Kesimpulan Saran Kondisi Kesehatan Terumbu Karang berdasarkan Kelimpahan Ikan Herbivora di Perairan Kecamatan Pulau Tiga Kabupaten Natuna

6 KESIMPULAN DAN SARAN

6.1 Kesimpulan

Berdasarkan hasil dan pembahasan yang dilakukan maka dapat ditarik beberapa kesimpulan sebagai berikut: 1. Komposisi kelimpahan jenis ikan herbivora di Kecamatan Pulau tiga terdiri dari suku Acanthuridae yang berjumlah 236 individuha 15,64, Scaridae 864 individuha 57,35 dan Siganidae 350 individuha 23,22. Jumlah jenis keseluruhan ikan herbivora yang dijumpai menunjukkan keanekaragaman yang merata dan relatif stabil, yaitu sebanyak 24 spesies yang terdiri dari suku Acanthuridae 7 spesies, Scaridae 12 spesies dan Siganidae 5 spesies. 2. Tipe habitat yang terbentuk memiliki peranan yang penting dalam hubungannya dengan pola pembentukan struktur komunitas ikan ikan karang non-herbivora dan herbivora. Struktur komunitas ikan mengelompok berdasarkan pembentukan struktur substrat dasar dan tutupan karang hidup pada ekosistem terumbu karang . 3. Kelimpahan ikan herbivora berkorelasi positif terhadap persentase penutupan karang hidup dan berkorelasi negatif terhadap tutupan alga DCA. Kelimpahan ikan herbivora diindikasikan mempengaruhi kesehatan terumbu karang. Kelimpahan spesies ikan herbivora yang berpengaruh nyata terhadap penutupan karang hidup dan penutupan alga DCA adalah C. microrhinos, S. rivulatus dan S. doliatus. 4. Implikasi bagi pengelolaan terumbu karang di Kecamatan Pulau Tiga dengan melakukan : a Melakukan pelarangan terhadap praktek penangkapan ikan yang merusak lingkungan b Mempertahankan kualitas perairan yang mendukung kesehatan dan pertumbuhan terumbu karang c Mempertahankan dan meningkatkan kelimpahan dan keanekaragaman ikan-ikan herbivora. d Pelarangan pengambilan karang hidup dan karang mati e Melakukan rekayasa lingkungan 86

6.2 Saran

1. Perlu dilakukan upaya peningkatan kesehatan ekosistem terumbu karang di perairan Kecamatan Pulau Tiga yang dapat dilakukan dengan cara pengelolaan perikanan yang lestari dan ramah lingkungan untuk meningkatkan kelimpahan dan keanekaragaman ikan herbivora, serta mempertahankan kualitas perairan. 2. Melakukan penelitian lanjutan tentang kesehatan ekosistem terumbu karang dengan menambah variabel pengamatan yaitu pengaruh eutrofikasi dan sedimentasi dalam kaitannya dengan pertumbuhan beberapa jenis makroalga dan terumbu karang. DAFTAR PUSTAKA Adrim M. 1983. Pengantar Studi Ekologi Komunitas Ikan Karang dan Metode Pengkajiannya. Materi Kursus Pelatihan Metodologi Penelitian Penentuan Kondisi Terumbu Karang. Puslitbang Oceanografi LIPI. 54 p. Aktani U. 2003. Fish Communities as Related to Substrate Characteristics in the coral reef of the Kepulauan Seribu Marine National Park, Indonesia, five years after stopping blast fishing practises. Disertation. 101 p. Albert S, Udy J, Tibbetts IR. 2007. Responses of Algal Communities to Gradients in Herbivore Biomass and Water Quality in Marovo Lagoon, Solomon Islands. Coral Reefs 27:73-82. Alcala AC, Gomez ED. 1987. Dynamiting coral reef for fish: a resource- destructive fishing method. In Human Impact on Coral Reefs: Facts and Recommendations ed. B. Salvat, pp. 52-60. Allen GR. 1991. Damselfishes of the world. Mergus Publishers, Melle, Germany. 271 p. Anonimous. 2004. Keputusan Menteri Negra Lingkungan Hidup Nomor 51 Tahun 2004 tentang Baku Mutu Air Laut. Arthur R, Done TJ, Marsh H. 2005. Benthic recovery four years after an El Nino- induced coral mass mortality in the Lakshadweep Atolls. Curr Sci 89:694– 699. Arthur R, Done TJ, Marsh H, Harriott V. 2006. Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep Islands. Coral Reefs 25:427–440. Bachtiar, A. 2008. Herbivori Dalam Pengelolaan Terumbu Karang. Pusat Penelitian Pesisir dan Laut, Universitas Mataram. bachtiar.coralgmail.com. Barnes RD. 1980. Invertebrate Zoology Fourth ed.. Holt Saunders International Editions, Tokyo. 1089 p. Barnes RSK, Hughes RN. 1999. An introduction to marine ecology. Blackwell Science Ltd., Oxford, 286 pp. Bell JD, Harmelin- Vivien, Galzin R. 1985. Large Scale Spatial Variation in Abundance in Butterfly fishes Chaetodontidae on Polynesian Reefs. Coral Reef Symp.:421-426. 88 Bellwood DR. 1994. A phylogenetic study of the parrotfishes family Scaridae Pisces: Labroidei, with a revision of genera. Records of the Australian Museum Supplement No. 20:1-84. Bellwood DR, Choat JH. 1990. A functional analysis of grazing in parrotfishes family Scaridae: the ecological implications. Environmental Biology of Fishes 28:189-214. Bellwood DRT, Hughes P, Hoey AS. 2006. Sleeping Functional Group Drives Coral-Reef Recovery. Current Biology 16:2434–2439, Boaden PJS, Seed R. 1985. An Introduction to Coastal Ecology. Tertiary Level Biology. Beackie Son Ltd. Chapman and Hall, New York. pp. 90 – 105. Bonaldo RM, Bellwood DR. 2009. Dynamics of parrotfish grazing scars. Mar Biol. 156:771–777. [BPP-PSPL] Badan Pengembangan dan Penelitian Pengelolaan Sumberdaya Perairan dan Lingkungan. 2005. Kajian Kearifan Lokal Masyarakat di Desa Sabang Mawang, Sededap dan Pulau Tiga Kecamatan Bunguran Barat Kab. Natuna, Prov. Kepri. 81 hal. [BPS] Badan Pusat Statistik Kabupaten Natuna. 2007. Natuna Dalam Angka. Badan Pusat Statistik Kabupaten Natuna. Ranai. [BPS] Badan Pusat Statistik dan BAPPEDA Kabupaten Natuna. 2007. Indikator Sosial Ekonomi Kabupaten Natuna. Ranai. Katalog BPS 1205.2103. Brown BE. 1997. Coral bleaching: causes and consequences. Coral Reefs 16 suppl:S129–S138. Brown BE, Dunne RP, Ambarsari I, Le Tissierand MDA, Satapoomin U. 1999. Seasonal fluctuations in environmental factors and variations in symbiotic algae and chlorophyll pigments in four Indo-Pacific coral species. Marine Ecology Progress Series 91:53–69. Buddemeier RW, Kleypas JA, Aronson RB. 2004. Coral reefs and global climate change: Potential contributions of climate change to stresses on coral reef ecosystems. Pew Centre for Global Climate Change: Arlington USA, 33 pp. Burt J, Bartholomew A, Usseglio P. 2008. Recovery of corals a decade after a bleaching eve nt in Dubai, United Arab Emirates. Mar Biol 154:27–36. Candra A. 2003. Kajian Pemanfaatan Ruang Pulau Natuna Kabupaten Natuna. Thesis Pascasarjana Institut Pertanian Bogor. Bogor. 89 Cesar H, Burke L, Pet-Soede L. 2003. The economics of worldwide coral reef degradation. Cesar Environmental Economics Consulting: Arnhem Netherlands, 23 pp. Chia F-S, Buckland-Nicks J, Young CM. 1984. Locomotion of marine invertebrate larvae: A review. Canadian Journal of Zoology 62:1205-1222. Coles SL, Jokiel PL. 1992. ‘Effects of salinity on coral reefs’, Connel D.W. Hawker D.W. eds. Pollution in tropical aquatic systems. Florida: CRC Press Inc, 159-166. Choat JH, Bellwood DR. 1991. The Biology of Herbivorous Fishes on Coral Reef in The Ecology of Fishes Reefs. Sale, P. F. ed. Department of Zoology University of New Hamspire Durham. CRITC COREMAP II-LIPI. 2004. Studi Baseline Ekologi Kabupaten Natuna Tahun 2004. Tim CRITCT Coremap II LIPI. Jakarta. 103 hal. CRITC COREMAP II-LIPI. 2007. Studi Baseline Ekologi Lokasi Natuna Tahun 2007. Tim CRITCT Coremap II LIPI. Jakarta. 81 hal. Dahuri R. 2000. Pengembangan dan Pembinaan Masyarakat Pesisir. Di dalam Pendayagunaan Sumberdaya Kelautan untuk Kesejahteraan Rakyat. Jakarta: LISPI. DKP. Hal. 127-141. Diaz-Pulido G, McCook LJ. 2002. The fate of bleached corals: patterns and dynamics of algal recruitment. Mar. Ecol. Prog. Ser. Vol. 232:115–128. Ditlev H. 1980. Reef building corals of Indo-Pacific, 83 pp. W. Backhys Publishers, Rotterdam. [DKP] Dinas Kelautan dan Perikanan Kabupaten Natuna. 2008. Laporan Tahunan. Done TJ. 1992. Phase shifts in coral reef communities and their ecological significance. Hydrobiologia 247 1–3:121–132. Ehrlich PR. 1975. The Population Biology of Coral Reef Fishes. Annu Rev Ecol Syst 6: 211 p 247. English S, Wilkinson C, Baker V. 1994. Survey Manual for Tropical Marine Resources. Australian Institute of Marine Science. Townsville: 390 p. Fitt WK, McFarland FK, Warner ME, Chilcoat GC. 2000. Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef corals and relation to coral bleaching. Limnology and Oceanography 453:677–685. 90 Floros CD, Samways MJ, Armstrong B. 2004. Taxonomic patterns of bleaching within a South African coral assemblage. Biodiversity and Conservation 13:1175-1194. Fox HE, Mous PJ, Muljadi AH, Purwanto, Pet JS. 2003. Enhancing Reef Recovery in Komodo National Park, Indonesia. Coral Reef Rehabilitation at Ecologically Significant Scales. 19 p. Fox RJ, Bellwood DR. 2008 Remote video bioassays reveal the potential feeding impact of the rabbitfish Siganus canaliculatus f: Siganidae on an inner shelf reef of the Great Barrier Reef. Coral Reefs 27:605–615. Gabrie C. 1998. State of Coral Reefs: in French Overseas Department and Territories Ministry of Spatial Planning and Development. Francis: State Secretariat for Overseas Affairs. Gleason MG. 1996. Coral recruitment in Moorea, French Polynesia: the importance of patch type and temporal variation. Journal of Experimental Marine Biology and Ecology 207:79-101. Glynn PW, Imai R, Sakai K, Nakano Y, Yamazato K. 1992. Experimental Responses of Okinawan Ryukyu Island, Japan reef coral to high sea temperature and UV radiation. Proc Sevent Int. Coral Reef Symp., Guam 1:27-37. Glynn PW. 1996. Coral reef bleaching: facts, hypothesis and implications. Global Change Biology 26:495–509. Gomez, E. D. and H. T. Yap. 1988. Monitoring reef condition In: Kenchington, R.A. and Brydget ET. Hudson eds.. Coral Reef Management Hand Book. Unesco Regional Office for South East Asia. Jakarta. 171-178 p. Goreau TF. 1959. The Ecology of Jamaican Coral Reef I. Species Composition and Zonation. Ecology. 40 1:67 – 90. Goreau TF, NI Goreau, Goreau TJ. 1979. Corals and Coral Reefs. http:globalcoral.orgcorals_and_coral_reefs.htm. Goreau TF, Goreau NI, Goreau TJ. 1982. Corals and Coral Reefs. Life in The Sea. W.H. Freeman and Company, San Fransisco. PP. 130 – 140. Grimsditch GD, Salm RV. 2006. Coral Reef Resilience and Resistance to Bleaching. IUCN, Gland, Switzerland. 52 p. Hall V, Hughes TP. 1996. Reproductive strategies of modular organisms: comparative studies of reef-building corals. Ecology 77:950–963. 91 Hodijah SN, Bengen DG. 1999. Asosiasi antara Komunitas Ikan Karang dan Bentuk Pertumbuhan Karang lifeform Karang di Taman Laut 17 Pulau Riung, Ngada, Flores, NTT Abstrak. Di dalam : Lokakarya Pengelolaan dan IPTEK Terumbu Karang Indonesia. Jakarta: LIPI. COREMAP. Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s coral reefs. Greenpeace: Sydney Australia, 28 pp. Hoey AS, Bellwood DR. 2008. Cross-shelf variation in the role of parrotfishes on the Great Barrier Reef. Coral Reefs 27:37–47. Hughes TP. 1994. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551. Hughes TP, Bellwood DR, Folke CS, McCook LJ, Pandolfi JM. 2006. No-take areas, herbivory and coral reef resilience. TRENDS in Ecology and Evolution. Vol.22 No.1:1-3. Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Guldberg OH, McCook L, Moltschniwskyj N, Pratchett MS, Steneck RS, Willis B. 2007. Phase Shifts, Herbivory, and the Resilience of Coral Reefs to Climate Change. Current Biology 17:1-6. Hukom FD. 2001. Ekostruktur dan Distribusi Spatial- Temporal Ikan Karang Famili Pomacentridae di Perairan Teluk Ambon. P3O-LIPI, Jakarta. Pesisir dan Pantai Indonesia VI, Seri II:153-164. Hutomo M. 1986. Method of Sampling Coral Reef Research, Method and Management in Southeast Asia. BIOTROP Special Publication. Johnstone G, Kahn B. 1995. Ecological Significance of Abnormal Acropora coral growth formations. CRC Reef Research Technical Report - Task 1.4.3. Cooperative Research Centre for the Sustainable Development of the Great Barrier Reef. Townsville, Australia: 35. Kleypas JA, McManus J, Menez L. 1999. Using environmental data to define reef habitat: where do we draw the line? American Zoologist 39:146–159. Kuiter RH. 1992. Tropical Reef-Fishes of the Western Pacific-Indonesia and Adjacent Water. PT. Gramedia Pustaka Utama. Jakarta. Kuiter RH, Debelius H. 1994. Southeast Asia Tropical Fish Guide. Indonesia Philippines Vietnam Malaysia Singapore Thailand Andaman Sea. First edition published in Germany. IKAN-Unterwasserarchiv D-65933 Frankfurt. Germany. 319 p. Kuiter RH, Tono zuka T. 2001. Pictorial Guide to Indonesian Reef Fishes. First published. Zoonetics. Australia. 865 p. 92 Levinton JS. 1988. Marine Ecology. Prentice-Hall. Inc, Engle World Chiffs. New Jersey. Lirman D. 2001. Competition between macroalgae and corals: effects of herbivore exclusion and increased algal biomass on coral survivorship and growth. Coral Reefs 19:392-399. Littler MM, Littler DS, Brooks BL. 2005. Harmful algae on tropical coral reefs: Bottom-up eutrophication and top-down herbivory. Harmful Algae 5:565– 585. Longhurs AR, Pauly D. 1987. Ecology of Tropical Oceans. ICLARM Contribution No. 389. Academic Press, INC. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H and Woesik VR. 2001. Coral bleaching: The winners and losers. Ecology Letters 4:122-131. Manuputty AEW. 1986. Karang Lunak, Salah Satu Penyusun Terumbu Karang. Oseana. Vol. XI. No. 4. P3O-LIPI. Jakarta 131-141. Marshall PA, AH Baird. 2000. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19:155-163. Marshal P, Schuttenberg H. 2006. A reef manager’s guide to coral bleaching. Great Barrier Reef Marine Park Authority. McClanahan TR. 1997. Primary succession of coral-reef algae: Differing pattern on fished versus unfished reefs. Journal of Experimental Marine Biology and Ecology. 218:77-102. McClanahan TR, Maina J, Pet-Soede L. 2002. Effect of the 1998 coral mortality event on Kenyan coral reefs and fisheries. Ambio Vol. 31 No.7-8:543-550. McClanahan TR, Polunin N, Done T. 2002. Ecological states and resilience of coral reefs. Conservation Ecology 62:18. McClanahan TR, Baird AH, Marshall PA, Toscano MA. 2004. Comparing bleaching and mortality responses of hard corals between southern Kenya and the Great Barrier Reef, Australia. Marine Pollution Bulletin 48:327- 335. McCook LJ. 1996. Effects of herbivores and water quality on Sargassum distribution on the central Great Barrier Reef: cross-shelf transplants. Mar Ecol Prog Ser 139:179-192. 93 McCook LJ, Jompa J, Diaz-Pulido G. 2001. Competition between corals and algae on coral reefs: a review of evidence and mechanism. Coral Reefs 19:400-417. McManus JW, Reyes Jr RB, Nanola Jr CL. 1997. Rffects of some destructive fishing methods on coral cover and potential rates of recovery. Environmental Management 21:69-78. Meekan MG, Choat JH. 1997. Latitudinal variation in abundance of herbivorous fishes: a comparison of temperate and tropical reefs Marine Biology 128:373-383. Mequila TL, Campos WL. 2007. Feeding Relationships of Dominant Fish Species in the Visayan Sea Annie. 19:1, 35-46. Miller RJ, Reed DC, Brzezinski MA. 2009. Community structure and productivity of subtidal turf and foliose algal assemblages. Mar. Ecol. Prog. Ser. Vol. 388:1–11. Moberg F, Folke C. 1999. Ecological goods and services of coral reef ecosystems. Ecological Economics 29:215–233. Nontji A. 1993. Laut Nusantara. Penerbit Djambatan. Jakarta. 368 hal. Norstrom AV, Nystrom M, Lokrantz J, Folke C. 2009. Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar Ecol Prog Ser. Vol. 376: 295–306. Nybakken W. 1997. Marine Biology. An Ecologycal Approach. Harper and Row Publisher. New York. 446 pp. Nystrom M, Folke C, Moberg F. 2000. Coral reef disturbance and resilience in a human-dominated environment. Trends in Ecology and Evolution 15:413- 417. Nystrom M, Folke C. 2001. Spatial resilience of coral reefs. Ecosystems 4:406- 417. Obura D. 2005. Resilience and climate change: Lessons from coral reefs and bleaching in the Western Indian Ocean. Estuarine, Coastal and Shelf Science. Odum E P. 1971. Fundamental of Ecology third edition. Toppan Company Ltd. Tokyo. 574 p. Paddack MJ, Cowen RK. 2006. Grazing pressure of herbivorous coral reef fishes on low coral-cover reefs. Coral Reefs 25: 461–472. 94 Pauly D, Silvestre G, Smith IR. 1989. On development, fisheries and dynamite: a brief review of tropical fisheries management, Natural resource Modeling 3:307-329. Peters EC. 1993. Diseases of other invertebrate Phyla: Porifera, Cnidaria, Ctenophora, Annelida, Echinodermata. In: Pathobiology of marine and estuarine organisms. CRC Press:393-449. Pielou EC. 1966. The measurement of diversity in different types of biological collections. J. Theoret. Biol. 13:131-144. Precht WF. 2006. Coral Reef Restoration Handbook. CRC Press. Taylor and Francis Group. 363 p. Rasdani M. 2005. Usaha Perikanan Tangkap yang Bertanggungjawab. Di dalam: Pelatihan Pengelolaan SumberdayA Ikan. Semarang: BPPI dan DKP. Richmond RH. 1997. Reproduction and recruitment in corals: critical links in the persistence of coral reefs. In C. Birkeland ed. Life and Death of Coral Reefs. Chapman and Hall, New York:175–197. Riegl B, Heine C, Branch GM. 1996. Function Of Funnel-shaped Coral Growth In A High Sedimentation Environment. Marine Ecology Progress Series 145:87 – 93. Russ G R. 1984a. Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. I. Levels of variability across the entire continental shelf. Marine Ecology Progress Series 20:23–34. Russ GR. 1984b. Distribution and abundance of herbivorous grazing fishes in the central Great Barrier Reef. II. Patterns of zonation of mid-shelf and outershelf reefs. Marine Ecology Progress Series 20:35–44. Sale PF. 2002. Coral Reef Fishes. Dynamic and Diversity in a Complex Ecosystem. Academic Press. Elsevier Science USA. 549 P. Salm RV. 2002. Building Survivability into Marine Protected Area Networks. The Nature Conservancy. Salvat B. 1992. The 1991 bleaching event in the Society Islands, French olynesia. In: Proceedings of the 7th International Coral Reef Symposium, Guam 1. Sandin SA, Sampayo EM, Vermeij MJA. 2008. Coral reef fish and benthic community structure of Bonaire and Curacao, Netherlands Antilles. Caribbean Journal of Science, Vol. 44, No. 2:137-144. 95 Satmanatran S. 1992. Comparison of Reef Fish Communities from Various Reef Condition and Structure in Gulf of Thailand. The 3 rd ASEAN Science and Technology Week Conference Proceeding. Singapore. Shannon CE. 1948. A mathematical theory of communication. Bell System Tech. J. 27: 379-423, 623-656. Simpson EH. 1949. Measurement of diversity. Nature, Lond. 163, 688 Sluka RD, Miller MW. 2001. Herbivorous Fish Assemblages and Herbivory pressure on Laamu Atol, Republic of Maldives. Coral Reefs 20:255-262. Soedharma D. 1984. Struktur Komunitas Karang Batu stony coral pada Setap Strata Kedalaman Tubir Gugusan Pulau Lancang dan Pulau Pari Kepulauan Seribu. Buletin Perikanan Vol. 3. Fakultas Perikanan Institut Pertanian Bogor. Bogor. Suharsono. 1984. Pertumbuhan Karang. Oseana IX 2:41 – 48. LON LIPI. Jakarta. Suharsono. 1990. Ecological and Physiological Implication of Coral Bleaching at Pari Island. Thousand Island Indonesia. A Desertation The University of New Castle Upon Tyne. Department of Ecological. 279 p. Suharsono. 1998. Condition of Coral Reef Resources in Indonesia. Pusat Penelitian dan Pengembangan Oseanologi LIPI, Jakarta, Indonesia. Jurnal Pesisir dan Lautan. Vol. 1, No. 2:44-52. Suharsono. 2008. Jenis-jenis Karang Indonesia. LIPI Coremap Program. Jakarta. Suharti SR, Elwin F, Long BG. 1999. Kominitas Ikan di Daerah Terumbu Karang Perairan Senayang-Lingga, Kepulauan Riau. Di dalam : Kumpulan Abstrak Lokakarya Pengelolaan dan IPTEK Terumbu Karang Indonesia. Jakarta: LIPI. COREMAP. Suharti SR. 2005. Ekologi Ikan Karang. Gramedia Pustaka. Jakarta. Sukarno M, Hartono, Moosa MK, Darsono P. 1983. Terumbu Karang di Indonesia. Lembaga Oseanologi Nasional- LIPI. Jakarta. Sumich JL. 1992. An Introduction to the Biology of Marine Life. Fifth Edition. Wm.C.Brown Publisher. USA. Tamelander J. 2002. Coral recruitment following a mass mortality event. Ambio 31:551–557. [TERANGI] Yayasan Terumbu Karang Indonesia. 2004. Pengenalan Ikan Karang Secara Visual Indonesia. Indonesian Coral Reef Foundation. Jakarta. 96 Tomascik T. 1991. Coral Reef Ecosystem. Environmental Management Guidelines. Kantor Menteri Negara KLH. 166 hal. Tomascik T, Mah AJ, Nontji A, Moosa MK. 1997. The Ecology Of The Indonesian Seas. Part One, Chapter 1 – 12. The Ecology of Indonesian Series, Volume VII. 642 p. Veron JEN. 1986. Corals of Australian and Indopacific. Angus and Robertson. Australia. Veron JEN. 1995. Corals In Space and Time: The Biogeography and Evolution of The Scleractinia. UNSW Press. Sydney Australia, 321 pp. Veron, J. E. N. 2000. Coral of the World. Volume 1, 2, 3, 3 rd Edition. Australia: Australian Institute of Marine Science and CRR Qld Pty Ltd. Wagiyo K, Prahoro P. 1994. Pengaruh Kondisi Karang terhadap Komunitas Ikan Hias di Kepulauan Karimunjawa. Jurnal Penelitian Perikanan Laut 92. 1994. Jakarta: BPPL. Hal. 27-36. Westmacott S, Teleki K, Wells S, West JM. 2000. Pengelolaan terumbu karang yang telah memutih dan rusak kritis. IUCN, Gland, Switzerland and Cambridge, UK. vii + 36 pp. White AT. 1987. Coral reefs Valuable Resources of Southeast Asia. US-Coastal Resources Management Project. Williams ID, Polunin NVC, Hendrick VJ. 2001. Limits to grazing by herbivorous fishes and the impact of low coral cover on macroalgal abundance on a coral reef in Belize. Mar Ecol Prog Ser 222:187–196. Zar JH. 1996. Biostatistical Analysis. Second edition. Prentice-Hall Int. Inc. New Jersey: 662 p. LAMPIRAN 98 Lampiran 1. Jumlah jenis karang di masing- masing lokasi penelitian No Nama Genus Jumlah Jenis Individu ST-1 ST-2 ST-3 ST-4 1 Acropora 13 15 22 20 2 Anacropora - 1 1 1 3 Astreopora - 1 1 1 4 Montipora 2 6 8 5 5 Coeloseris 1 - 1 1 6 Leptoseris - 1 - - 7 Pachyseris - - 2 2 8 Pavona 1 1 2 - 9 Madracis - - 1 1 10 Palauastrea - - 1 1 11 Stylocoeniella - - 1 1 12 Euphyllia - - - 2 13 Physogyra - 1 1 - 14 Turbinaria - 1 3 3 15 Cyphastrea - 2 - 1 16 Diploastrea - - 1 1 17 Echinopora - 1 1 1 18 Favia 4 - 6 3 19 Favites 1 1 4 4 20 Goniastrea 1 4 5 4 21 Leptastrea - 2 2 2 22 Leptoria - - 1 - 23 Montastrea - - 1 2 24 Oulastrea - - - 1 25 Platygyra - - - 1 26 Plesiastrea - - - 1 27 Cycloseris - 1 1 - 28 Fungia 1 1 4 3 29 Herpolitha - 1 - - 30 Lithophyllon - - - 1 31 Podabacia - - 1 1 32 Hydnophora - 1 - - 33 Merulina - - 1 2 34 Millepora 1 - 1 2 35 Lobophyllia - - 1 2 36 Mussa - - - 1 37 Symphyllia - - 3 1 38 Galaxea - 1 2 3 39 Mycedium - - 1 - 99 Lampiran 1. Lanjutan No Nama Genus Jumlah Jenis Individu ST-1 ST-2 ST-3 ST-4 40 Oxypora - - 1 - 41 Pectinia - 2 - - 42 Pocillopora 2 2 2 4 43 Seriatopora 1 1 1 2 44 Stylophora - - 1 - 45 Goniopora - - - 1 46 Porites 5 7 10 8 47 Psammocora - 1 - 3 48 Trachypyllia - - 1 - 49 Wellsophyllia - - 1 1 50 Stylaster - - - 1 51 Sinularia - Jumlah Jenis 34 55 97 95 Lampiran 2. Persentase tutupan karang masing- masing genus di lokasi penelitian NO Nama Genus Tutupan Karang Hidup ST-1 ST-2 ST-3 ST-4 T1-ST1 T2-ST1 T3-ST1 T1-S T2 T2-S T2 T2-S T2 T1-S T3 T2-S T3 T3-S T3 T1-S T4 T2-S T4 T3-S T4 1 Acropora 28,853 13,611 15,667 17,602 6,666 18,538 43,392 39,260 36,220 21,563 26,253 25,682 2 Anacropora - - - - - 0,192 0,174 - - - 0,086 - 3 Astreopora - - - - 0,312 - 0,228 - - - 0,884 - 4 Montipora 0,795 5,120 1,283 6,236 10,216 0,551 6,823 4,846 10,057 16,799 2,438 9,542 5 Coeloseris 0,117 - - - - - - 0,069 - - 0,070 - 6 Leptoseris - - - 2,503 - - - - - - - - 7 Pachyseris - - - - - - 0,086 1,046 4,341 2,518 0,768 0,855 8 Pavona - 0,725 - 1,018 - - 1,400 - - - - - 9 Madracis - - - - - - - 0,363 - 0,534 2,473 - 10 Palauastrea - - - - - - 0,585 - - - - 0,492 11 Stylocoeniella - - - - - - 0,110 0,110 - - 0,210 - 12 Euphyllia - - - - - - - - - - - 0,339 13 Physogyra - - - - - 0,939 - - 1,278 - - - 14 Turbinaria - - - 4,278 - 4,406 1,436 - - - 5,946 0,548 15 Cyphastrea - - - 0,170 - 1,506 - - - 0,115 - - 16 Diploastrea - - - - - - - 2,204 - 2,984 0,517 7,023 17 Echinopora - - - - 0,688 1,450 - 0,302 - 0,293 - - 18 Favia 0,206 1,763 - - - - 0,943 0,383 4,479 1,237 0,228 0,332 19 Favites 0,113 - - 0,671 - - 1,482 0,253 - 1,451 3,178 0,233 20 Goniastrea 0,108 - 0,531 2,586 - 0,358 0,877 0,972 1,992 2,544 0,934 1,415 21 Leptastrea - - - 0,239 0,216 - - 1,005 0,090 0,205 - 2,088 Lampiran 2. Lanjutan NO Nama Genus Tutupan Karang Hidup ST-1 ST-2 ST-3 ST-4 T1-ST1 T2-ST1 T3-ST1 T1-ST2 T2-ST2 T2-ST2 T1-ST3 T2-ST3 T3-ST3 T1-ST4 T2-ST4 T3-ST4 22 Leptoria - - - - - - 0,071 - - - - - 23 Montastrea - - - - - - 0,836 - - - 1,007 - 24 Oulastrea - - - - - - - - - - 0,057 - 25 Platygyra - - - - - - - - - 0,205 - - 26 Plesiastrea - - - - - - - - - - - 3,683 27 Cycloseris - - - 0,090 - - 0,195 - - - - - 28 Fungia - 0,031 - 0,229 0,046 0,184 0,532 - 0,654 0,733 0,282 0,174 29 Herpolitha - - - - - 0,719 - - - - - - 30 Lithophyllon - - - - - - - - - - 0,187 - 31 Podabacia - - - - - - - 0,525 - - - 0,488 32 Hydnophora - - - - 0,346 - - - - - - - 33 Merulina - - - - - - - 1,471 - - 0,334 1,592 34 Millepora 0,560 - - - - - - 7,932 - 0,671 - 8,080 35 Lobophyllia - - - - - - 0,752 - - - - 4,548 36 Mussa - - - - - - - - - 0,288 - - 37 Symphyllia - - - - - - 0,123 - 0,132 - 0,332 - 38 Galaxea - - - - 0,593 - 0,905 - 0,219 1,375 0,961 - 39 Mycedium - - - - - - - 0,828 - - - - 40 Oxypora - - - - - - 0,420 - - - - - 41 Pectinia - - - 1,667 - - - - - - - - 42 Pocillopora 0,528 0,967 - 0,263 0,109 - 0,706 - 0,112 0,528 1,565 1,911 43 Seriatopora 12,200 1,719 - 0,592 - 0,527 2,790 1,527 0,199 - 0,208 0,538 Lampiran 2. Lanjutan No Nama Genus Tutupan Karang Hidup ST-1 ST-2 ST-3 ST-4 T1-ST1 T2-ST1 T3-ST1 T1-ST2 T2-ST2 T2-ST2 T1-ST3 T2-ST3 T3-ST3 T1-ST4 T2-ST4 T3-ST4 44 Stylophora - - - - - - 1,021 - - - - - 45 Goniopora - - - - - - - - - 0,808 - 1,352 46 Porites 16,962 11,030 8,548 32,796 43,144 33,425 12,721 9,929 10,712 16,977 14,522 9,876 47 Psammocora - - - 0,680 - - - - - - 0,186 1,086 48 Trachypyllia - - - - - - 0,083 - - - - - 49 Wellsophyllia - - - - - - - 0,056 0,076 0,110 - - 50 Stylaster - - - - - - - - - 0,213 - - Total 60,442 34,967 26,030 71,619 62,553 62,796 78,581 73,079 70,562 72,154 63,812 81,878 ?Rata-rata 40,480 65,584 74,074 72,552 Lampiran 3. Persentase tutupan biota dan substrat di lokasi penelitian T1-ST1 T2-ST1 T3-ST1 Rerata T1-ST2 T2-ST2 T3-ST2 Rerata T1-ST3 T2-ST3 T3-ST3 Rerata T1-ST4 T2-ST4 T3-ST4 Rerata 1 Karang Hidup LC 60.442 34.967 26.030 40.480 71.619 62.553 62.796 65.584 78.581 73.079 70.562 74.074 72.154 63.812 81.878 72.552 63.173 Acropora AC 25.527 12.788 11.502 16.606 13.424 3.860 16.261 11.182 40.057 34.150 29.455 35.406 18.356 23.643 18.750 20.250 20.861 - Acropora Muda CJ 3.326 0,823 4.165 2.771 4.178 2.806 2.277 3.087 3.335 2.555 6.765 4.218 3.207 2.610 6.932 4.250 3.582 Non-Acropora NA 31.589 21.356 10.363 21.103 54.017 55.887 44.258 51.315 35.189 33.819 34.342 34.450 50.591 37.559 56.196 48.052 38.730 2 Karang Mati DC 0,000 0,000 0,000 0,000 0,000 0,000 3.679 1.226 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,307 3 Karang Mati dgn Alga DCA 15.366 46.079 43.045 34.830 13.821 23.652 14.966 17.480 10.592 19.369 9.875 13.279 21.732 15.489 7.006 14.742 20.083 4 Karang Lunak SC 0,000 0,643 0,734 0,459 0,221 0,000 0,000 0,074 0,000 0,000 0,000 0,000 0,635 0,000 0,000 0,212 0,186 5 Biota Lain OT 0,145 0,232 0,502 0,293 0,651 0,608 0,856 0,705 0,188 0,432 0,000 0,206 0,006 0,140 0,167 0,123 0,332 6 Pecahan Karang R 22.610 15.469 23.498 20.526 13.427 5.887 12.908 10.741 10.639 7.119 18.787 12.182 5.417 17.989 7.244 10.217 13.417 7 Pasir S 1.437 2.610 6.191 3.413 0,260 7.516 4.794 4.190 0,000 0,000 0,776 0,259 0,000 2.756 3.705 2.154 2.504 NO BENTHOS Total Rerata PERSENTASE TUTUPAN ST-1 ST-2 ST-3 ST-4 104 Lampiran 4. Jumlah jenis S, jumlah individu N, Indeks Keanekaragaman H, Indeks Kemiripan E dan Indeks Dominasi Karang C Terumbu Karang pada masing- masing stasiun di Lokasi Penelitian No Stasiun S N H E C 1 ST-1 12 34 2.02355 0.81433 0.19723 2 ST-2 23 55 2.62401 0.83687 0.11802 3 ST-3 36 97 3.01723 0.84197 0.08513 4 ST-4 38 95 3.19806 0.87917 0.07014 105 Lampiran 5. Pertumbuhan koloni karang muda pada stasiun 1 No Jenis Diameter Koloni Total Tutupan cm 1 Acropora aspera 8 2.772 2 Acropora aspera 20 3 Acropora gemmifera 10 4 Acropora gemmifera 26 5 Acropora humilis 26 6 Acropora digitifera 18 7 Acropora granulosa 8 8 Acropora granulosa 20 9 Acropora granulosa 29 10 Acropora hyacintus 29 11 Acropora millepora 6 12 Acropora millepora 8 13 Acropora millepora 16 14 Acropora millepora 16 15 Acropora millepora 19 16 Acropora millepora 24 17 Acropora samoensis 8 18 Acropora samoensis 9 19 Acropora tenuis 28 106 Lampiran 6. Pertumbuhan koloni karang muda pada stasiun 2 No Jenis Diameter Koloni Total Tutupan cm 1 Acropora aspera 22 3.087 2 Acropora int ermedia 6 3 Acropora int ermedia 8 4 Acropora gemmifera 11 5 Acropora humilis 7 6 Acropora humilis 10 7 Acropora humilis 13 8 Acropora humilis 29 9 Acropora hyacint hus 12 10 Acropora millepora 6 11 Acropora millepora 13 12 Acropora millepora 23 13 Acropora millepora 24 14 Acropora millepora 26 15 Acropora millepora 30 16 Acropora prost rat a 22 17 Acropora samoensis 13 18 Acropora samoensis 12 19 Acropora samoensis 22 107 Lampiran 7. Pertumbuhan koloni karang muda pada stasiun 3 No Jenis Diameter Koloni Total Tutupan cm 1 Acropora aspera 8 4.218 2 Acropora aspera 16 3 Acropora brueggemanni 10 4 Acropora brueggemanni 13 5 Acropora formosa 29 6 Acropora millepora 16 7 Acropora millepora 30 8 Acropora pulchra 6 9 Acropora samoensis 14 10 Acropora samoensis 26 11 Acropora gemmifera 19 12 Acropora humilis 5 13 Acrropora humilis 9 14 Acrropora humilis 9 15 Acrropora humilis 10 16 Acrropora humilis 23 17 Acropora divaricat a 26 18 Acropora granulosa 8 19 Acropora granulosa 23 20 Acropora granulosa 30 21 Acropora loripes 26 22 Acropora palipera 20 108 Lampiran 8. Pertumbuhan koloni karang muda pada stasiun 4 No Jenis Diameter Koloni Total Tutupan cm 1 Acropora gomezi 8 4.250 2 Acropora mult iacut a 7 3 Acropora robust a 30 4 Acropora digit ifera 8 5 Acropora gemmifera 18 6 Acropora humilis 5 7 Acropora humilis 6 8 Acropora humilis 6 9 Acropora humilis 21 10 Acropora divaricat a 12 11 Acropora divaricat a 29 12 Acropora granulosa 17 13 Acropora granulosa 20 14 Acropora granulosa 20 15 Acropora granulosa 22 16 Acropora loripes 24 17 Acropora pulchra 18 18 Acropora samoensis 6 19 Acropora samoensis 18 20 Acropora samoensis 19 21 Acropora sarment osa 22 Lampiran 9. Kelimpahan jenis dan suku keseluruhan ikan karang di lokasi penelitian Kelimpahan Jenis Kelimpahan Suku T1-ST1 T2-ST1 T3-ST1 T1-ST2 T2-ST2 T3-ST2 T1-ST3 T2-ST3 T3-ST3 T1-ST4 T2-ST4 T3-ST4 Kj Ind. Ha Ks Ind. Ha I ACANTHURIDAE 236 1 Acant hurus aurant icavus Target 1 1 1 3 21 2 Acant hurus pyroferus Target 1 1 1 1 1 1 1 7 50 3 Acant hurus t rist is Target 1 1 7 4 Ct enochaet us st riat us Target 1 2 1 1 2 7 50 5 Ct enochaet us t ominiensis M ayor 1 2 1 1 5 36 6 Naso t hynnoides Target 3 2 2 2 9 64 7 Zebrasoma scopas M ayor 1 1 7 II CAESIONIDAE 357 8 Caesio cuning Target 30 20 50 357 III CHAETODONTIDAE 129 9 Chaet odon adiergast os Indikat or 2 2 14 10 Chaet odon baronessa Indikat or 2 1 1 1 5 36 11 Chaet odon oct ofasciat us Indikat or 1 1 7 12 Chaet odon t rifascialis Indikat or 1 1 7 13 Chaet odon t rifasciat us Indikat or 2 1 2 2 2 9 64 IV HAEM ULIDAE 21 14 Diagramma pict um Target 2 2 14 15 Plect orhinchus gibbosus Target 1 1 7 V LABRIDAE 764 16 Bodianus mesot horax M ayor 2 5 1 8 57 17 Cheilinus fasciat us M ayor 5 2 1 8 57 18 Choerodon anchorago Target 3 3 21 19 Epibulus insidiat or M ayor 4 1 1 1 7 50 20 Gomphosus varius M ayor 1 2 2 5 36 21 Halichoeres melanurus M ayor 5 5 5 15 107 22 Halichoeres ornat issimus M ayor 2 1 1 1 5 36 23 Labroides bicolor M ayor 1 1 7 24 Labroides dimidiat us M ayor 2 2 1 5 36 25 Thalassoma hardw icke M ayor 10 5 4 4 1 2 26 186 26 Thalassoma lunare M ayor 2 2 2 5 2 3 2 2 4 24 171 VI LUTJANIDAE 50 27 Lut janus carparot at us Target 1 1 7 28 Lut janus decussat us Target 1 1 1 3 21 29 Lut janus fulviflamma Target 1 2 3 21 VII M ONACANTHIDAE 7 30 Oxymonacant hus longirost ris M ayor 1 1 7 Lampiran 9. Lanjutan Jumlah No Nama Jenis Suku Kelompok ST-1 ST-2 ST-3 ST-4 Kelimpahan Jenis Kelimpahan Suku T1-ST1 T2-ST1 T3-ST1 T1-ST2 T2-ST2 T3-ST2 T1-ST3 T2-ST3 T3-ST3 T1-ST4 T2-ST4 T3-ST4 Kj Ind. Ha Ks Ind. Ha VIII M ULLIDAE 14 31 Parupeneus mult ifasciat us Target 2 2 14 IX NEM IPTERIDAE 29 32 Scolopsis bilineat a Target 1 1 2 14 33 Scolopsis margarit ifer Target 1 1 7 34 Scolopsis monogramma Target 1 1 7 X POM ACANTHIDAE 93 35 Cent ropyge vroliki M ayor 4 1 5 36 36 Chaet odont oplus mesoleucus M ayor 1 5 2 8 57 XI POM ACENTRIDAE 26021 37 Abudefduf bengaliensis M ayor 2 2 3 7 50 38 Amblyglyphidodon aureus M ayor 2 2 14 39 Amblyglyphidodon curacao M ayor 5 5 1 15 10 14 8 11 10 8 15 25 127 907 40 Amblyglyphidodon leucogast er M ayor 2 2 2 3 9 64 41 Amphiprion ocellaris M ayor 3 3 21 42 Chromis margarit ifer M ayor 1 2 2 5 36 43 Chromis t ernat ensis M ayor 20 10 30 214 44 Chromis Viridis M ayor 60 100 10 20 10 20 50 100 10 1515 30 90 2015 14393 45 Dascyllus aruanus M ayor 4 5 2 11 79 46 Dascyllus ret iculat us M ayor 10 12 29 30 31 45 157 1121 47 Dischist odus melanot us M ayor 2 1 1 5 2 2 1 14 100 48 Dischist odus prosopot aenia M ayor 1 3 4 29 49 Neoglyphydodon azysron M ayor 2 10 4 4 20 143 50 Neoglyphydodon melas M ayor 2 5 5 2 2 2 2 5 25 179 51 Neopomacent rus filament osus M ayor 500 500 1000 7143 52 Pomacent rus alexanderae M ayor 10 4 16 20 30 20 100 714 53 Pomacent rus moluccensis M ayor 10 5 4 5 1 9 11 6 11 11 6 79 564 54 Pomacent rus nigromanus M ayor 6 6 1 2 10 10 35 250 XII SCARIDAE 864 55 Chlorurus microrhinos Target 1 1 1 2 1 1 2 9 64 56 Scarus bleekeri Target 1 2 3 21 57 Scarus dimidiat us Target 4 3 3 2 2 2 1 3 3 3 26 186 58 Scarus frenat us Target 2 1 2 1 2 1 2 1 1 13 93 59 Scarus ghobban Target 2 1 1 4 29 60 Scarus hypselopt erus Target 1 1 2 2 1 7 50 61 Scarus niger Target 2 1 1 4 29 62 Scarus oviceps Target 1 1 1 3 21 63 Scarus rivulat us Target 1 1 1 1 1 1 6 43 Lampiran 9. Lanjutan ST-4 Jumlah No Nama Jenis Suku Kelompok ST-1 ST-2 ST-3 Kelimpahan Jenis Kelimpahan Suku T1-ST1 T2-ST1 T3-ST1 T1-ST2 T2-ST2 T3-ST2 T1-ST3 T2-ST3 T3-ST3 T1-ST4 T2-ST4 T3-ST4 Kj Ind. Ha Ks Ind. Ha 64 Scarus schlegeli Target 5 3 3 2 3 3 3 1 3 2 2 30 214 65 Scarus sordidus Target 2 2 2 1 2 1 2 2 14 100 66 Scarus t ricolor Target 1 1 2 14 XIII SERRANIDAE 7 67 Cephalopholis boenak Target 1 1 7 XIV SIGANIDAE 307 68 Siganus corallinus Target 1 2 2 1 2 8 57 69 Siganus doliat us Target 2 1 2 2 1 1 1 2 12 86 70 Siganus gut t at us Target 2 1 3 21 71 Siganus punct at issimus Target 2 1 2 1 1 2 4 2 3 2 20 143 72 Siganus vulvinus Target 2 2 2 6 XV ZANCLIDAE 21 73 Zanclus cornut us M ayor 1 1 1 3 21 115 142 48 95 60 78 657 705 112 1618 175 250 16 21 18 24 23 24 31 37 21 20 25 27 Keterangan : T = Transek kuadrat ST = St asiun No Nama Jenis Suku Kelompok ST-1 ST-2 ST-3 ST-4 Jumlah JUM LAH INDIVIDU N 305 233 1474 2043 JUM LAH JENIS S 31 42 51 41 112 Lampiran 10. Jumlah jenis S, jumlah individu N, indeks keanekaragaman H dan indeks kemiripan E dan indeks dominasi C keseluruhan ikan karang di lokasi penelitian Stasiun S N H E C ST-1 31 305 1.99895 0.58211 0.32463 ST-2 42 233 3.07913 0.82381 0.08784 ST-3 51 1474 1.49187 0.37943 0.47561 ST-4 41 2043 1.01693 0.27384 0.64557 113 Lampiran 11. Jumlah jenis S, jumlah individu N, indeks keanekaragaman H dan indeks kemiripan E dan indeks dominasi C ikan karang herbivora di lokasi penelitian Stasiun S N H E C ST-1 13 42 2.17342 0.84735 0.15420 ST-2 18 54 2.75995 0.95488 0.07202 ST-3 19 59 2.82439 0.95923 0.07440 ST-4 17 48 2.66648 0.94115 0.07986 114 Lampiran 12. Korelasi dan PCA antara persentase tutupan karang hidup LC, karang mati ditutupi alga DCA, karang muda CG dan ikan herbivora Ks Correlat ion mat rix Pearson n: Variables LC DCA CJ Ks LC 1 -0.915 0.404 0.550 DCA -0.915 1 -0.525 -0.640 CJ 0.404 -0.525 1 0.324 Ks 0.550 -0.640 0.324 1 Values in bold are different from 0 w it h a significance level alpha=0.05 Principal Component Analysis: Eigenvalues: F1 F2 F3 F4 Eigenvalue 2.726 0.709 0.497 0.068 Variabilit y 68.147 17.723 12.432 1.698 Cumulat ive 68.147 85.870 98.302 100.000 Eigenvect ors: F1 F2 F3 F4 LC -0.546 -0.210 -0.509 0.631 DCA 0.580 0.094 0.281 0.759 CJ -0.391 0.892 0.194 0.116 Ks -0.462 -0.388 0.790 0.108 Cont ribut ion of t he variables : F1 F2 F3 F4 LC 29.806 4.430 25.954 39.809 DCA 33.583 0.876 7.881 57.660 CJ 15.258 79.622 3.766 1.354 Ks 21.353 15.072 62.399 1.177 115 Lampiran 13. Korelasi dan PCA antara persentase tutupan karang hidup LC, karang mati ditutupi alga DCA, karang muda CG dan ikan herbivora dari jenis C. microninos, S. rivulatus dan S. doliatus. Correlat ion mat rix Pearson n: Variables LC DCA CJ C. microninos S. Rivulatus S. dolliat us LC 1 -0.915 0.404 0.665 0.607 0.772 DCA -0.915 1 -0.525 -0.586 -0.596 -0.665 CJ 0.404 -0.525 1 0.263 0.514 0.355 C. microninos 0.665 -0.586 0.263 1 0.577 0.707 S. Rivulat us 0.607 -0.596 0.514 0.577 1 0.612 S. dolliat us 0.772 -0.665 0.355 0.707 0.612 1 Values in bold are different from 0 w it h a significance level alpha=0.05 Principal Component Analysis: Eigenvalues: F1 F2 F3 F4 F5 F6 Eigenvalue 3.979 0.835 0.515 0.337 0.276 0.060 Variabilit y 66.309 13.909 8.578 5.617 4.592 0.995 Cumulat ive 66.309 80.218 88.796 94.413 99.005 100.000 Eigenvect ors: F1 F2 F3 F4 F5 F6 LC 0.459 -0.155 -0.439 0.171 -0.040 0.736 DCA -0.447 -0.059 0.537 -0.173 0.259 0.641 CJ 0.296 0.835 0.036 -0.445 0.038 0.118 C. microninos 0.396 -0.406 0.384 -0.515 -0.516 -0.012 S. Rivulat us 0.399 0.189 0.602 0.663 -0.055 -0.007 S. dolliat us 0.430 -0.273 0.090 -0.197 0.812 -0.182 Cont ribut ion of t he variables : F1 F2 F3 F4 F5 F6 LC 21.068 2.397 19.277 2.908 0.159 54.191 DCA 19.993 0.345 28.858 2.992 6.727 41.084 CJ 8.772 69.793 0.129 19.778 0.145 1.382 C. microninos 15.692 16.452 14.712 26.482 26.647 0.015 S. Rivulat us 15.958 3.568 36.213 43.949 0.308 0.005 S. dolliat us 18.517 7.445 0.811 3.890 66.014 3.323 116 Lampiran 14 Regresi linier antara persentase tutupan karang hidup Y 1 dan DCA Y 2 terhadap spesies-spesies ikan herbivora C. microrhinos X 1 , S. rivulatus X 2 , dan S. doliatus X 3 . a Y 1 vs X 1 ANOVA df SS M S F Significance F Regression 1 1358.755 1358.755 7.914427 0.018372 Residual 10 1716.808 171.6808 Total 11 3075.564 t St at = 2.81326 t Tab = 2.22814 P-value = 0.018 selang kepercayaan 95, a=0.05 Grafik fungsi regresi b Y 1 vs X 2 ANOVA df SS M S F Significance F Regression 1 1135.044 1135.044 5.849172 0.036154 Residual 10 1940.52 194.052 Total 11 3075.564 t St at = 2.41851 t Tab = 2.22814 P-value = 0.036 selang kepercayaan 95, a=0.05 Grafik fungsi regresi 117 Lampiran 14 lanjutan c Y 1 vs X 3 ANOVA df SS M S F Significance F Regression 1 1835.12 1835.12 14.79405 0.003232 Residual 10 1240.444 124.0444 Total 11 3075.564 t St at = 3.84630 t Tab = 2.22814 P-value = 0.003 selang kepercayaan 95, a=0.05 Grafik fungsi regresi d Y 2 vs X 1 ANOVA df SS M S F Significance F Regression 1 581.6586 581.6586 5.23359 0.04519 Residual 10 1111.395 111.1395 Total 11 1693.054 t St at = 2.2877 t Tab = 2.22814 P-value = 0.045 selang kepercayaan 95, a=0.05 Grafik fungsi regresi 118 Lampiran 14 lanjutan e Y 2 vs X 2 ANOVA df SS M S F Significance F Regression 1 602.1967 602.1967 5.520399 0.040672 Residual 10 1090.857 109.0857 Total 11 1693.054 t St at = 2.34955 t Tab = 2.22814 P-value = 0.040 selang kepercayaan 95, a=0.05 Grafik fungsi regresi f Y 2 vs X 3 ANOVA df SS M S F Significance F Regression 1 747.9552 747.9552 7.914044 0.018374 Residual 10 945.0986 94.50986 Total 11 1693.054 t St at = 2.81319 t Tab = 2.22814 P-value = 0.018 selang kepercayaan 95, a=0.05 Grafik fungsi regresi Lampiran 15. Contoh keanekaragaman spesies karang dalam 1 satu petakan transek kuadrat ukuran 1m x 1m dari photo bawah air di lokasi penelitian Keterangan: Mellepora sp. a, Porites mayeri b, Acropora humilis c, Acopora formosa d, Acropora formosa e, Acropora gemmifera f, Fungia fungites g, Acropora acuminata h, Diploastrea heliopora i. a b b c f h e d g i ABSTRACT DEDY DAMHUDY. Coral Reef Health Condition based on Herbivorous Fish Density in Pulau Tiga Subdistrict, Natuna District. Under direction of M. MUKHLIS KAMAL, and YUNIZAR ERNAWATI The research was conducted in Pulau Tiga Subdistrict, Natuna District, Riau islands Province from April to August 2009. Pulau Tiga is an area dominated by a sea area with marine resource potential, particularly coral reefs. Around the area of coral reefs, fishing activities have been carried out intensively by fishermen using explosives bombs and toxic potassium. Consequently, aquatic ecosystems have been exploited, take time to make a natural recovery in order to maintain and restore the quality and quantity of available resources. Especially for coral reef ecosystem, one of the factors that influence the resilience rate is the availability of hard substrate in a bottom waters as a settlement for coral larvae. Herbivorous animal has a major influence in determining the rate of coral reef animal larval settlement on a substrate because it can prevent the occurrence of a macro-algae excessive closure of hard substrate. This study was aimed to know the relationship between the conditions of the abundance of herbivorous fish with coral reef recovery rate. The methods used were the square transect for determining the condition of coral reefs, growth of juvenile corals and algae cover DCA, whereas for the determination of herbivorous fish community structure using modification of Line Intercept Transect LIT, Quadrat Method QM and Underwater Fish Visual Census UVC. The analysis used was standard ecological analysis, correlation test, linier regression and multivariate analysis to find the relationship between the abundance of herbivorous fish, algae DCA and coral reefs. The results showed that coral reefs ecosystem in the area are still in good condition with live coral cover average of 63.17, and shown an indication of an increase in the percentage of coral cover which previously 25. The result of multivariate analysis can be stated that the higher the abundance of herbivorous fish, then live coral cover and growth of juvenile corals increasing, and decreasing algae cover on coral reef ecosystems. The results of correlation test, multivariate analysis and linear regression t-Student test, show that from 24 species of herbivorous fish recorded then obtained three species of herbivorous fish that play a role in herbivory in stabilizing coral reefs ecosystem in Pulau Tiga Subdistrict, they are Chlorurus microrhinos, Scarus rivulatus and Siganus doliatus. Keywords: herbivorous fish, herbivory, DCA dead coral with algae, coral reef health, coral growth, Pulau Tiga RINGKASAN DEDY DAMHUDY. Kondisi Kesehatan Terumbu Karang berdasarkan Kelimpahan Ikan Herbivora di Kecamatan Pulau Tiga Kabupaten Natuna. Dibimbing oleh M. MUKHLIS KAMAL dan YUNIZAR ERNAWATI. Pulau Tiga sebagai salah satu kecamatan di Kabupaten Natuna merupakan kawasan yang didominasi oleh wilayah laut dengan sumberdaya laut yang sangat potensial, khususnya terumbu karang. Di sekitar kawasan terumbu karang, kegiatan penangkapan ikan telah dilakukan secara intensif oleh nelayan lokal dan nelayan luar dengan menggunakan bahan peledak bom dan beracun biuspotas. Konsekuensinya, ekosistem perairan yang telah dieksploitasi di daerah tersebut, membutuhkan waktu untuk melakukan pemulihan secara alami agar dapat mempertahankan dan mengembalikan kualitas dan kuantitas sumberdaya yang tersedia. Khusus untuk ekosistem terumbu karang, salah satu faktor yang mempengaruhi tingkat pemulihannya adalah tersedianya substrat keras di suatu dasar perairan sebagai tempat penempelan larva hewan karang. Biota herbivora mempunyai pengaruh besar dalam menentukan laju penempelan larva hewan karang pada suatu substrat karena dapat mencegah terjadinya penutupan makroalga yang berlebihan terhadap substrat keras. Di antara berbagai biota herbivora laut, jenis-jenis ikan herbivora yang dijadikan indikasi kesehatan ekosistem laut umumnya berasal dari tiga suku yaitu suku Siganidae, Scaridae, dan suku Acanthuridae. Adapun tujuan yang ingin dicapai dalam penelitian ini adalah mengetahui kelimpahan dan keanekaragaman jenis ikan herbivora, mengetahui hubungan antara struktur benthik dan struktur komunitas ikan ikan karang non-herbivora dan herbivora, mengetahui hubungan antara kondisi kelimpahan jenis-jenis ikan herbivora dengan tingkat pemulihan terumbu karang, dan merumuskan rekomendasi untuk arahan pengembangan pengelolaan ekologi terumbu karang dan ikan karang secara terpadu dan berkelanjutan. Hasil dari penelitian ini diharapkan dapat menjadi acuan dalam pengembangan pengelolaan ekologi terumbu karang dan ikan karang secara berkelanjutan dan konsep penangkapan ikan yang lestari bagi nelayan setempat. Penelitian ini dilaksanakan di perairan Kecamatan Pulau Tiga Kabupaten Natuna Propinsi Kepulauan Riau. Waktu pelaksanaan penelitian dilaksanakan selama 5 lima bulan yaitu dimulai pada bulan April sampai dengan Agustus 2009. Metode pengumpulan data yang digunakan dalam penelitian ini adalah metode survei untuk mengumpulkan data primer dan data sekunder dengan penelusuran literatur. Metode yang digunakan untuk penentuan kondisi terumbu karang, persentase tutupan alga dan pertumbuhan karang muda adalah transek kuadrat dengan penentukan luasan areal pengamatan secara permanen yaitu 10 m x 10 m, yang dimodifikasi dengan metode transek garis menyinggung sepanjang 70 meter sejajar garis pantai. Pengukuran untuk menentukan tingkat pertumbuhan karang baru, dengan menghitung sebaran koloni karang muda dari jenis Acropora spp. ukuran diameter: 1 - 30 cm. Sedangkan pengukuran ikan herbivora dilakukan dengan menggunakan modifikasi dari metode transek garis menyinggung, transek kuadrat dan sensus visual ikan bawah air. Analisis yang digunakan adalah secara kualitatif dan kuntitatif, yaitu analisis ekologi standar, uji korelasi, regresi linier dan analisis multivariate untuk menent ukan hubungan antara kelimpahan ikan herbivora, tutupan karang hidup dan tutupan alga kategori DCA. Hasil yang diperoleh menunjukkan bahwa persentase tutupan terendah berada pada stasiun 1 yang termasuk dalam lokasi yang mewakili daerah relatif terganggu 40,48 dan tertinggi pada stasiun 3 yang termasuk dalam lokasi yang mewakili daerah yang relatif tidak terganggu 74,07 dengan rata-rata persentase tutupan sebesar 63,17 atau termasuk dalam kategori ”baik”. Pertumbuhan koloni karang muda diperoleh panjang rata-rata diameter koloni antara 16,00 – 17,26 cm dengan persentase tutupan antara 2,77 - 4,25 dan jumlah rata-rata koloni per transek per 100 m 2 antara 100 – 200 koloni. Sebaliknya, tutupan alga DCA tertinggi ditemukan pada stasiun 1 34,83 dan terendah pada stasiun 3 13,28. Jumlah jenis ikan herbivora yang diperoleh selama penelitian adalah sebanyak 24 spesies. Dari jumlah 203 individu yang terdata, total rata-rata kelimpahan ikan herbivora di seluruh stasiun berjumlah 1.450 individuha atau 5,01 dari total kelimpahan ikan karang, dengan perbandingan antara suku ikan herbivora, kelimpahan tertinggi adalah dari suku Scaridae 864 individuha 57,35, kemudian diikuti oleh Siganidae 350 individuha 23,22 dan Acanthuridae 236 individuha 15,64. Hasil analisis multivariate terhadap hubungan antara kelimpahan ikan herbivora, tutupan karang hidup dan tutupan alga kategori DCA menunjukkan bahwa alga berkorelasi negatif terhadap kelimpahan ikan herbivora, tutupan karang hidup dan pertumbuhan karang muda. Sedangkan berdasarkan hasil uji korelasi, regresi linier dan analisis multivariate, terseleksi tiga jenis ikan yang memiliki hubungan kelimpahan signifikan terhadap tutupan karang hidup dengan korelasi positif yaitu C. microrinos t hit 2,813t tab 2,228, P=0,018, S. rivulatus t hit 2,418t tab 2,228, P=0,036, dan S. doliatus t hit 3,846t tab 2,228, P=0,003 dan signifikan terhadap tutupan alga DCA dengan korelasi negatif yaitu C. microrinos t hit 2,288t tab 2,228, P=0,045, S. rivulatus t hit 2,349t tab 2,228, P=0,041 dan S. doliatus t hit 2,813t tab 2,228, P=0,018. Implikasi bagi pengelolaan terumbu karang di Kecamatan Pulau Tiga dengan melakukan beberapa langkah strategi yang meliputi: a melakukan pelarangan terhadap praktek penangkapan ikan yang merusak lingkungan, b mempertahankan kualitas perairan yang mendukung kesehatan dan pertumbuhan terumbu karang, c mempertahankan dan meningkatkan kelimpahan dan keanekaragaman ikan- ikan herbivora, d pelarangan pengambilan karang hidup dan karang mati, dan e melakukan rekayasa lingkungan. Kata kunci: ikan herbivora, herbivori, DCA karang mati yang ditutupi alga, kesehatan terumbu karang, pertumbuhan karang muda, Pulau Tiga. 1 PENDAHULUAN

1.1 Latar Belakang