6. DAFTAR PUSTAKA - 12.70.0152 Yeremia Adi Wijaya LAMPIRAN

  Abdou, E.S & M.A, Sorour. (2014). Preparation and Characterization of Starch/Carrageenan Edible Films. International Food Research Journal Vol 21(1):189-193 Aldana, D.S; Villa, E.D; Hernandez, M.D; Sanchez, G.G; Crus, Q.R; Gallardo, S.F; Castillo, H.P & L.B, Casarubias. (2014). Barrier Properties of Polylactic Acid in Cellulose Based Packages Using Montmorillonite as Filler. Polymer Vol 6:2386

  • – 2403 Alemayehu, H.B; Huang, Q; Xiao, H & M, Eic. (2012). Mass Transfer of Water Vapor, Carbon Dioxide and Oxygen on Modified Cellulose Fibre-Based Material. Nordic Pulp and Paper Research Journal Vol 27(2):409-417 American Society for Testing and Material (ASTM) D882-02. (1995). Standard Test Method for Tensile Properties of Thin Plastics Sheeting. In Annual Book of American Standard Testing Methods. West Conshohochem, PA. American Society for Testing and Material (ASTM) E96-00. (1995). Standard Test Method for Water Vapor Transmission of Material, ASTM International, West Conshohochem, PA

  Baldwin, E.A; Hagenmaier, R & J, Bai. (2011). Edible Coantings and Films to

  nd

  Improve Food Quality 2 Edition. CRC Press. Boca Raton. p.161 Bardajee, G.R; Hooshyar, Z & Y, Pourhasan. (2011). The Effect of Multidentate Biopolymer Based on Polyacrilamide Grafted onto Kappa-carrageenan on the Spectrofluorometric Properties of Water Soluble Cds Quantum Dots. International Journal of Spectroscopy Vol 2011:1-6 Bourbon, A.I; Pinheiro, A.C; Cerqueira, M.A; Rocha, C.M.R; Avides, M.C; Quintas, M.A.C & A.A, Vicente. (2011). Physico-chemical Characterization of Chitosan Based Edible Films Incorporating Bioactive Compounds of Different Molecular Weight. Journal of Food Engineering Vol 106:111-118

  • – Boutoom, T. (2008). Edible Film and Coatings : Characteristics and Properties A Review. International Food Research Journal 15(3):237-248 Brandenburgh, A.H; Weller, C.H & R.F, Testin. (1993). Edible Film and Coating
Campo, V.L; Kawano, D.F; Silva, D.B & C.L, Ivone. (2009). Carrageenans : Biological Properties, Chemical Modification and Structural Analysis. Carbohydrate Polymer Vol 77:167-180 Cao, N; Fu, Y & He, J. (2007). Preparation and Physical Properties of Soy Protein Isolate and Gelatin Composite Films. Food Hydrocolloids Vol 21(7):1153-1162

  nd Clark, D.P & N.J, Pazdernik (2013). Moleculer Biology 2 Edition. Elsevier.

  United Kingdom P375 Coughlan, K; Shaw, N.B; Kerry, J.F & J.P, Kerry. (2004). Combined Effect of Proteins and Polyssacharides on Physical Properties of Whey Protein Concentrate Based Edible Film. Journal of Food Science Vol 69(6):271-275 Cuq, B; Gontard, N & Guilbert, S. (1998). Protein as Agriculture Polymers for Packaging Producion. Cereal Chemistry Vol 75(1):1-9 Gennadios, A; Weller, C.L & M.A, Hanna. (1997). Soy Protein/Fatty Acid Film and Coatings. Inform Vol 8 No.6:622-623 Guo, X; Lu, Y; Cui, H; Jia, X, Bai, H & Y, Ma. (2012). Factors Effecting The Physical Properties of Edible Composite Film Prepared from Zein and Wheat Gluten. Molecules Vol 17:3794-3804 Hambali, E; Suryanti, A & Wadli. (2004). Membuat Aneka Olahan Rumput Laut.

  Penebar Swadaya. Jakarta Handoko, M.E. (2015). Pengaruh Gliserol Sebagai Plasticizer Terhadap Karakteristik Fisik Edible Film Berbasis Karagenan Alga Merah (Eucheuma

  cottonii ). Skripsi Universitas Katolik Soegijapranata. Semarang

  Jooyandeh, H. (2011). Whey Protein Film and Coatings: A Review. Pakistan Journal of Nutrition Vol 10(3):296-301 Krochta, J.M. (1997). Edible Protein Films and Coatings, dalam Damodaran, S & A, Paraf. Food Proteins and Theer Application. Marcell Dekker Inc. New York.

  Krochta, J.M & C, De Mulder-Johnston. (1997). Edible and Biodegradable Polymer Film: Challenges and Opportunities. Food Technology Vol 51(2):61-74

  Kuriyan, J; Konforti, B & D, Wemmer. (2013). The Molecules of Life : Physical and Chemical Principles. Garland Science. New York. P29 Larotanda, F.D.S. (2007). Biodegradable Film and Coating Obtained From Carrageenan from Mastocarpus stellatus and Starch from Quercus suber. Thesis University of Porto. Porto Marsh, K.D & B, Betty. (2007). Food Packaging

  • – Role, Materials, and Enviromental Issues. Journal of Food Science Vol 72(3):39-55 Matweb. (1995). Tensile Property Testing of Plastics. http://www.matweb.com/reference/tensilestrength.aspx Diakses pada

  10 November 2015 Naik, P. (2015). Biochemistry. JP Medical Ltd. New Delhi. P60 Nandane, A.S & R, Jain. (2014). Study of Mechanical Properties of Soy Protein

Based Edible Film as Affected by it’s Compotition and Process Parameters by

  Using RSM. Journal of Food Science Technology Vol 52(6):3645-3650 Oymaci, P. (2014). Development of Whey Protein IsolateBased Nanocomposite Food Packaging Films Incorporated with Chitosan and Zein Nanoparticles. Thesis Izmir Institutes of Technology. Turkey Park, S.Y; Lee, B.I; Jung, S.T & H.J, Park. (2001). Biopolymer Composite Film Based on Kappa-carrageenan and Chitosan. Material Reseach Bulletin Vol 36:511-519 Qi, M; Hettiarachchy, N.S & U, Kalapaty. (1997). Solubility and Emulsifying Properties of Soy Protein Isolates Modified by Pancreatin. Journal of Food Science Vol 62(6):1110-1116 Ralston. (2010). Water Vapor Transmission Rate of Low Density Polyethylene.

  Reis, R.L. & D, Cohn. (2002). Polymer Based System on Tissue, Engineering, Replacement and Regeneration. Springer Science & Business Media. New York P.102 Robert, M; Reiss, M.J & G, Monger. (2000). Advanced In Biology. Nelson Thornes. United Kingdom.

  Rocha, M; Lioko, M.R; Gauterio, G.V; Tondo, E.C & C, Prentice. (2013). Influence of Heating, Protein and Glycerol Concentrations pf Film Forming Solution on Film Properties of Argentine Anchovy (Engraulis anchoita) Protein Isolate. Journal of Food Engineering Vol 116 : 666-673 Saleh, E; Muhammad, I.I & N, Khairuddin. (2009). Structural Characterization and Physical Properties of Antimicrobial (AM) Starch-Based Film. World Academy Science, Engineering and Technology Vol 55:432-440 Saputra, E; Pramono, K.H; Abdillah, A.A & M.A, Alamsjah. (2015). An Edible Film Characteristic of Chitosan Made from Shrimp Waste as Plastisizer. Journal of Natural Science Research Vol 5(4):118-125 Schmid, M. (2013). Properties of Cast Films Made From Different Ratio of Whey Protein Isolate, Hydrolysed Whey Protein Isolate and Glycerol. Material Vol 6 : 3254 – 3269 Scope, R.K. (1994). Protein Purification : Principles and Practice. Springer-Verlag. New York.

  Shakila, R.J; Jeevithan, E; Varatharajakumar, A; Jeyasekaran, G & D, Sukumar. (2012). Comparison of the Properties of Multi-composite Fish Gelatin Films with that of Mamalian Gelatin Films. Food Chemistry Vol 135:2260

  • – 2267 Shimadzu. (2015). Tensile Test of Various Plastic Materials. http://www.shimadzu.com/an/industry/petrochemicalchemical/i215.html Diakses Pada 10 November 2015 Shogren, R. (1997). Water Vapor Permeability of Biodegradable Polymers. Journal of Enviromental Polymer Degradation Vol 6(2):91-95 Soliman, E.A; Tawfik, M.S; Sayed, H.E & Y.G, Moharram. (2007). Preparation and Characterization of Soy Protein Based Edible/Biodegradable Films. American Journal of Food Technology Vol 2(6):462-476 Uniprot. (1987a). Glycinin. http://www.uniprot.org/uniprot/P04347. Diakses Pada 25 Januari 2016. Uniprot. (1987b). Glycinin-G4. http://www.uniprot.org/uniprot/P02858. Diakses

  Pada 27 Januari 2016

  Uniprot. (1989a). Beta-

Conglycinin, Alpha’ Chain http://www.uniprot.org/uniprot/P11827. Diakses pada 26 Januari 2016

  Uniprot (1989b). Glycinin-G1. http://www.uniprot.org/uniprot/P04776. Diakses Pada 27 Januari 2016. Uniprot. (1989c). Glycinin-G2. http://www.uniprot.org/uniprot/P04405. Diakses Pada 27 Januari 2016 Uniprot. (1989d). Glycinin-G3. http://www.uniprot.org/uniprot/P11828. Diakses Pada 27 Januari 2016 Uniprot. (1990). Beta-Conglycinin, Alpha Chain. http://www.uniprot.org/uniprot/P13916. Diakses pada 26 Januari 2016 Uniprot. (1992). Beta-Conglycinin, Beta Chain. http://www.uniprot.org/uniprot/P25974. Diakses pada 26 Januari 2016 Uniprot. (2001). Basic 7S Globulin. http://www.uniprot.org/uniprot/P13917. Diakses Pada 25 Januari 2016. United States Department of Agriculture. (2015). National Nutrient Database For Standard Reference. Diakses Pada

  8 November 2015 Utsumi, S; Matsumura, Y & T, Mori. (1997). Structure-Function Relationships of soy Protein, dalam dalam Damodaran, S & A, Paraf. Food Proteins and Theer Application. Marcell Dekker Inc. New York Van Tuil, R; Fowler, P; Lawther, M & C.J, Weber. (2000). Properties of Biobased Packaging Materials. Biobased Packaging Materials for Food Industry – Status and Perspectives. The Royal Veterinary and Agricultural University. Denmark. Villagomez-Zavala, D.L; Gomez-Corona, C; Martinez, E.S.M; Perez-Orozco, J.P; Vernon-Carter, E.J & R, Pedrosa-Islas. (2008). Comparative Study of The Mechanical Properties of Edible Films Made From Single and Blend Hydrophilic Biopolymer Matrices. Revista Mexicana de Ingenieria Quimica Vol 7(3):263-273 Were, L; Hettiarachchy, N.S & M, Coleman. (1999). Properties of Cysteine- Added Soy Protein-Wheat Gluten Films. Journal of Food Science Vol 64(3):514- 518 Wittaya, T. (2012). Protein Based Edible Film : Characteristic and Improvement of Properties. Intech. Thailand.

  Wittaya, T. (2013). Influence of Type and Concentration of Plastisizers on the Properties of Edible Film From Mung Bean Proteins. Kmitl Science and Technology Journal Vol 13(1):51-58 Yada, R. (2004). Protein in Food Processing. CRC Press. Boca Raton.

  Lampiran 1. Karakteristik Laju Transmisi Uap Air Beberapa Lapisan Film No Bahan Polimer WVTR

  10 Kacang hijau + 30% Gly 120 - 130 Wittaya (2013)

  6.4 Barrie (1968) dalam Aldana et al (2014)

  17 Polistiren (PS)

  16 Polietilen (PE) 0.5 - 2 Woishnis (1995) dalam Oymaci (2014)

  15 Polietilen Terepthalat (PET) 0.5 - 2 Woishnis (1995) dalam Oymaci (2014)

  14 Polipropilen (PP) 0.2 - 0.4 Woishnis (1995) dalam Oymaci (2014)

  0.92 Ralston (2010)

  13 Low Density Polyethylene (LDPE)

  12 Gelatin : Chitosan + 30% Srb 843 - 913 Shakila et al (2012)

  11 Gelatin + 30% Srb 909 - 1040 Shakila et al (2012)

  9 Isolat protein kedelai 89.04 - 96.96 Reis (2002)

  (g/m

  8 Isolat Protein Whey-45 110 Coughlan et al (2004)

  7 Isolat Protein Whey 145 Schmid (2013)

  6 Protein Zein 179 Alemayehu et al (2012)

  5 Pati - Chitosan 750 - 1300 Saleh (2009)

  4 Chitosan 1100 - 1200 Saleh (2009)

  3 Karagenan + 0,5% Gly 400 - 600 Handoko (2015)

  2 Polylactic Acid (PLA) 130 - 180 Alemayehu et al (2012) & Shogren (1997)

  1 Cellulose Acetate (CA) 2920 Shogren (1997)

  .hari) Referensi

  

2

  Keterangan : WVTR = Water Vapor Transmission Rate / Kecepatan Transmisi Uap Air; Gly = Gliserol; Srb = Sorbitol

  Lampiran 2. Perbandingan Karakteristik Laju Transmisi Uap Air Beberapa Lapisan Film 1000 1200

  800 i ar 2. 600 h /m g 200 400 Keterangan : TS = Tensile Strength (kuat tarik); E = Elongasi (Pemanjangan); Gly = Gliserol

  60 Krochta & De Mulder- Johnston (1997)

  9. Isolat protein kedelai (0,1 mm) 4,0

  165

  15. Orientated Polypropylene (OPP)

  14 Polietilen Terepthalat (PET) 55 125 Matweb (1996)

  13. Polipropilen (PP) 38,2 28,4 Shimadzu (2015)

  12. Polietilen (PE) 29,9 56,5 Shimadzu (2015)

  12,9 500 Cuq et al (1998)

  11. Low Density Polyethylene (LDPE)

  10. Mung Bean + 30% Gly 30 - 40 15 - 17 Wittaya (2013)

  8. Protein Myofibril 17,1 22,7 Cuq et al (1998)

  Lampiran 3. Karakteristik Mekanik Beberapa Lapisan Film No. Polimer TS (Mpa) E (%) Referensi 1.

  7. Isolat Protein Whey 13,9 30,8 Cuq et al (1998)

  6. Zein Protein 0,4 - Cuq et al (1998)

  5. Chitosan + 0,1 % Gly 11,58 69,84 Bourbon et al (2011)

  4. Karagenan + Pati 20 - 50 20 - 60 Abdou & Sorour (2014)

  3. Karagenan + 0,5% Gly 8,98 61,3 Handoko (2015)

  2. Methyl Cellulose (MC) 12,9 500 Cuq et al (1998)

  30 Cuq et al (1998)

  (CA) 65,6

  Cellulose Acetate

  • – 4,3 11 - 12 Soliman (2007)
Lampiran 4. Komposisi Asam Amino Fraksi 7S Globulins dan Subunit 7S Globulin (β-Konglisinin & Basic 7S Globulin) Asam Amino

  (AA) Sifat Asam

  Valin (Val) Hidrofobik (32 AA) 5 (27 AA) 4,5 (29 AA) 6,6 (32 AA) 7.5 (120 AA) 5,7 Arginin (Arg) Hidrofilik (43 AA) 6,7 (48 AA) 7,9 (31 AA) 7,1 (14 AA) 3.3 (136 AA) 6,4 Histidin (His) Hidrofilik (22 AA) 3,4 (8 AA) 1,3 (8 AA) 1,8 (14 AA) 3.3 (52 AA) 2,5

  4 Uniprot (2001); Clark & Pazdernik (2013), Kuriyan et al (2013),

  3 Uniprot (1992);

  2 Uniprot (1990);

  1 Uniprot (1989a);

  57,4% Hidrofilik Referensi :

  49,4% Hidrofilik 42,6% Hidrofobik

  54.8% Hidrofilik 50,6% Hidrofobik

  60.1.% Hidrofilik 45.2% Hidrofobik

  61,6% Hidrofilik 39.9% Hidrofobik

  Sifat Asam Amino 38,4% Hidrofobik

  Serin (Ser) Hidrofilik (47 AA) 7,4 (45 AA) 7,4 (33 AA) 7,5 (43 AA) 8.3 (168 AA) 8,0 Total (639 AA) 100% (605 AA) 100% (439 AA) 100% (427 AA) 100% (2114 AA) 100%

  Glisin (Gly) Hidrofobik (31 AA) 4,9 (26 AA) 4,4 (19 AA) 4,3 (31 AA) 7.3 (107 AA) 5,1 Prolin (Pro) Hidrofobik (35 AA) 5,5 (40 AA) 6,7 (22 AA) 5,0 (27 AA) 6.3 (124 AA) 5,9

  Asparagin (Asn) Hidrofilik (42 AA) 6,6 (42 AA) 6,9 (33 AA) 7,5 (26 AA) 6,1 (143 AA) 6,8 Glutamin (Gln) Hidrofilik (54 AA) 8,5 (47 AA) 7,8 (33 AA) 7,5 (36 AA) 8.4 (170 AA) 8,0 Glutamat (Glu) Hidrofilik (81 AA) 12,7 (80 AA) 13,2 (37 AA) 8,4 (8 AA) 1.9 (206 AA) 9,7

  Alanin (Ala) Hidrofobik (28 AA) 4,4 (28 AA) 4,6 (23 AA) 5,2 (28 AA) 6.6 (107 AA) 5,1 Aspartat (Asp) Hidrofilik (29 AA) 4,5 (28 AA) 4,6 (21 AA) 4,8 (12 AA) 2.8 (90 AA) 4,3

  Hidrofobik (32 AA) 5,0 (30 AA) 5,0 (30 AA) 6,8 (23 AA) 5.4 (115 AA) 5,4 Tirosin (Tyr) Hidrofilik (15 AA) 2,2 (15 AA) 2,5 (12 AA) 2,7 (7 AA) 1.6 (49 AA) 2,3

  Amino β-Konglisinin

  Phenilalanin (Phe)

  Metionin (Met) Hidrofobik (6 AA) 0,9 (3 AA) 0,5 (2 AA) 0,5 (10 AA) 2.3 (21 AA) 1,0 Sistein (Cys) Hidrofilik (5 AA) 0,8 (5 AA) 0,8 (1 AA) 0,2 (13 AA) 3.0 (24 AA) 1,1

  Leusin(Leu) Hidrofobik (49 AA) 7,7 (54 AA) 8,9 (47 AA) 10,7 (45 AA) 10.5 (195 AA) 9,2 Lisin (Lys) Hidrofilik (42 AA) 6,6 (35 AA) 5,8 (21 AA) 4,8 (12 AA) 2.8 (110 AA) 5,2

  Threonin (Thr) Hidrofilik (14 AA) 2,2 (11 AA) 1,8 (11 AA) 2,5 (30 AA) 7.0 (66 AA) 3,1 Isoleusin (Ile) Hidrofobik (29 AA) 4,5 (31 AA) 5,1 (26 AA) 5,9 (17 AA) 4.0 (103 AA) 4,9

  3 Triptofan (Trp) Hidrofobik (3 AA) 0,5 (2 AA) 0,3 (0 AA) 0 (3 AA) 0.7 (8 AA) 0,4

  β (Total AA) (%)

  2

  α (Total AA) (%)

  1

  α' (Total AA) (%)

  Globulins (Total AA) (%)

  4 Total AA 7S

  (BG) (Total AA) (%)

  Basic 7S globulin

  Naik (2015); Yada (2004); Utsumi et al (1997)

  Lampiran 5. Komposisi Asam Amino Fraksi Glisinin (11S) dan Subunit Penyusunnnya (G1 – G5) Asam Amino

  Hidrofobik 55,3%

  (481 AA) 100%

  (562 AA) 100%

  (516 AA) 100%

  (2539 AA) 100%

  Sifat Asam Amino 43,6%

  Hidrofobik 56,4%

  Hidrofilik 44,5%

  Hidrofobik 55,5 %

  Hidrofilik 44,7%

  Hidrofilik 40,0%

  (495 AA) 100%

  Hidrofobik 60,0%

  Hidrofilik 42,3% Hidrofobik 57,7% Hidrofilik

  42,9% Hidrofobik 57,1 % Hidrofilik

  Referensi :

  1 Uniprot (1989b);

  2 Uniprot (1989c);

  3 Uniprot (1989d);

  

4

Uniprot(1987b);

  5 Uniprot (1987a); Clark & Pazdernik (2013),

  (485 AA) 100%

  Serin (Ser) Hidrofilik (34 AA) 6,9 (32 AA) 6,6 (34 AA) 7,1 (48 AA) 8,5 (43 AA) 8,3 (191 AA) 7,5 Total

  (AA) Sifat Asam

  AA) (%)

  Amino G1 (Total

  AA) (%)

  1 G2 (Total

  AA) (%)

  2 G3 (Total

  AA) (%)

  3 G4 (Total

  AA) (%)

  4 G5 (Total

  5 Total AA Fraksi

  Glisin (Gly) Hidrofobik (36 AA) 7,3 (35 AA) 7,2 (32 AA) 6,7 (38 AA) 6,8 (41 AA) 7.9 (182 AA) 7,2 Prolin (Pro) Hidrofobik (29 AA) 5,9 (26 AA) 5,4 (29 AA) 6,0 (38 AA) 6,8 (38 AA) 7,4 (160 AA) 6,3

  11S (%) Triptofan (Trp) Hidrofobik (4 AA) 0,8 (4 AA) 0,8 (3 AA) 0,6 (6 AA) 1,1 (4 AA) 0.8 (21 AA) 0,8

  Threonin (Thr) Hidrofilik (20 AA) 4,0 (18 AA) 3,7 (18 AA) 3,7 (21 AA) 3,7 ( 21 AA) 4.1 (98 AA) 3,9 Isoleusin (Ile) Hidrofobik (26 AA) 5,3 (23 AA) 4,7 (24 AA) 5,0 (21 AA) 3,7 (17 AA) 3.3 (111 AA) 4,4

  Leusin(Leu) Hidrofobik (37 AA) 7,5 (38 AA) 7,8 (36 AA) 7,5 (44 AA) 7,8 (41 AA) 7.9 (196 AA) 7,7 Lisin (Lys) Hidrofilik (25 AA) 5,1 (19 AA) 3,9 (19 AA) 4,0 (28 AA) 5,0 (19 AA) 3.7 (110 AA) 4,3

  Metionin (Met) Hidrofobik (7 AA) 1,4 (8 AA) 1,6 (6 AA) 1,2 (3 AA) 0,5 (5 AA) 1,0 (29 AA) 1,1 Sistein (Cys) Hidrofilik (11 AA) 2,2 (10 AA) 2,1 (11 AA) 2,3 (8 AA) 1,4 (8 AA) 1.6 (48 AA) 1,9

  Phenilalanin (Phe)

  Hidrofobik (24 AA) 4,8 (22 AA) 4,5 (29 AA) 6,0 (16 AA) 2,8 (18 AA) 3.5 (109 AA) 4,3 Tirosin (Tyr) Hidrofilik (11 AA) 2,2 (11 AA) 2,3 (10 AA) 2,1 (15 AA) 2,7 (15 AA) 2.9 (62 AA) 2,4

  Valin (Val) Hidrofobik (24 AA) 4,8 (27 AA) 5,6 (26 AA) 5,4 (35 AA) 6,2 (34 AA) 6.6 (146 AA) 5,8 Arginin (Arg) Hidrofilik (27 AA) 5,5 (29 AA) 6,0 (29 AA) 6,0 (36 AA) 6,4 (33 AA) 6.4 (154 AA) 6,1

  Histidin (His) Hidrofilik (8 AA) 1,6 (4 AA) 0,8 (6 AA) 1,2 (15 AA) 2,7 (15 AA) 2.9 (48 AA) 1,9 Alanin (Ala) Hidrofobik (29 AA) 5,9 (33 AA) 6,8 (30 AA) 6,2 (24 AA) 4,3 (20 AA) 3.9 (136 AA) 5,4

  Aspartat (Asp) Hidrofilik (17 AA) 3,4 (18 AA) 3,7 (16 AA) 3,3 (30 AA) 5,3 (24 AA) 4.7 (105 AA) 4,1 Asparagin (Asn) Hidrofilik (37 AA) 7,5 (40 AA) 8,2 (36 AA) 7,5 (33 AA) 5,9 (33 AA) 6,4 (179 AA) 7,1

  Glutamin (Gln) Hidrofilik (48 AA) 9,7 (51 AA) 10,5 (49 AA) 10,2 (48 AA) 8,5 (45 AA) 8.7 (241 AA) 9,5 Glutamat (Glu) Hidrofilik (41 AA) 8,3 (37 AA) 7,6 (38 AA) 7,9 (55 AA) 9,8 (42 AA) 8,1 (213 AA) 8,4

  Kuriyan et al (2013), Naik (2015); Yada (2004); Utsumi et al (1997)

  Lampiran 6. Perhitungan Laju Transmisi Uap Air Rumus perhitungan laju transmisi uap air / water vapour transmission rate (WVTR) (ASTM E96, 1995) x 24

  = = .

  . Keterangan : n : Perubahan berat (gram) t : Waktu (jam)

   WVTR Edible Film 100% IPK Setelah 1 Jam Batch 1 0.024

  = 0.03651 1 24 = 157.7650

  Batch 2 Rata

  • – rata = 150,1265 0.022

  = 0.03957 1 24 = 133.4344

  Batch 3 0.022

  = 0.03317 1 24 = 159.1800

   WVTR Edible Film 100% IPK Setelah 2 Jam Batch 1 0.036

  = 0.03651 2 24 = 118,3237

  Batch 2 Rata

  • – rata = 127,1371 0.045

  = 0.03957 2 24 = 136,4670

  Batch 3

  0.035 =

  0.03317 2 24 = 126,6204  WVTR Edible Film 100% IPK Setelah 3 Jam Batch 1

  0.05 =

  0.03651 3 24 = 109,559 Batch 2

  Rata

  • – rata = 121,6086 0.069

  = 0.03957 3 24 = 139,4496

  Batch 3 0.048

  = 0.03317 3 24 = 115,7673

   WVTR Edible Film 100% IPK Setelah 4 Jam Batch 1 0.071

  = 0.03651 4 24 = 116,6804

  Batch 2 Rata

  • – rata = 125,1883 0.092

  = 0.03957 4 24 = 139,4996

  Batch 3 0.066

  = 0.03317 4 24 = 119,385

   WVTR Edible Film 100% IPK Setelah 5 Jam Batch 1 0.087

  = 0.03651 5 24 = 114,3796

  Batch 2 Rata

  • – rata = 126,6843 0.120

  = 0.03957 5 24 = 145,5648

  Batch 3

   WVTR Edible Film 100% IPK Setelah 6 Jam Batch 1 0.105

  = 0.03651 6 24 = 115,0370

  Batch 2 Rata

  • – rata = 125,3795 0.139

  = 0.03957 6 24 = 140,5105

  Batch 3 0.100

  = 0.03317 6 24 = 120,5905

   WVTR Edible Film 100% IPK Setelah 7 Jam Batch 1 0.124

  = 0.03651 7 24 = 116,4456

  Batch 2 Rata – rata = 125,5052

  0.157 =

  0.03957 7 24 = 136,0338 Batch 3

  0.120 =

  0.03317 7 24 = 124,0363  WVTR Edible Film 100% IPK Setelah 8 Jam Batch 1

  0.140 =

  0.03651 8 24 = 115,0370 Batch 2

  Rata

  • – rata = 123,9311 0.180

  = 0.03957 8 24 = 136,4670

  Batch 3 0.133

   WVTR Edible Film 100% IPK Setelah 9 Jam Batch 1 0.158

  = 0.03651 9 24 = 115,4022

  Batch 2 Rata

  • – rata = 123,9544 0.204

  = 0.03957 9 24 = 137,4779

  Batch 3 0.148

  = 0.03317 9 24 = 118,9830

   WVTR Edible Film 100% IPK Setelah 10 Jam Batch 1 0.179

  = 0.03651 10 24 = 117,6664

  Batch 2 Rata – rata = 123,0319

  0.219 =

  0.03957 10 24 = 132,8279 Batch 3

  0.164 =

  0.03317 10 24 = 118,6614  WVTR Edible Film 100% IPK Setelah 11 Jam Batch 1

  0.193 =

  0.03651 11 24 = 115,3358 Batch 2

  Rata – rata = 123,2730 0.284

  = 0.03957 11 24 = 136,7427

  Batch 3 0.179

   WVTR Edible Film 100% IPK Setelah 12 Jam Batch 1 0.202

  = 0.03651 12 24 = 110,6546

  Batch 2 Rata – rata = 120,425

  0.268 =

  0.03957 12 24 = 135,4562 Batch 3

  0.191 =

  0.03317 12 24 = 115,1643  WVTR Edible Film 75% Protein : 25% Karagenan  WVTR Edible Film 75% Protein : 25% Karagenan Setelah 1 Jam Batch 1

  0.022 =

  0.003317 1 24 = 159,1800 Batch 2

  Rata

  • – rata = 214,6518 0.043

  = 0.00317 1 24 = 311,1245

  Batch 3 0.024

  = 0.03317 1 24 = 173,6509

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 2 Jam Batch 1 0.043

  = 0.003317 2 24 = 155,5623

  Batch 2 Rata

  • – rata = 176,0627 0.064

  = 0.00317 2 24 = 231,5345

  Batch 3

  0.039 =

  0.03317 2 24 = 141,0913  WVTR Edible Film 75% Protein : 25% Karagenan Setelah 3 Jam Batch 1

  0.066 =

  0.003317 3 24 = 159,1800 Batch 2

  Rata – rata = 163,1997 0.084

  = 0.00317 3 24 = 202,5927

  Batch 3 0.053

  = 0.03317 3 24 = 127,8263

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 4 Jam Batch 1 0.084

  = 0.003317 4 24 = 151,9445

  Batch 2 Rata

  • – rata = 155,5623 0.106

  = 0.00317 4 24 = 191,7395

  Batch 3 0.068

  = 0.03317 4 24 = 123,0027

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 5 Jam Batch 1 0.103

  = 0.003317 5 24 = 149,0503

  Batch 2 Rata – rata = 148,0856

  0.114 =

  0.00317 5 24 = 164,9683 Batch 3

  0.09

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 6 Jam Batch 1 0.116

  = 0.003317 6 24 = 139,8854

  Batch 2 Rata

  • – rata = 141,4933 0.123

  = 0.00317 6 24 = 148,3268

  Batch 3 0.113

  = 0.03317 6 24 = 136,2677

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 7 Jam Batch 1 0.135

  = 0.003317 7 24 = 139,5409

  Batch 2 Rata

  • – rata = 142,6418 0.144

  = 0.00317 7 24 = 148,8436

  Batch 3 0.135

  = 0.03317 7 24 = 139,5409

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 8 Jam Batch 1 0.160

  = 0.003317 8 24 = 144,7091

  Batch 2 Rata

  • – rata = 143,2017 0.162

  = 0.00317 8 24 = 146,5179

  Batch 3 0.153

  =

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 9 Jam Batch 1 0.189

  = 0.003317 9 24 = 151,9445

  Batch 2 Rata

  • – rata = 146,3170 0.181

  = 0.00317 9 24 = 145,513

  Batch 3 0.176

  = 0.03317 9 24 = 141,4933

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 10 Jam Batch 1 0.206

  = 0.003317 10 24 = 149,0503

  Batch 2 Rata – rata = 145,6738

  0.197 =

  0.00317 10 24 = 142,5384 Batch 3

  0.201 =

  0.03317 10 24 = 145,4326  WVTR Edible Film 75% Protein : 25% Karagenan Setelah 11 Jam Batch 1

  0.233 =

  0.003317 11 24 = 153,2601 Batch 2

  Rata

  • – rata = 145,5861 0.218

  = 0.00317 11 24 = 143,3935

  Batch 3 0.213

  = 0.03317 11 24 = 140,1047

   WVTR Edible Film 75% Protein : 25% Karagenan Setelah 12 Jam Batch 1 0.255

  = 0.003317 12 24 = 153,7534

  Batch 2 Rata

  • – rata = 142,0963 0.240

  = 0.00317 12 24 = 144,7091

  Batch 3 0.212

  = 0.03317 12 24 = 127,8263

   WVTR Edible Film 50% Protein : 50% Karagenan  WVTR Edible Film 50% Protein : 50% Karagenan Setelah 1 Jam Batch 1 0.032

  = 0.001431 1 24 = 536,5816

  Batch 2 Rata – rata = 420,2096

  0.018 =

  0.001231 1 24 = 350,9326 Batch 3

  0.031 =

  0.001994 1 24 = 373,1146  WVTR Edible Film 50% Protein : 50% Karagenan Setelah 2 Jam Batch 1

  0.043 =

  0.003317 2 24 = 385,6681 Batch 2

  Rata – rata = 333,1175 0.064

  = 0.00317 2 24 = 282,6957

  Batch 3 0.039

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 3 Jam Batch 1 0.058

  = 0.001431 3 24 = 324,1847

  Batch 2 Rata

  • – rata = 294,5028 0.041

  = 0.001231 3 24 = 266,4488

  Batch 3 0.073

  = 0.001994 3 24 = 292,8749

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 4 Jam Batch 1 0.067

  = 0.003317 4 24 = 280,8670

  Batch 2 Rata

  • – rata = 287,1508 0.058

  = 0.00317 4 24 = 282,6957

  Batch 3 0.099

  = 0.03317 4 24 = 297,8899

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 5 Jam Batch 1 0.077

  = 0.003317 5 24 = 258,2299

  Batch 2 Rata

  • – rata = 276,3641 0.068

  = 0.00317 5 24 = 265,1491

  Batch 3 0.127

  =

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 6 Jam Batch 1 0.081

  = 0.001431 6 24 = 226,3704

  Batch 2 Rata

  • – rata = 264,5727 0.082

  = 0.001231 6 24 = 266,4488

  Batch 3 0.150

  = 0.001994 6 24 = 300,8988

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 7 Jam Batch 1 0.096

  = 0.003317 7 24 = 229,9636

  Batch 2 Rata

  • – rata = 269,6561 0.098

  = 0.00317 7 24 = 272,9476

  Batch 3 0.178

  = 0.03317 7 24 = 306,0571

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 8 Jam Batch 1 0.105

  = 0.003317 8 24 = 220,0823

  Batch 2 Rata

  • – rata = 266,1474 0.112

  = 0.00317 8 24 = 272,9476

  Batch 3 0.203

  =

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 9 Jam Batch 1 0.114

  = 0.001431 9 24 = 212,3969

  Batch 2 Rata

  • – rata = 260,3606 0.123

  = 0.001231 9 24 = 266,4488

  Batch 3 0.226

  = 0.001994 9 24 = 302,2362

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 10 Jam Batch 1 0.126

  = 0.003317 10 24 = 211,2790

  Batch 2 Rata – rata = 256,2608

  0.131 =

  0.00317 10 24 = 255,4010 Batch 3

  0.251 =

  0.03317 10 24 = 302,1040  WVTR Edible Film 50% Protein : 50% Karagenan Setelah 11 Jam Batch 1

  0.141 =

  0.003317 11 24 = 214,9375 Batch 2

  Rata

  • – rata = 252,8332 0.140

  = 0.00317 11 24 = 248,1342

  Batch 3 0.270

  = 0.03317 11 24 = 295,4280

   WVTR Edible Film 50% Protein : 50% Karagenan Setelah 12 Jam Batch 1 0.153

  = 0.003317 12 24 = 213,7942

  Batch 2 Rata

  • – rata = 247,7506 0.145

  = 0.00317 12 24 = 235,5798

  Batch 3 0.293

  = 0.03317 12 24 = 293,8779

   WVTR Edible Film 25% Protein : 75% Karagenan  WVTR Edible Film 25% Protein : 75% Karagenan Setelah 1 Jam Batch 1 0.052

  = 0.001909 1 24 = 653,5801

  Batch 2 Rata

  • – rata = 615,9149 0.077

  = 0.003276 1 24 = 564,1145

  Batch 3 0.086

  = 0.003276 1 24 = 630,050

   WVTR Edible Film 25% Protein : 75% Karagenan Setelah 2 Jam Batch 1 0.082

  = 0.001909 2 24 = 515,3227

  Batch 2 Rata

  • – rata = 467,2628 0.106

  = 0.003276 2 24 = 388,2866

  Batch 3

  0.136 =

  0.003276 2 24 = 498,1791  WVTR Edible Film 25% Protein : 75% Karagenan Setelah 3 Jam Batch 1

  0.108 =

  0.001909 3 24 = 452,4785 Batch 2

  Rata

  • – rata = 402,3577 0.134

  = 0.003276 3 24 = 327,2353

  Batch 3 0.175

  = 0.003276 3 24 = 427,3595

   WVTR Edible Film 25% Protein : 75% Karagenan Setelah 4 Jam Batch 1 0.139

  = 0.001909 4 24 = 436,7674

  Batch 2 Rata

  • – rata = 370,8686 0.164

  = 0.003276 4 24 = 300,3727

  Batch 3 0.205

  = 0.003276 4 24 = 375,4658

   WVTR Edible Film 25% Protein : 75% Karagenan Setelah 5 Jam Batch 1 0.171

  = 0.001909 5 24 = 429,8546

  Batch 2 Rata – rata = 359,6509

  0.205 =

  0.003276 5 24 = 300,3727 Batch 3

  0.238 =

  0.003276 5 24 = 348,7253  WVTR Edible Film 25% Protein : 75% Karagenan Setelah 6 Jam Batch 1

  0.204 =

  0.001909 6 24 = 427,3408 Batch 2

  Rata

  • – rata = 352,8706 0.252

  = 0.003276 6 24 = 307,6988

  Batch 3 0.265

  = 0.003276 6 24 = 323,5722

   WVTR Edible Film 25% Protein : 75% Karagenan Setelah 7 Jam Batch 1 0.228

  = 0.001909 7 24 = 409,3853

  Batch 2 Rata

  • – rata = 355,5489 0.321

  = 0.003276 7 24 = 335,9569

  Batch 3 0.307

  = 0.003276 7 24 = 321,3046

   WVTR Edible Film 25% Protein : 75% Karagenan Setelah 8 Jam Batch 1 0.262

  = 0.001909 8 24 = 411,6297

  Batch 2 Rata

  • – rata = 355,1633 0.366

  =

  Batch 3 0.348

  = 0.003276 8 24 = 318,6881

   WVTR Edible Film 25% Protein : 75% Karagenan Setelah 9 Jam Batch 1 0.295

  = 0.001909 9 24 = 411,9789

  Batch 2 Rata

  • – rata = 351,4130 0.398

  = 0.003276 9 24 = 323,9792

  Batch 3 0.391

  = 0.003276 9 24 = 318,2811

   WVTR Edible Film 25% Protein : 75% Karagenan Setelah 10 Jam Batch 1 0.322

  = 0.001909 10 24 = 404,7169

  Batch 2 Rata – rata = 344,6781

  0.439 =

  0.003276 10 24 = 321,6185 Batch 3

  0.420 =

  0.003276 10 24 = 307,6988  WVTR Edible Film 25% Protein : 75% Karagenan Setelah 11 Jam Batch 1

  0.348 =

  0.001909 11 24 = 397,6326 Batch 2

  Rata – rata = 335,9007

  0.468 =

  0.003276 11 24 = 311,6949 Batch 3

  0.448 =

  0.003276 11 24 = 298,3746  WVTR Edible Film 25% Protein : 75% Karagenan Setelah 12 Jam Batch 1

  0.369 =

  0.001909 12 24 = 386,4921 Batch 2

  Rata

  • – rata = 325,416 0.492

  = 0.003276 12 24 = 300,3727

  Batch 3 0.474

  = 0.003276 12 24 = 289,3834

   WVTR Edible Film 100% Karagenan  WVTR Edible Film 100% Karagenan Setelah 1 Jam Batch 1 0.126

  = 0.003957 1 24 = 764,1796

  Batch 2 Rata – rata = 948,626

  0.189 =

  0.004416 1 24 = 1027,261 Batch 3

  0.194 =

  0.004416 1 24 = 1054,437  WVTR Edible Film 100% Karagenan Setelah 2 Jam Batch 1

  0.213 =

  0.003957 2 24 = 645,9137 Batch 2

  Rata

  • – rata = 756,1114 0.280

  = 0.004416 2 24 = 760,9342

  Batch 3 0.317

  = 0.004416 2 24 = 861,4862

   WVTR Edible Film 100% Karagenan Setelah 3 Jam Batch 1 0.316

  = 0.003957 3 24 = 638,838

  Batch 2 Rata – rata = 672,5261

  0.359 =

  0.004416 3 24 = 650,4176 Batch 3

  0.402 =

  0.004416 3 24 = 728,3227  WVTR Edible Film 100% Karagenan Setelah 4 Jam Batch 1

  0.411 =

  0.003957 4 24 = 623,1703 Batch 2

  Rata – rata = 633,9371 0.449

  = 0.004416 4 24 = 610,1062

  Batch 3 0.492

  = 0.004416 4 24 = 668,535

   WVTR Edible Film 100% Karagenan Setelah 5 Jam Batch 1

  0.485 =

  0.003957 5 24 = 588,297 Batch 2

  Rata

  • – rata = 583,0884 0.504

  = 0.004416 5 24 = 547,8726

  Batch 3 0.564

  = 0.004416 5 24 = 613,0955

   WVTR Edible Film 100% Karagenan Setelah 6 Jam Batch 1 0.568

  = 0.003957 6 24 = 574,1455

  Batch 2 Rata

  • – rata = 672,5261 0.592

  = 0.004416 6 24 = 536,2774

  Batch 3 0.631

  = 0.004416 6 24 = 571,6065

   WVTR Edible Film 100% Karagenan Setelah 7 Jam Batch 1 0.664

  = 0.003957 7 24 = 575,3007

  Batch 2 Rata – rata = 552,3048

  0.683 =

  0.004416 7 24 = 530,3245 Batch 3

  0.710 =

  0.004416 7 24 = 551,2891  WVTR Edible Film 100% Karagenan Setelah 8 Jam Batch 1 0.758

  = 0.003957 8 24 = 574,6509

  Batch 2 Rata

  • – rata = 549,8235 0.755

  = 0.004416 8 24 = 512,9512

  Batch 3 0.827

  = 0.004416 8 24 = 561,8684

   WVTR Edible Film 100% Karagenan Setelah 9 Jam Batch 1 0.889

  = 0.003957 9 24 = 599,0791

  Batch 2 Rata

  • – rata = 555,6009 0.856

  = 0.004416 9 24 = 516,9521

  Batch 3 0.912

  = 0.004416 9 24 = 550,7714

   WVTR Edible Film 100% Karagenan Setelah 10 Jam Batch 1 0.952

  = 0.003957 10 24 = 577,3801

  Batch 2 Rata

  • – rata = 544,3015 0.936

  = 0.004416 10 24 = 508,7389

  Batch 3 1,006

  = 0.004416 10 24 = 546,7856

   WVTR Edible Film 100% Karagenan Setelah 11 Jam Batch 1 0.997

  = 0.003957 11 24 = 549,7021

  Batch 2 Rata – rata = 529,772

  1,011 =

  0.004416 11 24 = 499,5483 Batch 3

  1,093 =

  0.004416 11 24 = 540,0656  WVTR Edible Film 100% Karagenan Setelah 12 Jam Batch 1

  1,039 =

  0.003957 12 24 = 525,1208 Batch 2

  Rata

  • – rata = 516,2528 1,115

  = 0.004416 12 24 = 505,0248

  Batch 3 1145

  = 0.004416 12 24 = 518,6129

  Lampiran 7. Output SPSS Kuat Tarik dan Pemanjangan (Uji One Way Anova, Pos Hoc Duncan)

  Tests of Normality .297 5 .170 .869 5 .263 Tensile_Strength

  Statistic df Sig. Statistic df Sig.

  Kolmogorov-Smirnov

a

Shapiro-Wilk Lilliefors Significance Correction a.

  Tests of Normality .208 5 .200* .868 5 .259 Elongasi

  Statistic df Sig. Statistic df Sig.

  Kolmogorov-Smirnov a

  Shapiro-Wilk This is a lower bound of the true significance.

  • .

  Lilliefors Significance Correction a.

  ANOVA 1746.219 4 436.555 1214.508 .000 30.553

  85 .359 1776.772 89 250830.4

  4 62707.595 1130.395 .000 4715.295 85 55.474 255545.7

  89 Between Groups Within Groups Total Between Groups Within Groups Total

  Tensile_Strength Elongasi Sum of Squares df Mean Square F Sig.

  Tensile_Strength a

  Duncan Subset for alpha = .05 Perlakuan N

  1

  2

  3

  4 100% Karagenan 18 2.1029 Komn 25:75 18 2.4923 Komb 50:50

18 3.3792

Komb 75:25 18 9.8511 100% Protein 18 12.9234 Sig.

  .055 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 18.000.

  Elongasi a

  Duncan Subset for alpha = .05 Perlakuan N

  1

  2

  3

  4 100% Protein 18 12.1117 Komb 75:25 18 14.3948 Komb 50:50

18 41.2457

Komn 25:75 18 76.4428 100% Karagenan 18 154.5522 Sig. .360 1.000 1.000 1.000

  Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 18.000.

  Lampiran 8. Output SPSS Laju Transmisi Uap Air (Uji One Way Anova, Pos Hoc Duncan)

  Tests of Normality .184 5 .200* .937 5 .644 .180

  5 .200* .930 5 .595 .176 5 .200* .921 5 .537 .191 5 .200* .911 5 .473 .192 5 .200* .914 5 .494 .196 5 .200* .912 5 .479 .199 5 .200* .918 5 .517 .196 5 .200* .920 5 .530 .189 5 .200* .917 5 .512 .188 5 .200* .918 5 .515 .188 5 .200* .918 5 .517 .188 5 .200* .918 5 .514 WVTR_Jam_1

  WVTR_Jam_2 WVTR_Jam_3 WVTR_Jam_4 WVTR_Jam_5 WVTR_Jam_6 WVTR_Jam_7 WVTR_Jam_8 WVTR_Jam_9 WVTR_Jam_10 WVTR_Jam_11 WVTR_Jam_12 Statistic df Sig. Statistic df Sig.

  Kolmogorov-Smirnov a Shapiro-Wilk This is a lower bound of the true significance.

  • .

  Lilliefors Significance Correction a.

  ANOVA 1261125 4 315281.135 34.743 .000 90745.571

  10 9074.557 1351870 14 727654.9

  4 181913.715 34.775 .000 52312.072 10 5231.207 779966.9 14 585196.8

  4 146299.197 79.051 .000 18506.842 10 1850.684 603703.6 14 501196.8

  4 125299.202 88.979 .000 14081.870 10 1408.187 515278.7 14 412094.1

  4 103023.530 78.041 .000 13201.148 10 1320.115 425295.3 14 381042.5

  4 95260.622 75.851 .000 12558.853 10 1255.885 393601.3 14 366850.6

  4 91712.640 106.247 .000 8632.002 10 863.200 375482.6 14 364273.6

  4 91068.388 82.522 .000 11035.628 10 1103.563 375309.2 14 370138.0

  4 92534.489 69.296 .000 13353.439 10 1335.344 383491.4 14 351717.9

  4 87929.486 72.313 .000 12159.629 10 1215.963 363877.6 14 326542.5

  4 81635.623 75.151 .000 10862.851 10 1086.285 337405.3 14 308813.1

  4 77203.275 77.278 .000 9990.384 10 999.038 318803.5

  14 Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total

  WVTR_Jam_1 WVTR_Jam_2 WVTR_Jam_3 WVTR_Jam_4 WVTR_Jam_5 WVTR_Jam_6 WVTR_Jam_7 WVTR_Jam_8 WVTR_Jam_9 WVTR_Jam_10 WVTR_Jam_11 WVTR_Jam_12

  Sum of Squares df Mean Square F Sig.

  WVTR_Jam_1 a

  Duncan Subset for alpha = .05 Perlakuan N

  1

  2

  3

  4 100% Protein 3 150.1265

  75 Protein : 25 3 214.6518 Karagenan

  50 Protein : 50 3 420.2096 Karagenan

  25 Protein : 75 3 615.9149 Karagenan 100% Karagenan

  3 948.6260 Sig.

  .426 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 3.000.

  WVTR_Jam_2 a

  Duncan Subset for alpha = .05 Perlakuan N

  1

  2

  3

  4 100% Protein 3 127.1371

  75 Protein : 25 3 214.6518 214.6518 Karagenan

  50 Protein : 50 3 333.1175 Karagenan

  25 Protein : 75 3 467.2628 Karagenan 100% Karagenan

  3 756.1114 Sig.

  .169 .073 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 3.000.

  WVTR_Jam_3 a

  Duncan Subset for alpha = .05 Perlakuan N

  1

  2

  3

  4 100% Protein 3 121.6086

  75 Protein : 25 3 163.1997 Karagenan

  50 Protein : 50 3 294.5028 Karagenan

  25 Protein : 75 3 402.3577 Karagenan 100% Karagenan

  3 672.5261 Sig.

  .264 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 3.000.

  WVTR_Jam_4 a

  Duncan Subset for alpha = .05 Perlakuan N

  1

  2

  3

  4 100% Protein 3 125.1883

  75 Protein : 25 3 155.5623 Karagenan

  50 Protein : 50 3 287.1508 Karagenan

  25 Protein : 75 3 370.8686 Karagenan 100% Karagenan

  3 633.9371 Sig. .345 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 3.000.

  WVTR_Jam_5 a

  Duncan Subset for alpha = .05 Perlakuan N

  1

  2

  3

  4 100% Protein 3 126.6843

  75 Protein : 25 3 148.0856 Karagenan

  50 Protein : 50 3 276.3641 Karagenan

  25 Protein : 75 3 359.6509 Karagenan 100% Karagenan

  3 583.0884 Sig.

  .487 1.000 1.000 1.000 Means for groups in homogeneous subsets are displayed.

  a.