Slide TSP302 DinamikaStr PengRekGempa TSP 302 P11

a home base to excellence
Mata Kuliah
Kode
SKS

: Dinamika Struktur & Pengantar Rekayasa Kegempaan
: TSP – 302
: 3 SKS

Earthquake Analysis of Linear MDoF System
Pertemuan – 11

a home base to excellence






TIU :
Mahasiswa dapat menjelaskan fenomena-fenomena dinamik secara fisik.

Mahasiswa dapat membuat model matematik dari masalah teknis yang ada
serta mencari solusinya

TIK :


Mahasiswa dapat menghitung respon struktur MDoF akibat beban
gempa bumi

a home base to excellence


Sub Pokok Bahasan :
 Persamaan Gerak Sistem MDoF Akibat Beban Gempa Bumi
 Analisis Riwayat Waktu
 Analisis Spektrum Respon

a home base to excellence

a home base to excellence








Equation of Motion

mu  cu  k u  m1u t 

With

1
1
1  1

1

Introducing the modal analysis equation ,

u  f q
and pre-multiply with [f]T

g

a home base to excellence
f  mf q  f  cf q  f  k f q  f  m1u t 
T

T

T

T

g

Mn
Mn
Cn

Kn
Ln

Cn

Kn

= Generalized Mass
= Generalized Damping
= Generalized Stiffness
= Earthquake Excitation Factor



Ln
 Modal Participation Factor
Mn

Ln
 effective modal mass

Mn
2

Ln

(1)

a home base to excellence


qn  2 nn qn  n qn  nug t 

Dividing Eq.(1) by Mn, gives :
2

qn t   n Dn t 

(3)

Dn  2 nn D n  n 2 Dn  ug t 


(4)



Let



Eq. (2) becomes :



(2)

The qn(t) is readily available once Eq.(4) has been solved for
Dn(t), utilizing numerical time stepping methods for SDF
systems.

a home base to excellence


u t   f q t    f D t 

Response History Analysis

 f n t   n mfn An t 
n

n

n

n

n

n

(5)
(6)


Response Spectrum Analysis

u jn  nf jn Dn

f jn  n m jf jn An

(7)

(8)

a home base to excellence

W2 = 24.000 kgf
W10x21

W10x21

f   ff11


21

2  38,28

3m

u1
W10x45

1  10,76


u2

W1 = 11.600 kgf

W10x45

Example 1
 Determine :

1.
Equations for the floor
displacement and the story
shears for the shear frame in
figure subjected to ground
motion üg(t)
2.
Plot the time history of the
floor displacement if the shear
frame subjected to El Centro
1940 N-S Ground Motion

4,5 m

f12  0,6809  3,0385

1 
f22   1