Group Events G1 a

  

Individual Events

  99 I1 P

40 I2 P

  I3 P

  12 I4 P

  4 100

  Q

  72 Q

  1 Q

  1 Q

  8 R 648 R

  3 R 615 R

  4

  1 S

  40.5 S S

  60 S

  10

  12 Group Events

  G1 a

  21 G2 a

  24 G3 a 2005 G4 a 4032

  b

  2.5 b 52 b 2 b

  2

  c

  19 c 2005003 c 649 c

  1

  d 300 d

  3 d 8 d

  2

  ° Individual Event 1

  I1.1 In the following figure, ABCD is a square of length D A

  10 cm. AEB , FED and FBC are straight lines. The area of

  

2

AED FEB ∆ is larger than that of ∆ by 10 cm . If the area

  2 of DFB is P cm , find the value of P .

  ∆ Let the area of BDE be x .

  ∆ E

  AED x BEF x

  • Then area of ∆ – (area of ∆ ) = 10 + area of ABD – area of BDF = 10

  ∆ ∆ F

  1 C 10 10 – area of BDF = 10 B

  ⋅ × ∆

  2 area of BDF = 40

  ∆ Method 2

  Area of ADE – area of BFE = 10 (given)

  ∆ ∆ ⇒

  Area of ADE + area of AEF – area of BFE – area of AEF = 10

  ∆ ∆ ∆ ∆ ⇒

  Area of ADF – area of AFB = 10

  ∆ ∆

  1

  ⇒ ⇒

  10 10 – area of DFB = 10 Area of DFB = 50 – 10 = 40

  ⋅ × ∆ ∆

  2 I1.2

  Q

  Workman A needs 90 days to finish a task independently while workman B needs days for the same task. If they only need P days to finish the task when working together, find the value of Q .

  1

  1

  1

  = + Q

  90

  40 Q = 72

  D

  I1.3 In the following figure, AB CD , the area of trapezium ABCD is //

  2

  2 R cm . Given that the areas of ABE and CDE are Q cm and ∆ ∆

  A

  2 4Q cm respectively, find the value of R.

  Reference: 1993 HI2, 1997 HG3, 2000 FI2.2, 2004 HG7, 2010HG4, 2013 HG2 E

  It is easy to show that ABE ~ CDE (equiangular)

  ∆ ∆

  2

  2 ⇒

  Q : 4Q = (AB) : (CD) AB : CD = 1 : 2 B AE

  : EC = AE : EC = BE : ED = 1 : 2 (ratio of sides, ~ 's)

  ∆ C

  S AEB : S AED = BE : ED = 1 : 2 (the 2 s have the same heights) ∆ ∆ ∆

  SAED = 2Q SAEB : SBEC = AE :EC = 1:2 (the 2 s have the same heights) ∆

  S = 2QBEC

  S ABCD = Q + 4Q + 2Q + 2Q = 9Q = 648 R = 648

  I1.4 In the following figure, O is the centre of the circle, HJ and IK are diameters and HKI = S .

  ∠ ° J K

  1

+ + Given that HKI HOI HJI = R , find the value of S .

  ∠ ∠ ∠ °

  4 S

  °

  1

  • 2 S = 648 + S S

  ° ° × ° ° O

  4

  ce ⇒

  4 S =162 ( at centre = 2 at ⊙ )

  ° ° ∠ ∠ S = 40.5

  I H Individual Event 2

  1

  1

  1

  1 I2.1 Given that P = L , find the value of P .

  1

  2

  2

  3

  3

  4 99 100

  × × × ×

  1

  1

  1

  1

  1

  1

  1 P L = 1 − − − −

  2

  2

  3

  3

  4 99 100

  1

  99 = 1 =

  −

  100 100 2 3

  99

  99

  99 I2.2 Given that 99 Q = P (1 + ), find the value of Q . + + +

  × … 2 3 2 100 100 100 3

  99

  99

  99

  99

  99 Q = (1 + ) + + +

  × … 2 3

  100 100 100 100

  99

  1 =

  99

  × = 99

  100

  1

  − 100 Q = 1 2

  2 x

  2 Rx R

  

I2.3 Given that x and R are real numbers and Q for all x , find the maximum

2x x

  4

  6

  3

  • value of R .

  2

  2

  4 x + 6 x + 3 = (2 x + 1.5) + 0.75 > 0 2

  x Rx R

  2

  2

  1 2 ≤ 4 x 6 x

  3

  2

  2 x Rx R x x

  2 + 2 4 + 6 + 3

  • 2

  ≤

  2 x + 2(3 – R ) x + 3 – R

  ≥ ∆ ≤

  2

  (3 – R ) – 2(3 – R )

  ≤ R R

  (3 – )(1 – ) ≤

  1 R

  3

  ≤ ≤

  The maximum value of R = 3 R R 2 I2.4 Given that S = log 144 2 + log 144 R , find the value of S .

  2 log

  3 2 log 2 log 3 log 12 log

  12

  1 1 1 3 6

  • log
  • S =

  = = = = 2

  log 144 log 144 6 log 144 6 log

  12 12 log

  12

  12 Method 2 R R 2 S R = log 144 3 2 + log 144 6

  = log 144 (

  2 3 ) 6 ⋅ = log 144 (

  12 ) 12

  1 = log 144 ( 144 ) =

  12

  Individual Event 3

  I3.1 A rectangular piece of paper is folded into the A

  1

  following figure. If the area of ABC is

  3 B

  P cm

  of the area of the original rectangular piece of 4 cm paper, find the value of P .

  C BC P AC ACB

  = – 4, = 10, = 90

  ∠ ° P

  4

  10

  1

  − ⋅ ( )

  P = × ×

  10

  2

  3 10 cm

  ⇒

  P = 12

  P x x

  • xx

  

I3.2 If Q is the positive integral solution of the equation (4 + 4 ) – 35(2 + 2 ) + 62 = 0, find

  2 the value of Q. xx

  2 xx

  Let t = 2 + 2 , then t = 4 + 4 + 2 xx

  2 ⇒

  4 + 4 = t – 2

2 The equation becomes 6(t – 2) – 35t + 62 = 0

  2

  6t – 35t + 50 = 0 (2t – 5)(3t – 10) = 0

  5

  10

  t = or xx

  2

  3 5 xx 10 2 + 2 = or 2 + 2 = x x

  2

  3

  1

  5

  1

  10 2 or

  2 x x = = + + x x x x

  2

  2

  2

  3

  2

  2

  2(2 ) + 2 = 5(2 ) or 3(2 ) + 3 = 10(2 ) x x x x

  2

  2

  2(2 ) – 5(2 ) + 2 = 0 or 3(2 ) – 10(2 ) + 3 = 0 x x x x (2 ⋅ x 2 – 1)(2 – 2) = 0 or (3 ⋅ 2 – 1)(2 – 3) = 0

  1

  1 2 = , 2, or 3

  2

  3 For positive integral solution x = 1; Q = 1 I3.3 Let [a] be the largest integer not greater than a. For example, [2.5] = 2.

  If R = [

  1 ] + [ 2 ] + + [

99 Q ], find the value of R.

  … R = [ 1 ] + [ 2 ] + + [ 99 ] =

  1

  1

  1

  2

  2

  3

  3 L

  9

  9

  …

  1 L

  42 5 times

  4

  3

  1 L

  42 7 times

  4

  3

  1 L

  42 19 times

  4

  3 R = 3 × 1 + 5 × 2 + 7 × 3 + … + 19 ×

  9 R = (2 1+1) 1 + (2 2+1) 2+(2 3+1) 3 + + (2 9+1)

  9

  × × × × × × … × ×

  2

  2

  2

  2 R = 2

  1 + 1 + 2 2 + 2 + 2 3 + 3 + + 2 9 + 9

  × × × … ×

  2

  2

  2

2 R

  = 2 (1 + 2 + 3 + 9 ) + (1 + 2 + 3 + + 9)

  × … …

  1

  1

  9

  9 R = 2 × ⋅

  9

  9

  1 2 ×

  9

  1 = 3 × 10 × 19 + 45 = 570 + 45 = 615

  ( )( ) ( )

  6

  2 I3.4 In a convex polygon, other than the interior angle A, the sum of all the remaining interior angles is equal to 4R . If ∠ A = S , find the value of S.

  ° ° Reference: 1989 HG2, 1990 FG10.3-4, 1992 HG3, 2013 HI6

  4 615 + S = 180 (n – 2)

  × × S = 180(n – 2) – 2460 Q The polygon is convex ∴ S < 180. S = 180(14) – 2460 = 60

  Individual Event 4

   

  5

  1

  2 2002

   

  I4.1 f Given that f (x) = (x + x − 2) + 3 and = P, find the value of P.

  −

   

  2

  2  

  5

  1

  x

  =

  −

  2

  2

  ⇒

  2x =

  5

  1

  − ⇒

  (2x + 1) = 5

  2 ⇒

  (2x + 1) = 5

  2 ⇒

  4x + 4x – 4 = 0

  2 ⇒

  x + x = 1

  2 2002 2002 f (x) = (x + x 2) + 3 = (1 2) + 3 = 1 + 3 = 4

  − −

  I4.2 In the following figure, ABCD is a rectangle. E and F are A D

  points on AB and BC respectively. The areas of triangles

  P AED , EBF and FCD are P, 3 and 5 respectively. If the

  E area of EFD is Q, find the value of Q.

  ∆ Let AE = x, CF = y, AD = b, CD = a.

  5

  3 Then BE = ax, BF = by B F C

  ⇒

  Given the area of ADE = 4 bx = 8 ………..(1)

  ∆ ⇒

  the area of CDF = 5 ay = 10……….(2)

  ∆ ⇒

  The area of BEF = 3 (ax)(by) = 6

  ∆ ⇒

  abbxay + xy = 6 ……..(3) Sub. (1), (2) into (3) ab – 8 – 10 + xy = 6

  80

  18

  6

  − = ab

  • Sub. (1), (2) into the equation again: ab

  Solving for ab, ab = 20 or 4 (rejected) The area of DEF = 20 – 3 – 4 – 5 = 8

  ∆ Q = 8

  

I4.3 It is given that x and y are positive integers. If the number of solutions (x, y) of the inequality

  2

  2 x + y Q is R, find the value of R. (Reference: 2007 FG1.2)

  ≤

  2

  2 x + y

  8

  ≤ ⇒

  (x, y) = (1, 1), (1, 2), (2, 1), (2, 2)

  R = 4

  2 I4.4 It is given that and are roots of the equation x ax + a R = 0, where a is real.

  α β − −

  2

2 If the minimum value of ( + 1) + ( + 1) is S, find the value of S.

  α β

  2

  • x ax + a 4 = 0; = a, = a

  4

  − − α β α β −

  2

  2

  2

  2

  ( +1) + ( +1) = + 2 + 1 + + 2 + 1

  α β α α β β

  2

  = ( ) 2 + 2( ) + 2 + +

  α β − αβ α β

  2

  

2

  = a 2(a 4) + 2a + 2 = a + 10

  10

  − − ≥ The minimum value is S = 10.

  Group Event 1

  2

2 G1.1 Assume that the curve x + 3y = 12 and the straight line mx + y = 16 intersect at only one

  2 point. If a = m , find the value of a.

  2

2 Sub. y = 16 mx into x + 3y = 12

  −

  2

  2 ⇒ x

  • 3(16 − mx) = 12

  2

  2

  2 x + 3(256 32mx + m x ) = 12

  −

  2

  2 ⇒ (1 + 3m )x 96mx + 756 = 0

  −

  2

  2 The straight line is a tangent ⇒ = ( 96m) 4(1 + 3m )756 = 0 ∆ − −

  2

  2 576m 189(1 + 3m ) = 0

  −

  2

  2 ⇒ 64m 21(1 + 3m ) = 0

  −

  2 ⇒ m = 21 ⇒ a = 21

  2

  2

  3

  3 G1.2 It is given that x + y = 1 and x + y = 2. If x + y = b, find the value of b.

  Reference: 2011 FI2.2

  2

  2

  2 (x + y) = 1 ⇒ x + y + 2xy = 1 ⇒ 2 + 2xy = 1

  1

  ⇒ xy = −

  2

  3

  3

  = + b x y

  2

  2

  • x + = ( x y )( y xy )

  −

  1

  5 = 1(2 + ) =

  2

  2 AC AD AE ED DB

  G1.3 In the following figure, = = = = A

  and BEC = c . Given that BDC = 26 and

  ∠ ° ∠ ° ADB = 46 , find the value of c . ∠ °

  B ADE is an equilateral triangle.

  ∆

DAE ADE AED

  ∠ = ∠ = ∠ = 60 ° E

  Q BD = DE and BDE = 46 + 60 = 106 ∠ ° ° °

  BED = (180 – 106 ) 2 = 37 ( s sum of ) ∴∠ ° ° ÷ ° ∠ ∆

  AEB ∠ = 60 ° – 37 ° = 23 °

  C ADC = 26 + 46 = 72 ∠ ° ° °

  D Q AC = AD and ADC = 72 = ACD (base , isos. )

  ∠ ° ∠ ∠ ∆ CAD = 180 – 72 2 = 36 ( s sum of )

  ∴ ∠ ° °× ° ∠ ∆ Q AC = AE and CAE = 36 + 60 = 96

  ∠ ° ° ° AEC = (180 – 96 ) 2 = 42 ( s sum of )

  ∴ ∠ ° ° ÷ ° ∠ ∆ CED = 60 – 42 = 18

  ∠ ° ° ° BCE = 60 – 18 – 23 = 19

  ∠ ° ° ° ° c = 19

  4

2 G1.4 It is given that 4 cos + 5 sin – 4 = 0, where 0 < < 360 . If the maximum value of is

  θ θ ° θ ° θ d d , find the value of .

  4

  2

  4

  2

  4

  2 ⇒ ⇒

  4 cos + 5 sin – 4 = 0 4 cos + 5(1 – cos ) – 4 = 0 4 cos – 5 cos + 1 = 0

  θ θ θ θ θ θ

  2

  2

  (4cos – 1)(cos – 1) = 0

  θ θ

  2

  1 cos = or 1

  θ

  4

  1

  1

  ⇒ cos = , , 1 or –1.

  θ −

  2

  2 = 60 , 300 , 120 , 180 , 240 .

  θ ° ° ° ° °

  The maximum value of θ = 300 °

  d = 300 °

  Group Event 2 G2.1 It is given that the lengths of the sides of a triangle are 6, 8, and 10.

  If the area of the triangle is a, find the value of a.

  2

  2

  2 6 + 8 = 36 + 64 = 100 = 10 It is a right angled triangle.

  The area of the triangle = 6 8 2 = 24 × ÷ a = 24

   

  1 3

  1 G2.2   Given that f x x and f (4) = b, find the value of b.

  = + + 3

   

  x x Reference: 1987 FG8.2, 2002 HI10

  1

  • Let y = x
  • 2 x

      1

      y – 2 = x 2 x

    • 2

          3

      1

      1 2

      1    

      x x x

      1 3 = − + + + 2    

      x x x

      2

      3

      = y(y – 3) = y – 3y

      3 f (y) = y – 3y

      3 b = f(4) = 4 – 3(4) = 52

      2

      2

      2

      2

      2

      2

      2

      2 + G2.3 Given that 2002 – 2001 + 2000 – 1999 + 4 – 3 + 2 – 1 = c, find the value of c.

      … Reference: 1997 HI5, 2004 HI1, 2015 FI3.2, 2015 FG4.1 c = (2002+ 2001)(2002 – 2001) + (2000 + 1999)(2000 – 1999) + + (4+3)(4–3) + (2+1)(2–1)

      … c = 4003 + 3999 + + 7 + 3

      …

      3 = 1001 = 2005003

    • 4003

      ×

      2 G2.4 PQRS is a square, PTU is an isosceles triangle, and

      P TPU = 30 . Points T and U lie on QR and RS ∠ °

      Q

      respectively. The area of PTU is 1. If the area of PQRS is

      ∆ d , find the value of d.

      Let PT = a = PU

      T

      1 2 o

      a

      sin 30 =

      1

      2

      ⇒

      a = 2

    PSU PQT (RHS)

      ∆ ≅ ∆ S R

      Let PS = x = PQ; SU = y = QT

      U SPU = QPT = 30 (corr. s ) ∠ ∠ ° ∠ ≅ ∆

      3

      x = PU cos 30 = 2

      3

      ° =

      2 2

      d

      = area of PQRS = 3 = 3

      Group Event 3 3 2

      2002 4 2002 6006

      × + + G3.1 If = a , find the value of a . 2 +

      2002 2002 2

      2002 2002 4 2002

      3 × + +

      ( ) a =

      1 ( )

    • 2002 2002

      1 2002

    • 2002

      3

      ( )( )

      =

    • 2002

      1 = 2005

      x G3.2 x y y It is given that the real numbers and satisfy the relation = .

      2 x

      1

      −

      1

      1

    • If the minimum value of is b, find the value of b.
    • 2 2 2 x y

        1

        1

        1 2 x

        1

        − ( )

        = 2 2 2 + + 2

        x y x x 2

        4 x 4 x

        2

        − +

        = 2 2 x 4 x 4 x

        2

        − +

        Let T = 2

        x

        2

      2 Tx = 4x – 4x + 2

        2

        (T – 4)x + 4x – 2 = 0

        2

        = 4 + 4 2(T – 4)

        ∆ × ≥

        2 + T – 4

        ≥ ⇒

        T

        2

        ≥

        The minimum value is 2

        b = 2

      G3.3 Suppose two different numbers are chosen randomly from the 50 positive integers 1, 2, 3, … ,

        50, and the sum of these two numbers is not less than 50. If the number of ways of choosing these two numbers is c, find the value of c.

        Reference: 2011 FG2.2

        Possible combinations may be: (1, 49), (1, 50), (2, 48), (2, 49), (2, 50), (3, 47), (3, 48), (3, 49), (3, 50), .................................................

        (24, 26), (24, 27), … , (24, 50), (25, 26), (25, 27), … , (25, 50), (26, 27), … , (26, 50) ..................................

        (49, 50) Total number of combinations = (2 + 3 + … + 25) + 25 + (24 + 23 + … + 1)

        = (1 + 2 + … + 24) 2 + 24 + 25

        ×

        = 25 × 24 + 49 = 649

        2

        2

        2 G3.4 Given that xy = 1 + 5 , yz = 1 – 5 . If x + y + z xy yz zx = d, find the value of d.

        − − −

        2

        2

        2

        2

        2

        2

        2d = (xy) + (yz) + (zx) = (1 + 5 ) + (1 – 5 ) + [(zy) – (xy)]

        2

        2d = 1 + 2 5 + 5 + 1 – 2 5 + 5 + [–1 + 5 – (1 + 5 )] = 12 + 4 = 16

        d = 8

        Group Event 4 G4.1 If a is the sum of all the positive factors of 2002, find the value of a. Reference 1993 HI8, 1994 FI3.2, 1997 HI3, 1998 HI10, 1998 FI1.4, 2005 FI4.4 2002 = 2

        7

        11

        13 × × × a b c d

        The positive factors may be 2

        7

        11 13 , where 0 a, b, c, d 1 are integers.

        ≤ ≤ The sum of all positive factors are (1 + 2)(1 + 7)(1 + 11)(1 + 13) = 3

        8 12 14 = 4032 = a × × ×

        2 x xy 3 y

        G4.2 It is given that x &gt; 0, y &gt; 0 and x ( x y ) 3 y ( x 5 y ) . If b = , = + +

      • x xy y

        − find the value of b. x ( x y ) 3 y ( x 5 y )

      • =

        ⇒ x + xy = 3 xy + 15yx – 2 xy – 15y = 0

        3 y x 5 y − =

      • x

        ( )( ) ⇒ x 5 y and x = 25y

        = 2 2 x xy 3 y 50 y 25 y 3 y

      • 58 y

        b = = = = 2

        29 −

      • 2

        25 y 25 y yb = 2 G4.3 Given that the equation | |x – 2| – 1| = c has only 3 integral solutions, find the value of c.

      • y

        x xy y

        Reference: 2005 FG4.2, 2009 HG9, 2012 FG4.2 |x – 2| – 1 = c

        ± ⇒ |x – 2| = 1 c

        ± In order that it has only 3 integral solutions c

        = 1      

        

      1

        1

        1

        1 2 G4.4x  If d is the positive real root of the equation 

        2

        2 2  2 ,   =

         

        

      2

      2 

        2 2    find the value of d.

             

        1

        1

        1

        1 2    x

        2

        2 2 

        2

      • =

            2 2 

        2 2       

         

        1

        1

        1 2 ⇒    x

        2

        2 2 

        4

      • =

            2 

        2 2       

        1

        1

        1 2 ⇒   x

        2

        2

        2

      • =

            2 

        2 2     

        1

        1 2   x

        2

        2

        4

      • =

            

        2 2 

         

        1

        1 2 +

        ⇒

         

        x

        2

        2

        =

         

        2

        2

        1 2 + ⇒

        x

        2

        4

        =

        2

        1 2

        x

        2

        =

        2

        2

        ⇒ x = 4 ⇒ x =

        2

        ± d

        = the positive real root = 2