Seaweed and Rice Hulls as Fiber Sources to Decrease Carcass Fat and Meat Cholesterol of Pigs

I. PENDAHULUAN

Latar Belakang
Akhir-akhir ini ada kecenderungan masyarakat menghindari makanan yang mengandung kolesterol tinggi. Hal tersebut sangat erat kaitannya dengan peningkatan
kejadian

penyakit jantung

koroner dan aterosklerosis,

seperti

yajlg

sering

dipublikasikan dalam berbagai media. Sumber utama yang dicurigai menjadi penyebab
adalah daging dan produk hewan lainnya.
Linder (1985) melaporkan bahwa di negara-negara maju yang konsumsi daging
per kapitanya cukup tinggi,


kejadian aterosklerosis juga relatif tinggi.

Terdapat

hubungan yang sangat nyata antara konsumsi kolesterol dengan kematian karena

-

penyakit jantung. Orang-orang Amerika pria usia 55 59 tahun yang mengkonsumsi
kolesterol di atas 500 mgthari, mengalami kematian karena penyakit jantung koroner
lebih dari 700 orang per 100.000 populasi.

Srilangka yang

masyarakatnya

mengkonsumsi kolesterol di bawah 100 mg/hari, hanya mengalami kematian akibat
penyakit jantung koroner sekitar 100 orang/100.000 populasi pada usia yang sama.
Konsumsi yang direkomendasikan oleh United States Deparement of Agria~ltlrre
(USDA) tahun 1985 adalah sekitar 250 mglhari untuk anak-anak dan I300 mglhari

untuk orang dewasa.
Melihat kenyataan seperti itu, kebanyakan masyarakat sekarang terutama
dari golongan ekonomi menengah ke atas, mulai mengurangi konsumsi daging dan
protein hewani lainnya. Fenomena demikian merupakan kondisi yang dilematis bagi
pemerintah dalam menentukan kebijakan pangan, mengingat daging sebagai sumber
protein hewani dengan asam-asam amino esensialnya misih sangat diperlukan bagi
masyarakat Indonesia.
Menurut laporan Direktorat Jenderal Peternakan Indonesia ( 19 9 9 , sampai
tahun 1994

konsumsi daging masyarakat baru mencapai

7.01 kgtkapitdtahun.

Sementara sasaran konsumsi daging yang ingin dicapai adalah 7.55 kgkapitaltahun,

untuk memenuhi konsumsi protein hewani 4.5 gramkapitalhari. Bahkan pola harapan
pangan tahun 2019 yang direkomendasikan bagi penduduk Indonesia ialah konsumsi
protein hewani sebesar 15 gram/kapitabi yang setara dengan 25.2 kg daging, 10.4 kg
telur dan 19.3 kg susu/kapita/tahun. Sebenarnya untuk kalangan masyarakat tertentu

target tersebut sudah tercapai, namun bagi sebagim besar masyarakat di pedesaan
keadaannya masih jauh dari harapan.
Proyeksi produksi daging pada pelita VI addah 1674 ribu ton. Untuk rnemenuhi
target tersebut, khusus dari ternak babi populasinya diproyeksikan sebanyak 10.2juta
ekor. Selama ini sumbangan tenrak b&i &lam menyediakan daging sebanyak 12.6 %
dari total produksi daging n a s k d .
Hasil pendtian pedahduan menunjukkan kandungan kolesterol daging babi
yang ada di pasaran sekarang ini rela@ masih tin& yaitu 274 mgf100 g. Salah satu
faktor penyebabnya adalah kandungm kolesterol ransum yang diberikan (ransum
kometsial) relatif

tinggi (sekitar 156 mg/lOOg). Standar kolesterol daging babi

menurut USDA (1985) adalah 83.5 mg/100 g. Sedangkan babi lokal yang diberi
ransum tradisional berserat tinggi (dedak padi dan batang pisang) kandungan kolesterol
dagingnya hanya 56.08 mg/l00 g (Bagiada, 1986).
Mengantisipasi pertnasalahan di atas perlu dilakukan penelitian-penelitian yang
mampu

menghasilkan daging ataupun produk ternak lainnya dengan kandungan


lemak dan kolesterol yang lebih rendah.
Rumput laut
banyak dimanfaatkan.

merupakan salah satu kekayaan alam Indonesia yang belum
Namun masyarakat pesisir pantai

sudah sejak dulu

menggunakan rumput laut sebagai makanan sehari-hari. Komponen utama rumput laut
yang dapat digunakan sebagai bahan pangan adalah karbohidrat. Akan tetapi sebagian
besar dari karbohidrat tersebut terdiri atas senyawa gz4mi. yang sulit diserap dalam
saluran pencernaan.

Kondisi demikian menarik untuk dikaji mengingat laporan

penelitian yang

menyatakan bahwa


senyawa-senyawa tersebut bersifat

hypokolesterolemik yakni menurunkan kadar kolesterol darah. Demikian juga tentang

peranan serat dalam menurunkan lemak, kolesterol dan mencegah kanker usus pada
manusia banyak diulas oleh Linder (1985).
Sekam padi yang produksinya berlimpah di Indonesia menarik untuk dikaji,
mengingat kandungan seratnya sangat tinggi yakni sekitar 43%.

Walaupun batasan

kandungan serat ransum babi belum ada angka yang pasti, dan mengingat struktur
saluran pencernaan babi

sangat mirip dengan rnanusii, maka pendekatan yang telah

dilakukan pada manusia sangat mungkin diterapkan pada babi. Untuk itu sekam padi
sebagai sumber serat yang d i a h dan tidak terlalu askg bagi tern& babi perlu diuji
kemampuannya dalam menumnkan kadar kolesterol daging.


Tujuan Penelitian
Berdasarkan pemikiran di atas, ada dorongan untuk mengetahui potensi yang
ada pada rumput laut dan sekam padi sebagai bahan makanan untuk menurunkan
persentase lemak karkas dan kolesterol daging babi. Selain itu, dari penelitian ini ingin
diketahui bagaimana kualitas daging yang dihasilkan, melalui uji organoleptik di
laboratorium.

Manfaat Penelitian
Hasil penelitian ini diharapkan dapat memberi tambahan informasi ilmiah
mengenai mekanisme kerja serat dalarn menurunkan kadar lemak karkas dan kolesterol
daging babi. Manfaat aplikatifnya adalah penemuan bahan dan formula ransum yang
mampu menurunkan kandungan lemak dan kolesterol daging babi, sehingga mutu
daging babi dapat ditingkatkan.
Hipotesis
Hipotesis yang diajukan dalam penelitian ini adalah: penambahan rumput laut
dan sekarn padi sebagai sumber serat dalam ransum akan menurunkan persentase
lemak karkas dan kolesterol daging babi.

II. TINJAUAN PUSTAKA


Komponen Lemak
Pengertian antara lemak dan fipida masih sering dipertentangkan. Demikian
juga antara lemak dan minyak. Lipida adalah kumpulan zat makanan yang larut dalam
eter, kloroform dan benzetl. Umumrtya dalam praktek dise6ut lemak. Sedimgkan
lemak dan minyak secara kimiawi sehmrnya adalah sama.Hanya, lemak pada suhu
kamar berwujud padat, sedq&an minyak berwujud cair (Anggorodi, 1985).
Lipida digolongkan metljadi tiga gdongan, sebagai berikut:
Lipida saderhanr. Merupakan ester asam-asam lemak dan alkohol tertentu
terutama gliserol.

L e d dan minyak adalah ester gliserol dengan asam-asam

lemak. Ester asam lemak dengan alkohol selain gliserol disebut tiin.
Lipida senyawa. Ester gliserol yang mengandung dua residu asam lemak
ditambah kumpulan kimiawi lain seperti kholin. Terpenting di antaranya adalah:
fosfolipid, lesithin, sefalin dan spingomielin.
Lipida hasil hidrolisis. Zat-zat yang diperoleh melalui hidrolisis dari kedua
golongan di atas, di antaranya 1) asam-asam lemak; 2) alkohol, seperti : gliserol,
etanol; dan 3) sterol, seperti kolesterol, ergosterol dan stetosterol.

Formula empiris

lemak adalah Cs7HlO5o6. Dibandingkan dengan glukosa

yang mempunyai formula empiris C6Hl2O6,

lemak mengandung beberapa kali

lebih banyak atom karbon dan hidrogen. Lemak mengandung kelebihan karbon dan
hidrogen yang sanggup dibakar menjadi C02 dan H20. Dengan demikian per satuan
berat yang sama, lemak akan menghasifkan energi yang jauh

lebih banyak

dibandingkan glukosa dan karbohidrat lainnya.
Beberapa hasil penelitian menunjukkan bahwa lemak murni dan minyak menghasilkan energi 9,4 kkal/g, sedangkan karbohidrat, hanya

Oleh karena itu lernak sering diperhitungkan dalam penyusunan ransum babi, karena
dianggap sumber energi yang cukup ekonomis.
Di antara komponen lemak yang paling penting adalah asam lemak. Asam

lemak diolongkan menjadi asam lemak jenuh dan asam lemak tidak jenuh. Asam
lemak jenuh antara lain: laurat, miristat, palmitat dan stearat. Asam- asam lemak tidak
jenuh meliputi palmitoleat, oleat, linoleat, linolenat dan arakhidonat. Di antara
asam-asam lemak tersebut ada yang esensial, antara lain: linoleat, linolenat, dan
arakhidonat .

Metabolisme Lemak dan Pembentukan Lemak Tubuh
Pemecahan lemak makanan menjadi asam lemak dan monogliserida, kholin dan
lain sebagainya, hampir semuanya terjadi dalam hodemrm danjejz~mrm. Di sini peran
garam empedu dan lipase pankreas sangat tinggi. Kedua sekresi pencernaan tersebut
bekeja dalam pH yang lebih tinggi akibat adanya

sekresi bikarbonat. Dalam

duodenum, garam-garam empedu mengemulsikan lemak, dan dengan gerakan-gerakan
peristaltik terdispersi menjadi butir-butir kecil dengan penambahan luas sekitar 10.000
kali.

Kemudian diikuti oleh masuknya lipase. Lipida yang sudah tercema dan


sebagian larut dalam air, membentuk misel-rnisel yang stabil. Misel tersebut terdiri atas
asam lemak rantai panjang, monogliserida, dan asam-asam empedu yang terdihsi ke
permukaan sel-sel mukosa, kemudian

melepaskan materi untuk diserap. Produk-

produk pencernaan yang lebih bersifat polar, seperti asam l e d rantai pendek, fosfat,
kholin dan sebagainya, terdihsi melalui medium cair, terserap ke dalam sel mukosa
USUS.
Setelah masuk ke dalam mukosa usus, trigliserida, fosfolipida, dan ester
kolesterol

disintesis kembali, dibungkus

dengan

sedikit protein

kemudian


disekresikan dalam bentuk kilomikron ke dalam ruang ekstra seluler, memasuki
lakteal sistem lirnfe. Secara perlahan kilomikron yang ada dalam saluran limfe
memasuki aliran darah melalui ahrctz~sthoracicus.

Hampir semua lemak yang disimpan pada jaringan lemak atau daging dalam
bentuk trigliserida. Nantinya trigliserida tersebut akan dirombak

kmbali sebagai

sumber energi bila glukosa dari makanan tidak cukup, atau dalam keadaan puasa.
Pada babi yang diberi makan berkecukupan, sangat sedikit lemak tubuh

dipakai

untuk sumber energi. Di dalam tubuh jaringan lemak ini berada dalam rongga badan,
termasuk sekitar jantung dan ginjal, di bawah kulit, inter muskuler dan intra muskuler.
Lemak di bawah kulit pada temak babi sekitar 50% atau paling banyak dibandingkan
dengan ternak lain.
Dalam proses metabolisme lemak di dalam sel peranan lipoprotein sebagai
alat angkut lipida sangat besar. Lipoprotein adalah molekul yang terdiri atas protein
dan lipida yang bergabung dengan ikatan non-kovalen yaitu interaksi hidrofobk antara
gugus nonpolar dari lipida dengan molekul protein.

Lipoprotein plasma darah

digolongkan menjadi lima golongan yaitu: kilomikron, lipoprotein berkerapatan sangat
rendah (very low density lipoprotein disingkat VLDL), lipoprotein berkerapatan
rendah (low density lipoprotein disingkat LDL), lipoprotein berkerapatan tinggi (high

density lipoprotein disingkat HDL) dan lipoprotein berkerapatan sangat tinggi (very
high density lipprotein disingkat VHDL).
Kilomikron merupakan kompleks molekul yang sangat besar dengan berat
molekul mencapai 1 x lo9. Fungsi utama kilornikron adalah pengangkutan lemak diet,
terutama dalarn bentuk trigliserida ke dalam tubuh. Lipida lain yang diangkut dalarn
kilomikron adalah kolesterol, yang sebelumnya diubah dulu menjadi ester kolesterol.
Kilomikron ddam plasma dikatabolisme menjadi partikel-pertikel yang lebih kecil yang
mempunyai kepadatan lebih tinggi. Produk katabolieme yang disebut sisa kilomokron
terbentuk bila

sebagian besar trigliserida yang mula-mula ada dalam kilomikron

terhidrolisis oleh lipase 1ipoprotein.Produk ini mengandung fosfolipid, kolesterol, ester
kolesterol, apo-E dan sedikit trigliserida yang tersisa. Daur transport lemak dalam
tuibuh disajikan pada Gambar 1.

Lipoprotein berkerapatan sangat rendah (VLDL) diproduksi di dalarn hati.
Dalam proses perjalanatulya

menuju sel tepi (perijer), VLDL mengalami proses

penguraian lipida secara bertahap di sepanjang pembuluh darah. Gliserol dan asam
lemak dilepaskan secara bertahap dikatalisis oleh

enzim lipopoleein lipvlse yang

terdapat pada permukaan jaringan endotelium otot dan jaringan lemak. Akibat a h y a
penguraian tersebut maka lama kelamaan VLDL berubah menjadi LDL. Berdawkan mekanisme tersebut jelaslah bahwa LDL itu berasal dari VLDL (Deckelbaum, Tall
dan Small, 1997).
Di dalam sel tepi LDL beihtedcsi dengan molekul reseptornya yang berada
pada dinding sel, kemudian kompleks LDLreseptor yang terbentuk itu masuk ke dalam
sel. Di dalam sel komponen protein kompleks tersebut diuraikan menjadi asam
amino, dan komponen lipida terutama ester kolesterol diiidrolisis menjadi kdesterol
sebagai cadangan kolesterd di dalam sel tepi yang juga diperlukan sebagai komponen
membran sel.

Kolesterd yang berlebii akan dikeluarkan dari membran set baik

dalam bentuk kolesterol bebas maupun dalam bentuk senyawa esternya.
Sementara itu HDL yang terdapat dalam plasma darah mengikat kolesterol atau
ester kolesterol dan mengangkutnya bersarna aliran darah dari set tepi ke sel hati. Di
dalam hati, kolesterol yang telah terikat tersebut mengalami

perombakan meng-

hasilkan cadangan k o l e s t d hati, yang diperlukan untuk sintesis VLDL dan senyawa
lainnya (Schaefer, 1991). Pengikatan LDL oleh reseptor dalam membran seI tepi
secara berlawanan dihambat oleh HDL, sehingga kadar HDL yang tinggi akan
mencegah penimbunan LDL pada dinding pembuluh darah.

Biosintesis Kolesterol
Kolesterol yang mempunyai rumus molekul C27&50w merupakan akohol
monohidrat dari derivat sterol yang tidak jenuh. Kolesterol dalam tubuh berasal dari
dua sumber yaitu: dari makanan dan hasil biosintesis.

Manusia rata-rata membutuh-

kan 1,l g kolesterolhari untuk m e d i h a r a dinding sel dan hngsi fisiologis lain. Dari
jumlah tersebut, 25 - 40% (200 - 300 mg) secara normal berasal dari m a k a m dan
selebihnya disintesis dalam tubuh.

Tempat sintesis kolesterol terutama pada hati,

korteks adrenal, usus, kuEt, testis dm aorta.
Kolesterol dalam makanan

akan mempengamhi

Penelitian pada tikus menunjukkan, jika

biosintesis kolesterol.

hanya terdapat 0,05% kolesterol dalam

makanan maka 70 -80% kolesterol hati, usus halus dan kelenjar adrenal disintesis
dalam tubuh. Tetapi jika kandungan kolesterol dalm makanan naik menjadi 2%,

-

maka biosintesis tumn sampai 10 30%. Usaha untuk menurunkan kolesterol plasma
pada manusia dengan mengurangi jumlah kolesterol dalam makanan adalah efektif
Namun sebaliknya biosintesis tidak dapat seluruhnya ditekan dengan

menaikkan

konsumsi kolesterol rnelalui makanan.
Kolesterol dalam makanan diabsorpsi dalam usus, dan bersama-sama dengan
lipida lainnya, termasuk kolesterol yang disintesis dalam usus (kolesterol endogenus),
digabungkan dalam kilomikron dan

VLDL (Vahouny et a].,1997). Dalam limfa

-

kolesterol yang diserap, 80 90% diesterkan dengan asam lemak rantai panjang,
namun

pengesteran dapat juga terjadi dalam mukosa usus. Bila sisa kilomikron

masuk ke hati, banyak ester kolesterolnya dihidrolisis dan kolesterolnya

diambil oleh

hati. Kemudian VLDL yang dibentuk akan mengangkut kolesterol ke dalam plasma.
Belum ada

data

mengenai

kadar normal kolesterol plasma pada babi.

Pada manusia, jumlah total kolesterol plasma sekitar 200 mgtdl.
meningkat dengan meningkatnya umur, dan sangat
Sebagian besar kolesterol

bervariasi

Jurnlah tersebut
antar

individu.

tubuh ditemukan dalam bentuk ester. Kolesterol

ditransport sebagai lipoprotein dalam plasma.

Sebagaian besar pula kolesterol

berada dalam LDL, yang dibentuk dari VLDL. Selanjutnya LDL dipecah dalam
jaringan ekstra hepatik dan kolesterol diambil. Sebaliknya, kolesterol sebagai ester dari
jaringan ekstra hepatik diangkut ke hati oleh HDL. Akhirnya, semua kolesterol

yang akan dikeluarkan dari tubuh masuk dulu ke hati, dan disekresikan ke dalam
empedu, baik sebagai kolesterol maupun asam kolat dalam garam-garam empedu.
Pada mamalia, jaringan -jaringan yang diketahui marnpu mensintesis kolesterol
antara lain: hati, kortek adrenal, kulit, usus, testis, lambung, otot, jaringan adiposa dan
otak. Sedangkan yang bertanggung jawab atas sintesis kolesterol adalah fiaksi
mikrosom dan sitosol sel. Asetil-KoA merupakan sumber seluruh atom karbon pada
kolesterol.
Biosintesis kolesterol berlangsung dalarn empat tahap. 1) Konversi asam
asetat menjadi mevalonat. 2) Konversi mevalonat menjadi squalen. 3) Konversi
squalen menjadi lanosterol. 4) Metabolisme lanosterol menjadi kolesterol.

Konversi asam asetat menjadi mevalonat. Mevalonat adalah senyawa enam

karbon yang merupakan kondensasi dari tiga molekul asetil-KoA.

Pembentukan

asam mevalonat terlebih dahulu melalui senyawa antara yaitu

3-hidroksi-3-

metilglrrtaril-KoA (HMG-KoA). Selanjutnya HMG-KoA akan direduksi oleh NADPH
unt uk menghasilkan asam mevalonat.

Konversi asam mevalonat menjadi squalen. Pada tahap ini mevalonat

difosforilasi oleh ATP untuk membentuk beberapa zat-antara aktif yang terfosforilasi.
Dengan cara
Tahap

dekarboksilasi, terbentuk unit isoprenoid aktif, isopentenilpirofosfat.

berikutnya adalah reaksi yang melibatkan kondensasi

molekul-molekul

isopentenil pirofosfat untuk membentuk farnesil pirofosfat. Dua molekul parnesil
pirofosfat berkondensasi pada ujung pirofosfat dalam reaksi yang melibatkan reduksi
oleh NADPH dengan mengeluarkan radikal pirofosfat. Senyawa yang dihasilkan
adalah squalen.

Konversi squalen menjadi lanosterol. Perubahan
sterol

squalen menjadi lano-

melalui zat-antara yang disebut 2,3-oksidosqualen. Proses

penutupan atau pelingkaran spontan untuk menjadi lanosterol

ini merupakan

dan tejadi tanpa

peranan enzim. Sebelum penutupan terjadi, gugus metil pada C14 dipindah ke C13
dan yang ada pada C8 ke C 14, dan dihidroksilasi pada C3. Pada tahap ini t e h t u k
empat lingkaran yang merupakan inti steroid. Reaksi terakhir melibatkan molekul
oksigen, dan reaksi ini dikatalisis oleh sistem hidroksilase mikrosom.

Metabolisme lanosterol menjadi kolesterol. Tahapan reaksi ini melibatkan
perubahan inti steroid dan rantai samping. Gugus metil pada C14 dioksidasi menjadi
C 0 2 untuk membentuk 14-desmetil lanosterol. Begitu juga dua gugus metil lainnya
pada C4 dibuang untuk membentuk zimosterol oleh pemindahan ikatan rangkap
antara C8 dan C9 ke posisi antara C8 dan C7. Kolesterol dihasilkan setelah ikatan
rangkap pada rantai samping direduksi.
Pengaturan metabolisme kolesterol

secara keseluruhan ditunjukkan pada

Gambar 2. Bila kadar kolesterol dalam tubuh melebihi keadaan normal maka berbagai
proses akan terjadi. Kegiatan enzim HMG-KoA rediikiase dalam mikrosom dan
HMG-KoA siiiiase dalam sitosol dihambat secara terkoordinasi atau secara sendirisendiri (reaksi 1 dan 2 dihambat). Laju katabolisme kolesterol (reaksi 10) juga akan
naik karena adanya rangsangan terhadap kegiatan enzim 7a-hidroksilase. Enzim asil
KoA-kolesierol asillratfera.se dirangsang sehingga kolesterol yang berlebih itu diubah
oleh asam lemak bebas menjadi esternya, kemudian disimpan dalam sitoplasma (reaksi 8
berjalan ke kanan).

Biosintesis reseptor lipoprotein

ditahan, sehingga produksi

molekul reseptor berkurang dengan demikian pengambilan LDL oleh sel berkurang
(reaksi 6 dan 7 dihambat). Makin banyak kolesterol yang diangkut ke dalam membran
menyebabkan naiknya keteraliran LDL (reaksi 11, 13 dan 15 dipercepat).

1 HMG-CoA

lipoprotein VLOL
(luarset)

reduktase

-

(skualin + lanosterol)

Sintesis
reseptor

4-Mailsterol oksidase

7a-hidroksilase

membran (diikat
Kolesterol dalam
mernbran cel

kelulusan rnembm

&lam hati :
Sintesis VLDL

Gambar 2. Pengaturan Metabolisme Kolesterol (Wirahadikusurnah, 1,985).

Proses pengeluaran kolesterol melalui pengikatannya dengan VLDL (dari sel
hati) atau dengan HDL (dari sel tepi) akan naik ( reaksi 1 1, 12 dan 14 dirangsang). Bila
kadar kolesterol rendah, maka kolesterolgenesis akan dirangsang, dan berbagai proses
kegiatan akan terjadi. Kolesterol yang rendah akan merangsang kerja enzim HMGKoA reduktase dan HMG-KoA sintase (reaksi 1, 2 dan 3 diransang). Hasil katabolisme
kolesterol, 7 P-hidroksikolesterol dan asam empedu akan menghambat kegiatan enzim
kolesterol 7 a-hidroksilase melalui mekanisme penghambatan balik, sehingga
menurunkan laju reaksi perubahan kolesterol menjadi 7 $-hidroksikolesterol (reaksi
10 terhambat).

Reaksi pembentukan ester kolesterol dengan asiltransferase akan

berjalan ke kiri sehingga lebih banyak kolesterol yang terbentuk (reaksi 8 bejalan ke
kiri).

Biosintesis reseptor lipoprotein

tidak mengalami penekanan lagi sehingga

pemasukan lipoprotein dari luar sel akan naik karena jumlah reseptor dalam membran
sel juga naik (reaksi 6 dan 7 dirangsang ).
Komponen Serat

Menumt Linder (1985) serat adalah bagian dari makanan yang tidak dapat
dicerna secara enzimatis (enzim yang dikeluarkan oleh manusia) sehingga tidak digolongkan sebagai sumber zat makanan. Yang termasuk dalam kategori serat adalah
selulosa, hemiselulosa, pektin dan lignin. Lignin termasuk

serat tetapi bukan

karbohidrat. Penggunaan kata serat sebenarnya pemberian nama yang kurang tepat,
karena materi tersebut bukanlah berserat, tidak panjang bempa benang, dan ternyata
ada yang larut. Demikian halnya penggunaan istilah pencernaan memerlukan definisi
lebih lanjut, karena kenyataannya bakteri dan flora
merombak

serat tersebut,

saluran pencernaan dapat

terutama-dalam kolon, walaupun dalam jumlah yang

terbatas.
Serat merupakan salah satu komponen penyusun dinding sel tumbuhan
Ditinjau dari segi nutrisi, serat

sulit dicerna oleh enzim pencernaan ternak (Van

Soest et al., 1991). Berdasarkan andisis proksimat, serat dapat didefinisikan sebagai

bahan organik yang tidak larut dalam NaOH 1.25 % dan H2S04 1.25 %. Banyak
penelitian yang telah mengungkapkan bahwa serat hanya dapat dimanfaatkan oleh
tubuh melalui proses fennentasi gastrointestinal. Proses tersebut

pada ternak

monogastrik sangat terbatas, sehingga pakan yang mengandung serat tinggi umumnya
sukar dimanfaatkan.
Penentuan serat kasar (crudefiber) dengan metode AOAC (1975) sebelumnya
sering digunakan, namun kelemahan metode tersebut adalah banyak komponen serat
yang terlewatkan. Untuk mengatasi kelemahan tersebut,

Van Soest dan Wine

(1967) merintis suatu sistem analisis yang lebih relevan untuk menilai kualitas bahan

makanan yang berasal dari hijam. Dalam sistem tersebut hijauan dibagi atas
beberapa fraksi berdasarkan kelarutmnya dalam deterjen. Secara garis besar hijauan
dibagi menjadi isi dan dinding sel. Isi sel terbagi menjadi fraksi protein, karbohidrat,
mineral dan lemak. Dinding sel terdiri atas tiga komponen utama yaitu selulosa,

-

hemiselulosa dan lignin. Seluiosa merupakan komponen yang paling banyak (50 80%)
dalam dinding sel tanaman. Hemiselulosa menempati lo%, sedangkan lignin antara 10 50%. Ketiga komponen serat tersebut dapat ditentukan dengan analisis neutral
detergent fiber (NDF). Sedangkan untuk menentukan selulosa dan lignin digunakan
analisis acid detergetitfiber (ADF). Selisih antara nilai NDF atau serat deterjen netral
(SDN) dan ADF atau serat deterjen asam (SDA) adalah kandungan hemiselulosa dari
bahan tersebut (Gambar 3). Selain bahan organik, dinding sel juga mengandung silika
(SiOz) .
Dalam ilmu pangan serat sering dibedakan atas kelarutannya dalam air, sehingga
dikenal serat yang tidak larut dan yang larut dalam air. Serat yang tidak larut dalam
air adalah komponen struktural tanaman, sedangkan yang larut adalah komponen
nonstruktural. Serat yang tidak larut dalam air banyak terdapat pada kulit gandum, bijibijian, sayur mayur dan kacang-kacangan. Serat yang larut dalam air biasanya berubah
menjadi lendir dalam air. Serat ini berupa getah dalam biji-bijian, pektin dalam buah
terutama buah jeruk dan ape1 (Harianto, 1996).

Bahan Makanan Nabati

'
I

Deterjen Netral

Serat Deterjen Netral

'i"
Det 'en asarn

[~ignoselulosa(tidak larutl)

(

1

Deterjen asam

i
Selulosa (larut)

(1Lignin (tidak larut)

Pengabuan

)

Gambar 3 . Skema Komponen Bahan Makanan Nabati (Van Soest dan Wine 1967)

Ada banyak faktor yang mempengaruhi kandungan serat tanaman antara lain:
spesies tanaman, tingkat kematangan (kedewasaan), bagian dari tanaman dan periakuan
yang diperoleh dari tanaman tersebut. Pada dinding sel tanaman tingkat tinggi, selulosa
mentpakan komponen utama, pada alga silan dan mannan menjadi kerangka polisakarida utama, sedangkan pada fungi (jamur) banyak mengandung kitin.
Komponen serat makanan

terdiri atas dinding sel struktural dan substansi

nonstruktural. Bagian yang struktural

mengandung

poli-sakarida dan komponen

polimer nonkarbohidrat. Polisakarida tersebut meliputi selulosa, hemiselulosa dan
substansi pektin, sedangkan yang nonkarbohidrat adalah lignin.

Komponen

nonstruktural meliputi: pektin, gum, musilase dan polisakarida yang termodifikasi.
Komponen-komponen di atas sangat dipengaruhi oleh tingkat kedewasaan tanaman,
variasi individu dan metode analisis yang digunakan. Penentuan serat dengan metode
NDF mendapatkan hail yang akurasinya 2 sampai 4 kali lebih baik dibandingkan
dengan metode analisis serat kasar. Itulah sebabnya metode analisis serat kasar model
lama telah ditinggalkan.
Dari sekian banyak komponen serat, lignin yang paling sulit mengalami
fermentasi, baik secara in vitro maupun in vivo (Fahey, 1979). Lignin dalam serat-serat
alami (tlatzcralfihers) sering berikatan dengan selulosa membentuk senyawa komplek
lignoselulosa.

Namun lignin sendiri bukanlah karbohidrat. Menurut McDonald,

Edwards dan Greenhalgh (1 988) lignin sebenarnya senyawa polimer yang merupakan
turunan dari tiga penilpropanoid yaitu : komaril alkohol, koniferil alkohol dan sinapil
alkohol. Pada molekul (ignin penilpropanoid membentuk ikatan silang yang sangat
komplek sehingga sangat sulit dicema dalam saluran pencernaan.

Hemiselulosa dan

selulosa dapat didegradasi oleh enzim-enzim yang dikeluarkan oleh mikroba terutama
yang ada dalam rumen ternak berlambung ganda.

Sekarn Padi sebagai Surnber Serat

.

Sekam padi merupakan salah satu limbah pertanian yang sangat melimpah di
Indonesia dan pemanfaatannya masih sangat terbatas. Pada proses penggilingan padi
akan dihasilkan sekitar 17% sekam padi (Devendra, 1981). Selama ini sekam padi
banyak digunakan sebagai litter peternakan ayam pedaging, atau untuk bahan bakar
pada usaha batu bata. Walaupun dianggap tidak penting dari sudut pakan ternak,
sekam padi sebenarnya masih mempunyai potensi yang belum diungkap.
Berdasarkan hasil analisis proksimat diketahui sekam padi mengandung: bahan
kering 86%, serat kasar 43.3%, bahan ekstrak bebas nitrogen 31.7%, abu 19.7%,
protein kasar 3.8%, ekstrak eter 1.5%, fosfor 0.15% dan kalsium 0.10% (Hartadi,
Reksohadiprodjo dan Tillman, 1990).

Lubis (1992) melaporkan sekarn padi

mengandung : bahan kering 87.5%, serat kasar 35%, bahan ekstrak bebas nitrogen
29.2%, abu

17.5%, protein 3.1% dan lemak 2.7%. Kecernaan secara keseluruhan

sangat rendah bahkan kadar protein yang dapat dicerna hanya 0.3%.

Sementara

menurut Jackson (1977), sekam padi (paddy hull) mengandung bahan kering 86%
serta dinding sel tanaman yang terdiri atas: selulosa 39%, hemiselulosa 14%, dan
lignin 11%.
Sebagian negara-negara berkembang sudah mencoba sekarn padi untuk makanan
ternak terutama pada sapi dan kerbau.

Penggunaan

sekam padi pada ternak

nonruminansia seperti ayam dan babi biasanya dilakukan dengan cara menghaluskan
sekam padi terlebih dahulu, dan fbngsinya lebih diarahkan ke pengenceran bahan
pakan yang berenergi tinggi. Di India sekam padi digunakan sebagai bahan pencampur
dedak padi yang diberikan pada anak sapi persilangan Hariana dan Jersey umur 13-15
bulan (Devendra, 1981). Dari hasil pengarnatan didapatkan sapi mengalami penurunan
pertumbuhan sebesar 88.4, 65.8 dan 42.5% pada penggantian dedak padi masingmasing 33, 66 dan 100% dengan sekam padi, jika dibandingkan dengan kontrol.

Beberapa usaha telah dilakukan untuk meningkatkan nilai cerna sekam padi, misalnya
dengan meningkatkan kandungan

protein

melalui amoniasi, delignifikasi dan

desilifikasi. Amoniasi sekam padi sebanyak 6% dalarn ransum penggemukan telah
mampu meningkatkan persentase karkas sapi. Di Malaysia sekam padi telah dicoba
untuk makanan domba pada ransum dasar molases yang iso-nitrogen. Sekam padi
yang ditambahkan berturut-turut: 5, 10, 15, 20, 25 dan 30%. Dilaporkan bahwa
koefisien cerna dan retensi nitrogen terbaik terjadi pada penarnbahan sekam padi 5%
(Tabel 1). Konsumsi digestible energy (DE) harian dari enam taraf perlakuan yang
diberikan berturut-turut: 1.428, 0.993, 1.105, 0.942,0.83 1 and 0.696 Mkal.
Tabel 1. Kecernaan Komponen Utama Ransum Domba yang Diberi
Beberapa Taraf Sekam Padi (Devendra , 1981)
Taraf sekam padi (96)
Komponen utama
ransum
Bahan kering
Bahan organik
Protein kasar
Serat kasar
Ekstrak eter
Abu
Bahan ekstrak bebas N
Energi
N teretensi

5

10

15

20

25

30

Kecernaan abu menurun secara nyata disebabkan oleh kandungan silika dalam
sekam padi yang

sangat sulit dicerna.

Rendahnya kecernaan komponen di atas

memberi gambaran bahwa sebagian besar sekam padi akan dieskresikan dalam feses.
Dari data di atas dapat disimpulkan, penggunaan sekam padi yang terbaik adalah pada
taraf 5%. Temuan ini didukung oleh hasil penelitian Tillman et al. (1986) yang
membandingkan pemberian sekam padi 5 dan 20% pada anak sapi. Kecernaan energi
dan persentase karkas yang terbaik diperoleh pada taraf 5%. Penggunaan sekam padi
untuk ternak ruminansia lebih memungkinkan dengan adanya mikroba dalam rumen.
Kecernaannya jauh lebih baik jika sekam padi tersebut digiling. Penggunaan sekam
padi akan lebih bermanfaat pada ransum padat energi.

Toleransi Ternak Babi terhadap Serat
Ternak babi tidak mempunyai tempat khusus dalam saluran

pencernmnnya

untuk aktivitas mikroorganisme atau proses ferrnentasi yang intensif seperti pada
ternak rurninansia. Kapasitas larnbungnya sangat kecil dibandingkan ternak ruminansia
ataupun kuda. Oleh karena itu, kemampuan untuk mencerna serat sangat rendah,
demikian juga kecernaan zat-zat makanan lainnya akan menurun bila kandungan serat
kasar dalam ransum meningkat.
Pada tabel kebutuhan zat-zat makanan yang direkomendasikan oleh NRC
(1 988) tidak tercantum kandungan serat yang disyaratkan untuk babi. Demikian juga
hasil penelitian yang dilaporkan para peneliti sangat beragam dalam ha1 kandungan serat
optimum dalam ransum. Penelitian di Stasiun Wisconsin, Amerika yang disitir oleh
Cunha (1977) dianjurkan kandungan serat 6 sampai 8% untuk babi yang sedang tumbuh
dan 10 sampai 12% untuk babi induk. Pertumbuhan babi lebih bagus jika sumber serat
tersebut digiling sebelum dicampurkan dalam ransum.
Pembatasan pemberian makanan pada ternak babi lazim dilakukan pada akhir
periode penggemukan untuk mendapatkan kualitas karkas yang lebih baik. Pembatasan

tersebut bertujuan untuk mengurangi deposit lemak, dengan demikian porsi lemak pada
karkas menurun. Pemberian serat dengan taraf yang lebih tinggi pada akhir periode
penggemukan merupakan salah satu cara untuk pembatasan makanan, yang berarti juga
menghasilkan karkas dengan daging yang lebih baik dan sedikit lemak. Masih menurut
laporan Cunha (1977) jika jelai (barley) dalam ransum babi diganti sebanyak 25%
dengan dedak gandum ternyata menghasilkan karkas berkualitas prima tanpa menekan
pertumbuhan maupun konsumsi ransum. Kandungan serat pada dedak jelai lebih dari
20%. Penurunan kandungan lemak tubuh babi induk akibat pemberian serat yang lebih
tinggi dilaporkan juga memperbaiki reproduksi.
Secara umum pemberian serat yang tinggi akan menurunkan kecentaan ransum.
Bergner et a!. (1985) melaporkan, kandungan serat 12.1% dari bahan kering ransum
menurunkan kecernaan semua asam-asam aminonya. Demikian juga yang dilaporkan
oleh Hartog et a1.(1985) pada babi yang beratnya 40 kg diberi ransum dengan kadar
serat 9.2%, kecernaan bahan kering dan bahan organik ransum lebih rendah
dibandingkan babi yang mendapat serat 5.2%. Oleh karena itulah Campbell (1987)
menganjurkan agar kandungan serat dalam ransum jangan lebih dari 5% untuk babi
yang bobot badannya 20 - 50 kg .
Jika energi metabolis yang dikonsumsi mencukupi kebutuhan tubuh,
penggunaan serat yang sumbernya adalah dedak padi giling, dedak gandum, dan
kulit

biji

kapas tidak

menurunkan laju pertumbuhan babi

(Cdvert, 1991).

Memperkecil partikel serat tersebut akan meinbantu meningkatkan kecernaannya.
Penggunaan serat

tidak lebih dari 5% masih dapat dianjurkan dan tidak ber-

pengaruh buruk terhadap kinerja babi.

Taraf serat

dibandingkan sumbernya sendiri. Serat
pas.~agemeningkat

Kandungan serat 22

lebih

besar pengaruhnya

yang tinggi akan menyebabkan rate of

-

30% mempercepat waktu transit

makanan dalam saluran pencernaan babi, akibatnya kecernaan zat-zat makanan
menurun.

Hal yang belum banyak diketahui adalah bagaimana serat

itu sebenarnya

mampu dicerna (walaupun tidak semua) dalam sekum dan usus besar babi dengan
bantuan fermentasi mikroorganisme. Usus besar volumenya antara 35
seluruh volume saluran pencemaan. Pada usus besar

terdapat

-

45% dari

mikroba

yang

melakukan aktivitas fermentasi. Hasil fermentasi tersebut adalah asam-asam lemak
yang mudah menguap. Asam--

lemak tersebut memberikan kontribusi antara

-

5 28% kebutuhan ME ternak babi (Farre1 dan Johnson, 1972).
Kemampuan babi mencerna serat sangat ditentukan oleh sumber serat, taraf
serat dalam ransum, taraf zat nutrisi lain, umur dan berat ternak, karakter komponen
zat nutrisi di luar serat dalam ransum.

Selain itu komposisi serat sendiri juga

berpengaruh pada kecernaan. Bahan ransum yang proporsi lignin dalam seratnya
tinggi lebih sulit dicerna (Zhao et af.1995).
Walaupun babi tidak mampu mencema serat seperti rurninansia, namun
penggunaan serat dalam bentuk hijauan segar banyak memberi manfaat. Hijauan yang
baik dan segar mengandung protein, vitamin dan meneral yang cukup. Hijauan
mengandung faktor-faktor reproduksi (belum teridentifikasi) yang penting

untuk

memperbaiki fertilitas induk dan daya hidup anak babi yang lahir (Parakkasi, 1983).
Di samping itu penggunaan serat dapat menekan harga ransum. Jurnlah hijauan yang
dapat diberikan pada babi ditunjukkan pada Tabel 2.

Tabel 2. Jumlah Hijauan yang Dapat Diberikan pada Berbagai Golongan
Ternak Babi (Parakkasi, 1983).
Golongan ternak
Sedang tumbuh dan digemukkan
Sedang menyusui
Sedang bunting

-Jumlah pemberian (% dari konsentrat)

Kalau serat itu sumbernya adalah hijauan segar sebenarnya dapat digunakan
untuk semua golongan ternak babi, baik yang sedang tumbuh atau digemukkan,
bunting, maupun yang menyusui.

Tetapi yang paling banyak dapat menggunakan

hijauan adalah babi yang sedang bunting. Pemberian hijauan segar yang berlebihan akan
berdampak

kurang baik karena sifatnya yang kamba akan rnembatasi

konsentrat.

Kadar

airnya

yang

konsumsi

tinggi a h mengurangi bahan kering yang

terkonsumsi, ternak babi sudah merasa kenyang, namun sebenarnya zat-zat makanan
yang diperlukan belum cukup.

Pengaruh Serat pada Kecernaan Zat Makanan
Men@tung kecernaan zat-zat makanan dari ransum yiing mengandung serat
sebenarnya sangatlah sulit. Hal ini disebabkan oleh beragamnya sumber dan sistem
analisa serat itu sendiri. Kecernaan karbohidrat secara umum menurun dengan
meningkatnya kandungan serat dalarn ransum, namun akan meningkat sejalan dengan
meningkatnya

umur babi (Low, 1985). Pengaruh serat

pada kecernaan zat-zat

makanan diperlihatkan pada Tabel 3.
Zebrowska dan Low (1987) telah meneliti pengaruh serat dalam ransum babi
pada sekresi pankreas. Penelitiannya menggunakan empat taraf serat masing-masing
2.05, 3.90, 4.08 dan 6.37%. Serat yang digunakan bersumber dari dedak gandum
dan selulosa. Dilaporkan, volume sekresi cairan pankreas meningkat secara nyata
selama 24 jam pengamatan dengan meningkatnya taraf serat dalam ransum. Babi
yang diberi ransum dengan serat 2.05%, volume sekresi cairan pankreasnya 2556 mV24
jam, sedangkan yang diberi ransum dengan kandungan serat 6.37% adalah 4560 m1124jam. Dijelaskan bahwa serat yang lebih banyak akan merangsang keluarnya getah
lambung terutama sekretin. Sekretin ini setelah masuk ke dalam usus halus akan
menstimulir sekresi elektrolit dan air.

Tabel 3. Pengaruh Serat pada Kecernaan Zat-zat Makanan (Low 1985)
-

Serat kasar (gkg ransum)
Zat makanan

Berat babi
50

100

170

225

0.85

0.80

0.72

20

0.62

0.53

0.55

90

0.64

0.61

0.65

225

0.65

0.61

0.63

20

0.42

0.30

0.25

90

0.49

0.44

0.32

225

0.39

0.47

0.45

20

0.81

0.70

0.56

90

0.83

0.75

0.61

Nitrogen

Lemak

Serat

Energi bruto

Bergner at a1.(1985) meneliti penambahan serat

pada ransum babi jantan

yang bobot badannya antara 55 - 56 kg dengan taraf berturut-turut 3.0, 5.3, 10.0 dan
12.1%. Dilaporkan, tejadi

penurunan kecernaan protein dan asam-asam amino

dengan meningkatnya kandungan serat. Kecernaan lisin 9 1.1% pada serat 3%, turun
menjadi 7 1.4% pada kandungan serat 12.1%. Meningkatnya Candungan serat dalam
ransum akan merangsang sekresi asam-asam empedu dan ini akan berkaitan dengan
kecernaan lemak. Kandungan asam empedu dalam feses dapat dijadikan indikator
mengenai laju sekresi asam tersebut. Pada tikus yang diberi getah guar (gilar gum),
kandungan asam empedu dalam fesesnya paling tinggi jika dibandingkan dengan tikus

yang diberi selulosa, dedak gandum dan serat gula bit (Overton et al., 1994). Gerak
laju digesta (isi saluran pencernaan) babi yang diberi ransum berserat tinggi

Iebih

cepat dibanclingkan dengan serat rendah (Hartog et a]., 1985). Laju gerak digesta
tersebut meningkat karena serat dalam saluran pencernaan menyerap air sehingga
konsistensi feses menjadi lembek. Karena geraknya cepat, maka kesempatan untuk
dicerna dalam saluran pencernaan Iebih singkat, dan akibatnya kecemaan zat nutrisi
yang terkandung juga lebih rendah. Koefisien kecernaan zat-zat makanan babi yang
diberi serat ditunjukkan pada Tabel 4.

Tabel 4. Koefisien Kecernaan Zat-zat Makanan Babi yang
Ransum Berserat (Hartog et al. 1 985)

Ileum
Zat - zat makanan

Diberi

Feses
Kadar serat (% )

Bahan kering

67.4"

58.6b

83.7"

74.7b

Bahan organik

70.7'

62.ob

85.9"

76.5b

Protein kasar

72.9"

68.3b

85.9"

78.5b

Lemak kasar

61.6"

58.8b

60.4"

49.6b

Serat kasar

10.5"

5.26b

41.6"

28.2b

Bahan ekstbebas N

75.8"

69.8b

91.3"

85.3b

menumnkan konsentrasi digestible energy (DE) dan

Penambahan serat

metabolism energy (ME) dalarn ransum. Jika kandungan serat

melebihi

dalam ransum babi

10 atau 15%, kemungkinan akan menurunkan konsumsi akibat ransum

menjadi lebih h i @ , atau citarasa ransum juga menurun. Kecernaan lemak menumn
antara 1.3 sampai 1.5% setiap penambahan serat 1% dalam ransum. Kenaikan serat
1% ,menyebabkan penurunan kecernm energi 3.5%.
Peningkatan

kandungan serat

dalam ransum

secara linier menurunkan

kemampuan usus halus mencerna bahan kering, nitrogen (N), serat diterjen netra (SDN)
dan abu (Schulsze, 1994). Rendahnya kecernaan N, diperkuat dengan tingginya total
pengeluaran N dan N endogen. Tingginya N endogenus akibat tingginya N yang
diekskresikan ke usus dan rendahnya penyerapan kembali. Ditemukan hanya 20% dari
SDN yang dikonsumsi tercerna pada usus halus.
Sistem kanula telah digunakan oleh Graham et a/. (1985) untuk meneliti
kecernaan zat makanan pada babi yang diberi tiga jenis serat. Tiga jenis serat yang
digunakan adalah: dedak gandum, polong kacang hijau dan arnpas gula bit. Ketiga
'

jenis serat tersebut masing-masing digunakan 33,3%

dari ransum basal. Dedak

gandum dan arnpas gula bit sangat kecil pengaruhnya pada kecernaan protein
kasar dan lemak kasar. Polong kacang hijau justru meningkatkan kecernaan protein
kasar.

Hal ini

menguatkan dugagn mereka bahwa

polong kacang hijau masih

mengandung protein yang dapat dimanfaatkan oleh babi. Arnpas gula bit menurunkan
kecernaan lemak pada usus halus. Pada dedak gandum dan ampas gula bit, kecernaan
pati terlarut sekitar 95%. Rendahnya kecernaan pati terlarut pada babi yang mendapat
polong kacang hijau karena memang kesediaan zat tersebut rendah.
Kemampuan babi mencerna serat juga sangat didukung oleh adanya mikroba
dalam sekum. Daya cerna serat tersebut berkisar antara 10 - 90%. Variasi tersebut
mungkin disebabkan oleh variasi sumber serat dan perubahan populasi mikroorganisme.
Serat yang masuk ke dalam sekum mengalami proses fermentasi dan menghasilkan asam
lemak atsiri (ALA). Pada babi yang normal biasanya didapatkan mikroorganisme

antara 10' - l og/gram isi sekum. Jika babi diberikan makanan berserat tinggi, maka jenis
mikroorganisme yang dominan hampir sama dengan yang terdapat dalam rumen antara
lain Bacteroides succirmgenes dan Ruminococczis flavefaciefis (Varel et al. 1987).
Komposisi rata-rata asam lemak atsiri dalam sekum babi terdiri atas asam asetat 62%,
propionat 28% dan butirat 10%.

Pengaruh Serat pada Kinerja Babi
Kalau dilihat dalam tabel komposisi zat-zat makanan, hampir sebagian besar
bahan ransum ternak babi mengandung selulosa, hanya saja persentasenya bervariasi.
Demikian juga toleransi tern* babi terhadap kandungan serat ransum sangat terbatas
maka ha1 tersebut akan berpenganth pada performance (kinerja) babi tersebut. Jin et
al. (1994) telah membandingkan kdompok babi yang diberi ransum tanpa serat (OYo)
dengan kelompok babi yang dl'beri ransum berserat tinggi (10%). Rataan berat awal
babi yang digunakan adalah 14.3 kg. Penelitian dilakukan selama 14 hari dan
hasilnya seperti tercantum pada Tabel 5.
Selain data yang disajikan pada Tabel 5 juga diamati panjang dan lebar villivilli usus halus. Villi-villi usus halus mempunyai cabang-cabang lagi yang disebut
mikrovilli atau brush-border memegang peranan penting dalarn proses penyerapan
zat makanan (Sihombing, 1997). Dilaporkan oleh Jin et al. (1994) bahwa perlakuan
serat tidak berpengaruh nyata pada panjang villi-villi usus halus, namun kandungan
serat yang tinggi mengakibatkan pelebaran villi-villi usus halus. Kemudian disimpulkan bahwa ransum dengan serat tinggi pada babi yang sedang tumbuh mengakibatkan
perubahan morfologi dan laju pergantian sel-sel mukosa. Pada tikus peningkatan
kandungan serat dalam ransum juga menurunkan kecernaan protein, bahan kering dan
energi ransum yang selanjutnya akan menurunkan pertambahan berat badan harian dari
- 3 72 gram rnenjadi 3 14 gram (Zhao el nl., 1995). Tikus yang diberi empat macam

serat (selulosa, dedak gandum, getah guar dan serat gula bit) selama 28 hari,
pertambahan berat badannya paling tinggi (180 gram) terjadi pada yang diberi selulosa dan rataan konsumsi ransurn per hari berturut-turut: 39.70, 37.40, 37.90 dan
40 gram (Overton el al.,1994).

Tabel 5. Pengaruh Serat Makanan pada Kinerja Babi yang Sedang
Tumbuh (Jin el al., 1994).

Peubah
-

-

Tanpa serat
-

-

-

-

Serat tinggi

SEM

---

Berat awal, kg

14.30

14.20

1.22

Berat akhir, kg

24.70

22.70

2.00

Rataan Pbb./hari, kg

0.74

0.61

0.04

Konsumsi ransudhari, kg

1.35

1.13

0.12

Pbbkonsumsi ransurnlhari

0.55

0.54

0.03

Bobot tubuh tanpa jeroan, kg

18.10

16.40

1.50

Total berat jeroan, kg

6.70

6.30

0.60

Pbb = pertambahan bobot badan

Rumput Laut Sabagai Salah Satu Sumber Zat Hypokolesterolemik.
Rumput laut merupakan istilah yang diterjemahkan dari kata seaweed padahal
rumput laut sebenarnya adalah alga laut berzthik dan sama sekali tidak tepat kalau
digolongkan grcrmirlae (rumput-rumputan).

Rumput laut tergolong tanaman tingkat

rendah dengan struktur botani yang tidak jeias antara akar, batang dan daun Sepintas
memang kelihatan

ada akar ataupun batang, namun semua itu sebenarnya talus.

Sekarang rumput laut dikaji dalam satu kelompok ilmu tersendiri yakni Algology atau
Phycology yaitu ilmu yang mempelajari hal-hal-yang berhubungan dengan alga.
Kegunaan rumput laut pada mulanya tidak banyak diketahui. Orang Yunani dan
Romawi kunolah yang pertama mengetahui bahwa rumput laut itu dapat dimakan.
Mereka memanfaatkan sebagai bekal pada saat mengarungi lautan. Orang Cina juga
menganggap rumput laut sebagai makanan istimewa sehingga cukup layak

dipersembah-kan kepada kaisar. Di Jepang kegemaran mengkonsumsi rumput laut
sudah diketahui sejak dulu.

Mereka menyebutnya

hijiki, nori, wakane, ararne,

tezrgusa, h b u dan lain sebagainya. Konon makanan tersebut menyebabkan mereka
awet muda (Winarno, 1990).
Indonesia dengan perairan 70 persen dari luas wilayah merupakan potensi yang
luar biasa untuk usaha budidaya rumput laut. Penduduk di sekitar pantai telah lama
memanfaatkan rumput laut sebagai makanan tambahan, baik dalam bentuk mentah
(lalapan) maupun yang sudah dimasak. Kebiasaan ini diduga menyebabkan rendahnya
kadar kolesterol mereka. Rumput laut telah menjadi komoditas ekspor yang potensial.
Belakangan ini banyak digunakan dalam industri farmasi, kosmetik dan makanan.
Beberapa jenis rumput laut telah digunakan sejak dulu sebagai makanan ternak domba,
kambing dan lembu di Irlandia dan Scotlandia.
Hasil analisis proksimat yang dilakukan oleh Pond dan Maner yang dikutip
oleh Sutji (1985), rumput laut mengandung ME 1614 kkal/kg, protein kasar 13.86%,
serat kasar 5.61%, ekstrak ester 0.28%, bahan ekstrak bebas N 38.52%, kalsium
1.96% dan fosfor 0.36%. Hasil analisis di Laboratorium Kimia Makanan Ternak
Fakultas Peternakan, Universitas Udayana, Denpasar, rumput laut Gracilaria spp
rnengandung agar 42% (dikerjakan menurut prosedur Winarno, 1990). Dihubungkan
dengan sifat hipokolesterolernik ada beberapa komponen yang dikandung oleh rumput
laut di antaranya:
Algin

. Algin

sering juga disebut asam alginat yaitu

suatu senyawa yang

berbentuk getah selaput (memhrat~mrrciloge). Secara kimia merupakan polimer murni
dari asam uronat yang tersusun dalam bentuk rantai linier yang panjang. Algin dalarn
bentuk garam disebut alginat. Garam alginat ini ada yang larut dalam air dan ada yang
tidak larut dalam air. Alginat yang larut dalam air misalnya: sodium alginat dan
potasium alginat, sedangkan yang tidak larut dalam air yaitu kalsium alginat. Struktur
kirnia asam alginat ditunjukkan pada Gambar 4.

Gambar 4. StruLtur Asam Alginat (Aslan, 1995)

Agar-agar.

Agar-agar merupakan ester dari gahktm liniet yang banyak

digunakan sebagai stabilisator dab pembuatan makanan Agar-agar termasuk dalarn
komponen karbohidrat, struktur k h b y a dituyukkan pa& Gainbar 5.

Rumput Iaut

dari spesies Gracilaria yang tumbuh di Indonesia mengandung agar berkisar antara 16
hingga 45%.

As-



Garnbar 5. Struktur Agar-agar (Aslan, 1995)

Karagenan.

Karagenan ada dua bentuk yaitu kappa karagenan dan iota

karagenan (Gambar 6). Kappa karagenan larut dalarn air panas, sedangkan iota
karagenan larut dalam air dingin. Di alam karagenan umumnya membentuk senyawa
garam bersama sodium, kalsium dan potasium. Karagenan dihasidkan oleh rumput laut
dari kelompok Rhodophyceae. D a b dunia industri hngsinya sarna dengan agar-agar
ataupun algin.

~ a r n b h6. Struktur Karagenan (Aslan, 1995)

Aliginat, agar dan karagenan sebenarnya tidak lain adalah polisakarida mudah
larut yang telah banyak digunakan sebagai bahan perekat pakan ikan. Menurut Heslet
(1996) mekanisme kerja serat yang larut tersebut dalarn penurunan kadar kolesterol

diterangkan sebagai berikut. Serat larut tersebut dalam usus halus mengikat asam
empedu kemudian membawa keluar bersama feses, dengan demikian hati harus
memproduksi asam empedu yang lebih banyak untuk mengganti asam empedu yang
hilang. Asam empedu diproduksi dari kolesterol, dengan adanya serat maka akan
semakin banyak kolesterol yang hilang bersama asam empedu. Hilangnya kolesterol
melalui asam empedu merupakan faktor yang sangat menentukan pada akumulasi
kolesterol dalam hati (Lakshmanan dan Veech, 1977).
Penelitian pada tikus yang dilakukan oleh Alan et al. (1976) mendapatkan
bahwa penambahan agar sebanyak 7% dalam ransumnya menurunkan kadar kolesterol
dalam serum. Pada tikus kontrol (tanpa tambahan serat kasar) kadar kolesterol serum

78 mg/100 ml, sedangkan yang diberi 7% agar adalah 72 mg/100ml. Demikian juga

yang dilaporkan Kelley dan Tsai (1978) pada tikus yang ditambahkan agar 5% dalam
ransumnya, kandungan kdesterol dalam serumnya

menurun.

Serum tikus yang

berperan sebagai kontrd mengandung kolesterol 1 10 mg/dl, sedangkan yang diberi
perlakuan agar 5% kdesterd serumnya 108 mg/dl. Dijelaskan bahwa karbohidrat

-

komplek kperti pektin dsn agar menghambat penyerapan kolesterol karena
kemampuannya mengikat kdesterol ddam saluran pencemaan. Melihat struktur
kimia agar di atas maka kemungkinan terjadi ikatan kovalen antara gugus glikosidis
yang aktif dari agar tersebut dengan gugus hidroksil aktif kolesterol membentuk ikatan
P(1-3).

Reaksinya adalah reaksi estedikasi seperti reaksi antara kolesterol dengan

asam lemak (Gambar 7). Mekanisme lain yang mungkin adalah mekanisme yang
menyerupai mekanisme pada pektin seperti yang dilaporkan oleh Nagyvary dalam
Inglett dan Falkehag (1 952). Dijelaskan bahwa polisakarida terlarut seperti alginat dan
pektin memiliki kernampuan untuk mengikat berbagai anion termasuk asam lemak atau
asam empedu, melalui pembentukan kompleks dengan kation trivalen aluminium.
Misel bemuatan negatif &&at melalui jembatan aluminium terhadap molekul pektat
atau agar (Gambar 8).

Gambar 7. Ikatan Kovalen antara Agar dan Kolesterol

Gambar 8.

Struktur Pengikatan Asam Empedu dan Pektin atau Agar
(Nagyvaqr dalam Inglett dan Falkehag, 1952)

Ventura et al. (1994) meneliti rumput laut (Ulva rigida) pada ransum ayam
dengan taraf 0, 10, 20 dan 3Ph. Dilaporkan bahwa pengaruh rumput laut lebih jelek
dari ransum kontrol. Hasil yang h a n g baik tersebut dilihat dari konsurnsi ransum,
pertambahan berat badan per hari dan efisiensi. Ayam yang menerima rarwm kontrol
mengkonsumsi ransum 272 gram, sedangkan ayam yang meneiima perlakuan nunput
laut konsumsinya berturut-turut 268,261 dan 258 gram. Pertambahan bobot badannya
masing-masing 102,90,85 dan 77 gram per hari .
Pengaruh Serat pada Lemak dan Kolesterol Tubuh
Serat yang tinggi dalarn ransum akan meningkatkan ekskresi lemak melalui
feses, tennasuk juga kolesterol. Hal ini terjadi karena serat tersebut akan mehsak
misel-misel dalam usus (Bordwell dan Erdman, 1988). Serat yang mempunyG sifat

b u l b (kamba) sangat efektif dalam mengurangi karsinogenesis pada hewan dan
juga paling efektif dalam mengencerkan empedu dan derivatnya, sehingga penyerapan
lemak berkurang.
Bagiada (1986),
rumput laut

meneliti pengaruh substitusi ransum tradisional dengan

7% pada kadar kolesterol serum dan daging babi Bali.

Dilaporkan,

kelompok babi yang mendapat substitusi rumput laut, rataan kadar kolesterol
serumnya adalah 96.15 mg/100 ml, sedangka