 100 pada Sudu 4 .......... 103
4.4 Pengaruh Parameter Turbin Angin pada Power
Coefficient dan pada Pengaruh dari Solidity Jumlah
Sudu Turbin Angin ........................................................................ 104
4.4.1 Perbandingan Koefisien Power dengan Sudut Serang
pada Turbin Angin .............................................................. 104
4.4.2 Perbandingan Koefisien Power dengan Solidity jumlah
sudu pada Turbin Angin Vertikal ......................................... 106
BAB V PENUTUP
5.1. Kesimpulan .............................................................................. 107
5.2. Saran ........................................................................................ 109
DAFTAR PUSTAKA
LAMPIRAN

xiv

DAFTAR GAMBAR

Gambar 2.1. Foto satelit gerakan angin ................................................................ 13
Gambar 2.2. Peta energi angin di Indonesia ..... ................................................... 14
Gambar 2.3. Tabel Kondisi Angin .......................................................................... 16
Gambar 2.4. Sketsa Sederhaana Kincir Angin ...................................................... 18
Gambar 2.5. Torsi rotor untuk jenis turbin angin vertikal........................................ 19
Gambar 2.6. berbagai jenis turbin angin. ............................................................... 20
Gambar 2.7. Komponen turbin angin..................................................................... 21
Gambar 2.8. Turbin angin sumbu horizontal.......................................................... 23
Gambar 2.9. Variasi jumlah blade pada HAWT ..................................................... 24
Gambar 2.10. Turbin angin sumbu vertikal ............................................................ 25
Gambar 2.11. Bentuk airfoil ................................................................................... 30
Gambar 2.12. Nomenklatur airfoil.......................................................................... 30
Gambar 2.13. Tipe airfoil yang digunakan pada pengujian performansi
turbin angin Darrieus H ................................................................... 30
Gambar 2.14. Sudu turbin pada kondisi sudut serang rendah, medium
dan tinggi ........................................................................................ 32
Gambar 2.15. Arah sudut pitch.............................................................................. 33
Gambar 2.16. Gaya – gaya pada sudu turbin angin Darrieus H ............................ 35
Gambar 2.17. Fenomena stall pada kondisi angin dan sudut pitch
tertentu menyebabkan separasi aliran udara .................................. 37
Gambar 3.1. Diagram Alir Penelitian ..................................................................... 42
Gambar 3.2. Diagram Alir Proses Simulasi ........................................................... 43
Gambar 3.3. Geometri Airfoil Naca 0016 ............................................................... 44
Gambar 3.4. Dimensi Daerah Simulasi ................................................................. 45
Gambar 3.5. Sudu 2 .............................................................................................. 45
Gambar 3.6. Sudu 3 .............................................................................................. 45
Gambar 3.7. Sudu 4 .............................................................................................. 45

xv

Gambar 3.8. Hasil Mash Turbin Angin Vertikal Sudu 2 dengan
Sudut -100 ......................................................................................... 46
Gambar 3.9. Hasil Mash Turbin Angin Vertikal Sudu 3 dengan
Sudut -100 ........................................................................................ 47
Gambar 3.10. Hasil Mash Turbin Angin Vertikal Sudu 4 dengan
Sudut -100 ...................................................................................... 47
Gambar 3.11. Hasil Mash Turbin Angin Vertikal Sudu 2 dengan
Sudut 00 ......................................................................................... 48
Gambar 3.12. Hasil Mash Turbin Angin Vertikal Sudu 3 dengan
Sudut 00 ......................................................................................... 49
Gambar 3.13. Hasil Mash Turbin Angin Vertikal Sudu 4 dengan
Sudut 00 .......................................................................................... 49
Gambar 3.14. Hasil Mash Turbin Angin Vertikal Sudu 2 dengan
Sudut 100 ........................................................................................ 50
Gambar 3.15. Hasil Mash Turbin Angin Vertikal Sudu 3 dengan
Sudut 100 ........................................................................................ 51
Gambar 3.16. Hasil Mash Turbin Angin Vertikal Sudu 4 dengan
Sudut 100 ....................................................................................... 51
Gambar 3.17. Profil airfoil pada software solidwords 2012. ................................... 52
Gambar 3.18.Pengaturan Sudut Airfoil dengan Solidwords 2012 .......................... 53
Gambar 3.19. Batasan Penampang Airfoil yang disebut Rotatin. .......................... 53
Gambar 3.20. Batasan Penampang Rotating yang disebut Outer
Domain ........................................................................................... 54
Gambar 3.21. Fluid Rotating Care ......................................................................... 54
Gambar 3.22. fluid Outer Domain.......................................................................... 55
Gambar 3.23. Tampilan awal Ansys Workbench ................................................... 55
Gambar 3.24. Tampilan Ansys Design modeler .................................................... 56
Gambar 3.25. boundary luar yang telah di import .................................................. 56
Gambar 3.26. Model yang telah diimport ke Ansys Design Modeler. ..................... 57
Gambar 3.27. Tampilan Workbench Mesh ............................................................ 57
Gambar 3.28. Model yang akan di meshing .......................................................... 58
Gambar 3.29. Pengaturan sizing untuk melakukan meshing. Untuk opsi
ukuran mesh yang lain, tinggal mengganti parameter yang
ada pada gambar diatas ................................................................. 58

xvi

Gambar 3.30. Tampilan model yang telah di mesh ............................................... 59
Gambar 3.31. Boundary condition ......................................................................... 59
Gambar 3.32. Interface untuk masing masing region ............................................ 60
Gambar 3.33. cara menyembunyikan boundary luar Pada outline di
sebelah kiri, klik kanan boundary luar lalu
suppress body................................................................................. 60
Gambar 3.34. Interface yang telah terbentuk ........................................................ 61
Gambar 3.35. Tampilan Fluent Ansys 14.5 ........................................................... 62
Gambar 3.36. Interface untuk masing masing region Tampilan Data
Mesh dengan Format (*.msh).......................................................... 62
Gambar 3.37. Tampilan Hasil Check ..................................................................... 63
Gambar 3.38. Tampilan Models ............................................................................ 63
Gambar 3.39. Tampilan Mesh Interface ................................................................ 64
Gambar 3.40. Tampilan Cell Zone Condetions ...................................................... 64
Gambar 3.41. Tampilan Boundary Conditions ....................................................... 65
Gambar 3.42. Tampilan Solution Methods ............................................................ 65
Gambar 3.43. Tampilan Solution initialization ........................................................ 66
Gambar 3.44. Tampilan Run Calculation ............................................................... 67
Gambar 3.45. Tampilan Hasil Run Calculation ...................................................... 67
Gambar 3.46. Tampilan graphics dan animation ................................................... 68
Gambar 3.47. Tampilan Pola Aliran Udara Pressure ............................................. 68
Gambar 3.48. Tampilan Pola Aliran Udara Vilocity ................................................ 68
Gambar 4.1. Titik kecepatan pada benda kerja berupa silinder ............................. 69
Gambar 4.2. Velocity pada software...................................................................... 70
Gambar 4.3. velocity pada koordinat titik X -0,94 dan Y 0,5 software
ansys................................................................................................. 71
Gambar 4.4. Hasil dari V2 pada software ansys .................................................... 71
Gambar 4.5. Kontur Streamline Turbin angin vertikal 2 sudu dengan
sudut serang i) -100, ii) 00, iii) 100 ................................................... 73
Gambar 4.6. Kontur Streamline Turbin angin vertikal 3 sudu dengan
sudut serang i) -100, ii) 00, iii) 100 ................................................... 76
Gambar 4.7. Kontur Streamline Turbin angin vertikal 3 sudu dengan
sudut serang i) -100, ii) 00, iii) 100 ................................................... 79
Gambar 4.8. Kontur Vektor Kecepatan Turbin Angin Vertikal 4 sudu

xvii

dengan sudut serang i) -100, ii) 00, iii) 100 ......................................... 83
Gambar 4.9. Kontur Vektor Kecepatan Turbin Angin Vertikal 4 sudu
dengan sudut serang i) -100, ii) 00, iii) 100 ......................................... 85
Gambar 4.10. Kontur Vektor Kecepatan Turbin Angin Vertikal 4 sudu
dengan sudut serang i) -100, ii) 00, iii) 100....................................... 87
Gambar 4.11. Kontur Tekanan Turbin Angin Vertikal 2 sudu dengan
sudut serang i) -100, ii) 00, iii) 100 ................................................... 89
Gambar 4.12. Kontur Tekanan Turbin Angin Vertikal 3 sudu dengan
sudut serang i) -100, ii) 00, iii) 100 ................................................... 92
Gambar 4.13. Kontur Tekanan Turbin Angin Vertikal 4 sudu dengan
sudut serang i) -100, ii) 00, iii) 100 ................................................... 96

xviii

DAFTAR TABEL

Tabel 4.1. Hasil pembuktian V2 dan perhitungan komputasi dan
analitis P2. ........................................................................................... 72

xix

DAFTAR GRAFIK
Grafik 4.1. Hubungan koefisien lift dan koefisien drag sudu dua
dengan sudut serang ........................................................................... 101
Grafik 4.2. Hubungan koefisien lift dan koefisien drag sudu tiga
dengan sudut serang ........................................................................... 102
Grafik 4.3. Hubungan koefisien lift dan koefisien drag sudu empat
dengan sudut serang ........................................................................... 103
Grafik 4.4. Hubungan koefisien power dengan sudut serang pada
turbin angin vertikal ............................................................................. 104

xx

DAFTAR DIAGRAM
Diagram 4.1. Hubungan koefisien Power dengan jumlah sudu
turbin angin vertikal ......................................................................... 106

xxi

DAFTAR LAMPIRAN
1. Hasil nilai CP pada setiap sudu turbin angin vertikal.
2. Data airfoil naca 0016.
3. Hasil gambar airfoil naca 0016.
4. Gambar modifikasi airfoil naca 0016.
5. Gambar fluid rotating care.
6. Gamabar fluid outer domain.

xxii