I3 Find the number of sides of a regular polygon if an interior angle exceeds an exterior angle by

  1

  7

  2 24 12 km/h

  1

  2

  

3

  4

  5

  2

  88-89

  45 45 –4

  2

  12

  6

  7

  

8

  9

  10 Individual

  5

  11 12 147

  

13

  3

  14

  2

  15

  24

  12

  16

  12

  17 6 : 25

  

18

  24

  19 230

  20

  12

  9 3 7 6585 (12, 20)

  1

  2

  

3

  4

  5 88-89

  20

  2 Group

  12

  6

  43

  7 480

  

8

  9

  5

  10 110768

  5 Individual Events

  1

  1

2 I1 Given that x 3 , find x .

  = + +

  2 x x

  

Reference: 1983 FG7.3, 1984 FG10.2, 1985 FI1.2, 1987 FG8.2, 1990 HI12, 1997 HG7

2

   

  1

  1

  2 x =  x

  2

  2

   

  x x

  2

  = 3 – 2 = 7 I2 If x # y = xy – 2 x , find the value of 2 # 3. 2 # 3 = 2 3 – 2 2 = 2

  × ×

  

I3 Find the number of sides of a regular polygon if an interior angle exceeds an exterior angle by

  150 . (Reference 1997 HG6)

  °

  Let x be the size of each interior angle, y be the size of each exterior angle, n be the number of sides.

  o o

  180 n 2 360

  − ( ) x = , y = n n x = y + 150

  ° o o

  180 n 2 360

  − ( )

  = + 150

  ° n n

  180( n – 2) = 360 + 150 n 18 n – 36 = 36 + 15 n

  ⇒ n = 24

  10 8 b 5 . log 10 9 = 9 = 8 b + 5

  • I4 Find the value of b such that

  1

  ⇒ b =

  2 I5 A man cycles from P to Q with a uniform speed of 15 km/h and then back from Q to P with a uniform speed of 10 km/h. Find the average speed for the whole journey.

  Let the distance between P and Q be x km.

  x x

  • Total distance travelled = 2 x km. Total time = hour.

  15

  10 2 x Average speed = km/h

  x x

  • 15

  10

  2 = = 12 km/h

  3

  • 2

  30

  I6 [x] denotes the greatest integer less than or equal to x. For example, [3] 3, [5.7] 5.

  = =

  5

  5

5 If

  1 2 n n 14 , find n.

  = + + + +

  L

  [ ] [ ] [ ] Reference 1991 HI13 5 5 5 5 5 5

  1 = 1, 2 = 1, , 31 = 1; 32 = 2, , 242 = 2; 243 = 3

  … … [ ] [ ] [ ] [ ] [ ] [ ] 5 5 5 If n 31,

  1 2 n = n

  ≤ L + + + [ ] [ ] [ ] 5 5 5

  1 2 n = 31 + 2(n – 31) = 2n – 31

  ≤ ≤ L + + [ ] [ ] [ ]

  • If 32 n 242,

  2n – 31 = n + 14

  ⇒

  n = 45

  

I7 A boy tries to find the area of a parallelogram by multiplying together the lengths of two

  adjacent sides. His answer is

  2 times the correct area. If the acute angle of the

  parallelogram is x , find x. (Reference: 1991 FSG.3-4)

  ° Let the lengths of two adjacent sides be a and b, where the angle between a and b is x .

  ° o ab 2 ab sin x

  =

  1 sin x =

  °

  2

  x = 45 I8 If the points A (–8, 6), B (–2, 1) and C (4, c) are collinear, find c.

  Reference: 1984 FSG.4, 1984 FG7.3, 1986 FG6.2, 1987 FG7.4 m = m

CB BA

  c

  1

  1

  6

  − − =

  4

  2

  2

  8

  − + + c = –4

  2 I9 The graphs of x + y = 8 and x + y = 8 meet at two points. If the distance between these two points is d , find d.

  2 From (1), y = 8 – x (3) ……

  From (2), y = 8 – x (4)

  ……

  2

  (3) = (4): 8 – x = 8 – x

  x = 0 or 1

  When x = 0, y = 8; when x = 1, y = 7 2 2

  1

  7 8 =

  2 −

  • Distance between the points (0, 8) and (1, 7) =

  ( ) d = 2

  

I10 The sines of the three angles of a triangle are in the ratio 3 : 4 : 5. If A is the smallest interior

x angle of the triangle and tan A , find x.

  =

  16 Reference: 1990 HI6 By Sine rule, a : b : c = sin A : sin B : sin C = 3 : 4 : 5 Let a = 3k, b = 4k, c = 5k.

  2

  2

  2

  2

  2

  2 a + b = (3k) + (4k) = (5k) = c C = 90 (converse, Pythagoras’ theorem) ∴ ∠ ° a

  3

  12 tan A =

  = = b

  4

  16

  ⇒

  x = 12

  

I11 Two dice are thrown. Find the probability that the sum of the two numbers shown is greater

than 7. (Reference: 2002 HG7) P ( sum > 7) = P(sum = 8 or 9 or 10 or 11 or 12)

  5

  4

  3

  2

  1

  =

  36

  36

  36

  36

  36

  15

  5 = =

  36

  12

  6

  1 Method 2 P (7) =

  =

  36

  6 P (2, 3, 4, 5, 6) = P (8, 9, 10, 11, 12)

  P (2, 3, 4, 5, 6) + P (7) + P (8, 9, 10, 11, 12) = 1

  5

  2 P (8, 9, 10, 11, 12) = 1 – P (7) =

  6

  5 P (8, 9, 10, 11, 12) =

  12

  2 x 1 , if x

  3

  ≤ I12 F is a function defined by F ( x ) . Find F F ( 3 ) .

   =

  2 ( )

  3 x , if x

  3

   > F (3) = 2 3 + 1 = 7

  ×

2 F ( F (3)) = F (7) = 3

  7 = 147

  ×     x

  14     I13 If a b cyax by cz and

  1

  2 3  y  26 , find y . (Reference: 1986 FI3.4) = = + +

  ( ) ( )     z

  2      

  14   ⇒

  1

  2 3  y  = 14 + 2 y + 6 = 26 y = 3 ( )

   

  2  

  1 sin 37 sin 45 cos 60 sin

  60

  ° ° ° ° I14 If , find B. =

  B cos

  30 cos 45 cos

  53

  ° ° ° Reference: 1990 HI14

  1 sin 37 sin 45 cos 60 sin

  60

  ° ° ° ° = B cos

  30 cos 45 cos

  53

  ° ° °

  sin 37 sin 45 cos 60 sin

  60

  1

  ° ° ° °

  = = cos 60 =

  °

  sin 60 sin 45 sin

  37

  2

  ° ° ° B = 2 I15 If x + y = –4, y + z = 5 and z + x = 7, find the value of xyz.

  Reference: 1989 HI15, 1990 HI7

  (1) + (2) – (3): 2y = –6 y = –3

  ⇒

  (1) + (3) – (2): 2x = –2 x = –1

  ⇒

  (2) + (3) – (1): 2z = 16 z = 8

  xyz = 24

2 I16 , are the roots of the equation x – 10x + c = 0. If = –11 and > , find the value of

  α β αβ α β .

  • – = 10
  • 2

      α β

      α β

    • α β α β − αβ

      = 2

      4

      ( )

      =

      10

      4 11 = 12

      − − ( )

      A I17 In figure 1, FE // BC and ED // AB. If AF : FB 3 : 2, find the

      = ratio area of DEF : area of ABC . Reference: 1990 HG8

      ∆ ∆ BDEF is a parallelogram formed by 2 pairs of parallel lines

      (A.S.A.)

    DEF FBD

      ∆ ≅ ∆ F E

      Let S DEF = x = S FBD (where S stands for the area) ∆ ∆

      AEF ~ ACB ∆ ∆ (Q FE // BC, equiangular) 2 B C

        S

      3

      9 ∆ AEF

      D   (1)

      = = ……

      2 3 

      25 ∆ ACB

    • S

      (Figure 1) AE : EC = AF : FB = 3 : 2 (theorem of equal ratio)

      ∴ Q DE // AB AE : EC = BD : DC = 3 : 2 (theorem of equal ratio) ∴

      ~ CDE CBA (Q DE // BA, equiangular)

      ∆ ∆ 2  

      S CDE

      2

      4 ∆

        (2) = = ……

      S CBA

      2

      3

      25 ∆

    •  

      Compare (1) and (2) S AEF = 9k, S CDE = 4k, S ABC = 25k ∆ ∆ ∆

      9k + 4k + x + x = 25k x = 6k DEF : area of ABC = 6 : 25 ⇒ area of

      ∆ ∆ I18 In figure 2, a regular hexagon ABCDEF is inscribed in a circle

      A F centred at O. If the distance of O from AB is

      2 3 and p is the perimeter of the hexagon, find p.

      2

      3 Let H be the foot of perpendiculars drawn from O onto AB.

      O B E AOB = 360 6 = 60 ( s at a point)

      ∠ ° ÷ ° ∠ AOH = 30

      ∠ °

    1 AH = OH tan 30 =

      2 3 = 2 ° ×

      3 D C AB = 4 (Figure 2)

      Perimeter = 6 4 = 24 ×

      A I19 In figure 3, ABCD and ACDE are cyclic quadrilaterals. Find the value of x + y.

      Reference: 1992 FI2.3 B x °

      50°

      ADC = 180 – x (opp. s cyclic quad.) ∠ ° ° ∠

      ACD = 180 – y (opp. s cyclic quad.) ∠ ° ° ∠

      E y ° 180 – y + 180 – x + 50 = 180 ( s sum of )

      ° ° ° ° ° ° ∠ ∆ x + y = 230

      (Figure 3) C D A I20 Find the value of a in figure 4.

      C AOB ~ DOC (equiangular)

      ∆ ∆

      2

      4 a

      6

      =

      4

      2 O

      a

      4 a = 12

      B

      6 D (Figure 4)

      Group Events

      2

      2 G1 Given a and b are distinct real numbers satisfying a = 5a + 10 and b = 5b + 10. Find the

      1

      1

    • value of .

      2

      2 a b

      Reference: 1991 HI14

      2

      2 a and b are the roots of x = 5x + 10; i.e. x – 5x – 10 = 0

    • b = 5; ab = –10

      a

      1 1 a b a b 2 ab

      5

      2

      10

      9 2 2 2 − − − 2

      ( ) ( )

    • = = = =
    • 2 2 2 2

        2

        2 a b

        20

        a b ab

        10

        − ( ) ( )

        

      G2 An interior angle of an n-sided convex polygon is x while the sum of other interior angles is

      °

        800 . Find the value of n. (1990 FG10.3-4, 1992 HG3, 2002 FI3.4, 2013 HI6)

        °

        800 = 180 4 + 80

        ×

        800 + x = 180(n – 2) s sum of polygon

        ∠

        0 < x < 180

        Q

        800 + x = 180 5 = 180(n – 2)

        ∴ × n = 7 n ( n

        1 )( 2 n 1 )

        2

        2

        …

        2

      + +

      G3 + It is known that 1 + 2 + n = for all positive integers n.

        6

        2

        2

        2 + Find the value of 21 + 22 + 30 .

        … Reference: 1993 HI6

        2

        2

        2

        2

        2

        2

        2

        2

        2

        21 + 22 + + 30 = 1 + 2 + 30 – (1 + 2 + 20 )

        … … …

        1

        1 =

        30 31 61 –

        20 21 41 = 9455 - 2870 = 6585

        ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

        6

        6 G4 One of the positive integral solutions of the equation 19x + 88y = 1988 is given by (100, 1). Find another positive integral solution. (Reference: 1991 HG8) 19 y y 2 − 1 The line has a slope of =

        −

        88 x x 2 − 1 Given that (100, 1) is a solution.

        19 y

        1 2 − =

        −

        88 x 100 2 − Let y

        2 – 1 = –19t; x 2 – 100 = 88t, where t is an integer. y 2 = 1 – 19t, x 2 = 100 + 88t

        For positive integral solution of (x , y ), 1 – 19t > 0 and 100 + 88t > 0

        2

        2

        25

        1

        t − < <

        22

        19 t is an integer t = 0 or –1

        Q ∴ ⇒

        When t = –1, x

        2 = 12, y 2 = 20 another positive integral solution is (12, 20).

        AP G5 The line joining A(2, 3) and B(17, 23) meets the line 2xy = 7 at P. Find the value of . PB

        Reference: 1990 HG3 y

        3

        23

        3

        − − ⇒

        Equation of AB: 3y = 4x + 1 (2)

        = …… x

        2

        17

        2

        − −

        From (1): y = 2x – 7 (3)

        …… ⇒

        Sub. (3) into (2): 3(2x – 7) = 4x + 1 x = 11 Sub. x = 11 into (3): y = 2(11) – 7 = 15 The point of intersection is P(11, 15).

        AP

        11

        2

        3

        −

        = =

        PB

        17

        11

        2

        −

        2047 G6 Find the remainder when 7 is divided by 100.

        Reference: 2002 HG4 2047 The question is equivalent to find the last 2 digits of 7 .

        1

        2

        3

        4 7 = 7, 7 = 49, 7 = 343, 7 = 2401 The last 2 digits repeats for every multiples of 4.

        2047 4 × 511+3 7 = 7 The last 2 digits is 43.

        G7 If log 2 [log 3 (log 7 x)] =log 3 [log 7 (log 2 y)] =log 7 [log 2 (log 3 z)] = 0, find the value of x + y + z. log 2 [log 3 (log 7 x)] = 0 ⇒ log

        3 (log 7 x) = 1 ⇒ log x = 3

        7

        3 ⇒ x = 7 = 343 log

        3 [log 7 (log 2 y)] = 0 ⇒ log 7 (log 2 y) = 1 ⇒ log

        2 y = 7

        7 ⇒ y = 2 = 128 log

        7 [log 2 (log 3 z)] = 0 (log z) = 1 ⇒ log

        2

        3 ⇒ log 3 z = 2

        2 ⇒ z = 3 = 9 x + y + z = 343 + 128 + 9 = 480

        D 4, CD 6 and MN x,

        G8 In figure 1, AB // MN // CD. If AB = = = B find the value of x.

        Reference: 1985 FI2.4, 1990 FG6.4 N

        6

        4 AMN ~ ACD (equiangular) ∆ ∆ x x AM

        (1) (ratio of sides, ~ ’s)

        = … ∆ A

        6 AC

        C M CMN ~ CAB (equiangular)

        ∆ ∆ (Figure 1) x MC

        (2) (ratio of sides, ~ ’s)

        = … ∆

        4 AC

        12

      • x x AM MC

        (1) + (2): 1 x =

        = =

        6

        4 AC

        5 G9 In figure 2, B = 90 , BC 3 and the radius of the inscribed

        ∠ ° = A circle of ABC is 1. Find the length of AC. ∆

        Reference: 1985 FG9.2

        Let the centre be O. Suppose the circle touches BC at P, AC at Q and AB at R respectively. Let AB = c and AC = b.

        Q OP BC, OQ AC, OR AB (tangent radius) ⊥ ⊥ ⊥ ⊥

        O

        1 ⇒ R OPBR is a rectangle OPBR is a square.

        1 BP = BR = 1 (opp. sides of rectangle) CP = 3 – 1 = 2

        C B

        3 CQ = CP = 2 (tangent from ext. point) P

        Let AR = AQ = t (tangent from ext. point)

        2

        2

        2

        3 + (1 + t) = (2 + t) (Pythagoras’ theorem)

        2

        2

        9 + 1 + 2t + t = 4 + 4t + t 6 = 2t

        ⇒ t = 3 AC = 2 + 3 = 5

        G10 In the attached division (see figure 3), the

      • 8 * dividend in (a) is divisible by the divisor in line (b) ......... * * * ) * * * * * * ......... (a) (b). Find the dividend in line (a). (Each asterisk
      • is an integer from 0 to 9.) Relabel the ‘*’ as shown.
      • Let a = (a 8a ) ,

        1 3 x

        b = (b 1 b 2 b 3 ) x

        c = (c 1 c 2 c 3 c 4 c 5 c 6 ) x d = (d 1 d 2 d 3 d 4 ) x

        e = (e 1 e 2 e 3 ) x a 8 a

        1

        3 f = (f 1 f 2 f 3 ) x

        (b) ......... b 1 b 2 b 3 ) c 1 c 2 c 3 c 4 c 5 c 6 ......... (a) = (g ) g 1 g 2 g 3 g 4 x d 1 d 2 d 3 d

        4 1 b = d, a 3 b = g 4-digit numbers

        Q 8b = e and a × × a 1 = 9 and a

      3 = 9 and d = g e

      1 e 2 e

        3 ∴ d = 9b > 1000 and f = 8b < 999 f 1 f 2 f

        3 112 b 124 (1)

        ≤ ≤ …… g 1 g 2 g 3 g

        4 b 1 = 1, d 1 = 1 g 1 g 2 g 3 g

        4 b 2 = 1 or 2, f 1 = 8 or 9, d 2 = 0 or 1 c = 1

        1 9 8 9 e 1 – f 1 = 1

        (b) ......... 1 b b ) 1 c c c c c ......... (a)

        2

        3

        2

        3

        4

        5

        6 f 1 = 8 and e 1 = 9

        ∴ 1 d d d

        2

        3

        4 8b = (8f 2 f 3 ) x < 900 < 112.5 (2) b e e e

        ……

        1

        2

        3 Combine (1) and (2) f f f

        1

        2

        3 b = 112

        1 d d d

        2

        3

        4 c = 989 112 = 110768

        × 1 d d d

        2

        3

        4

Dokumen yang terkait

Effect of Montmorillonite Addition on The Thermal Resistance Properties of Polyvinyl Acetate

0 1 6

Potential Yield of F3 Lines Generation of Red Rice (Oryza sativa L.)

0 1 10

Rancang Bangun Alat Ukur Monitoring Dan Pengukuran Kontaminasi Tanah (Studi Kasus: Desa Pelangan Kecamatan Sekotong) Designing Tool for Monitoring and Measurement Soil Contamination (Case study: Pelangan Village of Sekotong District)

0 0 9

Pertumbuhan Bibit Tanaman Kelor (Moringa oleifera Lam.) Asal Biji pada Berbagai Fase Pindah Tanam Semai Growth of Drum Stick (Moringa oleifera Lam.) SeedlingDerivated fromSeed at Different Phases of Transplanting

0 1 10

Pengujian Daya Hasil Beberapa Varietas Tanaman Jagung pada Kondisi Cekaman Kekeringan yang Diberi Pupuk Kandang di Lahan Kering Lombok Utara Evaluation of Some Varieties of Maize with Drought Condition under Different Rates of Manure on Dry Land of Northe

0 0 11

Pengaruh Berbagai Macam Media terhadap Pertumbuhan Bibit Kelor (Moringa oleifera Lam.) Asal Stek Batang The Effect of Various Media onThe Growth of Drum Stick (Moringa oleifera Lam.) Seedling Derived From Stem Cutting

0 0 12

Keragaan Produksi Ayam Broiler Pada Berbagai Metode Pemberian Pakan dan Tipe Lantai Kandang (Performance of Broiler Production on Various Feeding Method and Cage Type)

0 0 7

Newton's Laws and His System of the World

0 0 52

Chapter 2: Protecting the Ozone Layer

0 0 35

Application of Yospan as a Programmatic Method for Spatial Experience and Flexibility in the Central Marketplace of Manokwari

0 0 5