RANCANGAN PENGOLAH LIMBAH CAIR KANTIN DENGAN FITOREMEDIASI.

Prosiding Konferensi Nasional Teknik Sipil 9 (KoNTekS 9)
Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Kelompok Peminatan

Teknik Lingkungan

Prosiding Konferensi Nasional Teknik Sipil 9 (KoNTekS 9)
Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

RANCANGAN PENGOLAH LIMBAH CAIR KANTIN DENGAN FITOREMEDIASI
Yenni Ciawi1, Aliza Hana Oktavia2 dan I Putu Gustave Suryantara3
1

Program Studi Teknik Sipil, Universitas Udayana, Kampus Bukit Jimbaran, Bali
email: yenniciawi@yahoo.com

ABSTRAK
Limbah cair kantin banyak mengandung bahan organik dan kuantitasnya relatif kecil sehingga dapat
diolah dengan fitoremediasi. Waktu tinggal air limbah ditentukan dengan mengukur COD dan BOD
limbah. Dimensi IPAL dan diameter pipa masuk dan keluarnya dihitung berdasar volume harian air

limbah. Didapat waktu tinggal limbah 2 hari dengan penurunan kadar COD dari 630,707 mg/l
menjadi 65,434 mg/l, yang sudah memenuhi baku mutu air limbah domestik menurut Keputusan
Menteri Negara Lingkungan Hidup Nomor 112 Tahun 2003, yaitu 100 mg/l. Debit limbah
maksimum adalah 907,2 liter/hari serta debit harian rata-rata limbah sebesar 640,7 liter/hari.
Dimensi kolam WWG adalah panjang 3 meter, lebar 1 meter, dan kedalaman 0,6 meter. Diameter
pipa masuk dan keluar IPAL adalah 0,5 inci.
Kata kunci: disain, fitoremediasi, air limbah, kantin

1.

PENDAHULUAN

Limbah cair kantin mengandung banyak bahan organik yang dapat mencemari lingkungan jika tidak diolah. Salah
satu cara pengolahan limbah cair secara aerob adalah dengan memanfaatkan tanaman atau fitoremediasi (UNEP, tt),
yang dilakukan dalam sebuah konstruksi lahan basah (wetland) buatan atau dikenal sebagai waste water garden
(WWG). Berbagai tanaman dapat digunakan untuk kegiatan ini, seperti cattail (Typha domingensis), papirus
(Cyperus papyrus), rumput gajah (Pennisetum purpureum) atau tanaman lainnya. Dalam WWG, bahan organik
dalam air limbah akan diserap oleh tanaman dan mikroorganisme yang hidup di sekitarnya. Sistem lahan basah
dibuat dengan tanaman yang ditata indah sehingga disebut sebagai waste water garden (WWG) (Irawanto, 2010).
Fitoremediasi memiliki beberapa keuntungan (Irawanto, 2010) seperti biaya pembuatan dan operasional yang

murah, tidak memerlukan teknologi yang rumit, memanfaatkan sumber daya alam yang ada di sekitar, dapat dibuat
dalam berbagai ukuran, menyediakan ekosistem baru, tidak berbau, tidak dapat digunakan sebagai tempat
perkembangbiakkan nyamuk, serta memperindah lingkungan. Sistem ini juga memiliki beberapa kekurangan
(Widyawati, 2008), seperti kemampuan fitoremediasi hanya terbatas pada permukaan tumbuhan, akar, dan area
sekitar akar dalam mengikat polutan sehingga diperlukan tanaman dengan sistem perakaran yang kuat, tanaman
memiliki keterbatasan dalam menetralkan polutan tergantung dari tingkat polutan dalam air limbah sehingga waktu
pengolahan menjadi tidak tentu, tidak semua tanaman memiliki kemampuan yang sama dalam tumbuh dan
berkembang sehingga harus dipilih tanaman-tanaman yang cepat tumbuh untuk sistem ini.
Banyak penelitian fitoremediasi yang dilakukan untuk berbagai jenis kontaminan dalam air limbah (Desta et al.,
2014; Zhang, 2015) dan dengan berbagai tanaman, contohnya: Echinacea purpurea, Festuca arundinacea Schred,
Fire Phoenix (turunan F. arundinacea), and Medicago sativa L. untuk kontaminasi hidrokarbon poliaromatik (Liu et
al., 2015), barley (Hordeum vulgaris), kubis (Brassica juncea), bayam (Spinacea oleracea), sorghum (Sorgum
vulgare), kacang (Phaseolus vulgaris), tomat (Solanum lycopersicum), and ricinus (Ricinus communis) untuk
kontaminasi nikel (Giordani et al., 2005). Sistem seperti ini juga digunakan untuk mengolah limbah tinja seperti
yang dilakukan oleh Mbuligwe (2005), untuk melengkapi IPAL perkotaan (Rossi et al., 2013).

2.

MATERI DAN METODE


Pembuatan WWG skala laboratorium
Air limbah yang digunakan dalam penelitian ini adalah air limbah kantin Jurusan Teknik Sipil Universitas Udayana
Kampus Bukit Jimbaran, Bali. Kolam WWG menggunakan ember plastik yang berkapasitas 21 liter. Kolam diisi
dengan tanah setinggi 15 cm sebagai media tumbuh tanaman air. Untuk skala laboratorium, digunakan cattail
(Typha domingensis), yang sudah diaklimatisasi terlebih dahulu selama 3 bulan agar tidak mati saat menyerap bahan

Paper ID : TL04 Teknik Lingkungan
923

Prosiding Konferensi Nasional Teknik Sipil 9 (KoNTekS 9)
Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

organik yang banyak. Sampel limbah diambil setiap hari dari hari ke-0 hingga hari ke-4 untuk diukur kadar BOD
dan CODnya.

Tanaman yang digunakan di lapangan
Tanaman yang digunakan adalah, berturut-turut, cattail (Typha domingensis), papirus (Cyperus papyrus), eceng
gondok (Eichhornia crassipes), dan rumput gajah (Pennisetum purpureum).

Penentuan waktu tinggal

Volume harian limbah diukur secara langsung dengan menampung air limbah kantin. Waktu tinggal limbah
diperkirakan dari percobaan degradasi limbah dalam pot dengan tanaman cattail berdasar harga COD yang diukur
setiap hari.

Perhitungan dimensi kolam WWG
Panjang dan lebar kolam WWG ditetapkan sepanjang 3 dan 1 meter, sehingga kedalaman kolam dihitung berdasar
rumus berikut ini.

dengan:
Qt = volume total limbah (liter)
= volume rata-rata limbah (liter/hari)
p = panjang kolam (m)
l = lebar kolam (m)
h = kedalaman kolam (m)

Perhitungan saluran inlet
Saluran inlet menggunakan pipa PVC. Dengan asumsi saluran terbuka dan tinggi maksimum aliran sebesar 0,8
diameter pipa, kecepatan aliran dihitung dengan rumus Manning sebagai berikut:
V =
R =

A =
P =
Q =
dengan:
V
I
A
P
D
Q

= kecepatan aliran dalam pipa (m/s)
= perbandingan beda tinggi saluran dengan panjang saluran
= luas tampang basah (m2)
= keliling tampang basah (m)
= diameter pipa (m)
= debit saluran (m/s3)

Kontrol tegangan tanah
Tanah lokasi pembangunan kolam merupakan tanah kapur yang keras. Kontrol tegangan tanah akan dilakukan pada

kondisi kolam kosong (Direktorat Penyelidikan Masalah Bangunan, 1983).

Paper ID : TL04 Teknik Lingkungan
924

Prosiding Konferensi Nasional Teknik Sipil 9 (KoNTekS 9)
Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Fa1

h

Fa1

Fa2

Ph2

h
Fa2


Ph1

Ph1

Ph2

Gambar 1. Tegangan tanah yang terjadi

dengan:
Ph1
Ph2
Ph3
Q
H
Ka
Fa1
Fa2
Fa3
γtanah

γair

= Tekanan akibat pengaruh beban merata (N/m2)
= Tekanan tanah aktif (g/m2)
= Tekanan akibat air tanah (dalam keadaan banjir) (g/m2)
= Beban merata (N/m2)
= tinggi kolam (m)
= Koefisien tanah aktif
= Gaya tekan akibat pengaruh beban merata (N)
= Gaya tekan akibat pengaruh tanah aktif (N)
= Gaya tekan akibat pengaruh air tanah (banjir) (N)
= Berat jenis tanah (g/cm3)
= Berat jenis air (g/cm3)

Kontrol kuat tekan batako
Berdasarkan SNI 03-0348-1989 (Badan Standarisasi Nasional, 1989) mengenai bata beton pejal, mutu, dan cara uji,
klasifikasi bata beton pejal (batako) menurut kuat tekannya adalah sebagai berikut: bata beton pejal mutu B25; kuat
tekannya tidak kurang dari 25 kg/cm2, B40 tidak kurang dari 40 kg/cm2, B70 tidak kurang dari 70 kg/cm2, B100
tidak kurang dari 100 kg/cm2. Kontrol dilakukan menggunakan beban tekan yang diakibatkan oleh tekanan tanah per
luas bidang dinding kolam dan dibandingkan dengan kuat tekan beton pejal minimum, yakni 25 kg/cm 2. Bila kuat

tekan beton pejal ternyata lebih besar, maka beton pejal layak digunakan.

3.

HASIL DAN PEMBAHASAN

Pemilihan tanaman
Pada awal penelitian, tanaman yang direncanakan adalah cattail, yang dapat tumbuh dengan baik dalam skala
laboratorium dan mudah diperoleh di Denpasar. Tanaman ini termasuk dalam keluarga tanaman padi-padian yang
bisa mencapai ketinggian hingga 2 meter. Tanaman ini memiliki sistem akar serabut serta mudah tumbuh di tempat
lembab atau basah. Namun, setelah sebulan dalam WWG skala lapangan, cattail ternyata tidak dapat berkembang
dan mati perlahan-lahan, diduga karena kadar lemak yang sangat tinggi dalam air limbah. Berturut-turut tanaman
diganti dengan papirus, eceng gondok, dan rumput gajah. Yang terakhir yang berhasil tumbuh dengan subur.

Waktu tinggal
Nilai BOD dan COD air limbah awal dan baku mutu air limbah domestik menurut Keputusan Menteri Negara
Lingkungan Hidup Nomor 112 Tahun 2003 ditampilkan dalam Tabel 1.

Parameter
BOD

COD

Tabel 1. Nilai BOD dan COD
Konsentrasi (mg/l) Baku mutu (mg/l)
4,64
100
630,707
100

Paper ID : TL04 Teknik Lingkungan
925

Prosiding Konferensi Nasional Teknik Sipil 9 (KoNTekS 9)
Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Harga BOD air limbah kantin sudah memenuhi baku mutu air limbah domestik, sedangkan nilai COD cukup tinggi,
yang diduga karena kadar lemaknya sangat tinggi. Selanjutnya, nilai BOD tidak diukur lagi. Dalam skala
laboratorium, dengan menggunakan tanaman cattail, nilai BOD air limbah dalam WWG diukur dan hasilnya
ditampilkan pada Tabel 2.
Tabel 2. Kandungan COD akhir

Hari keKadar COD (mg/l)
0
630,707
1
121,779
2
65,434
3
54,528
4
38,17
Kadar COD air limbah sudah memenuhi baku mutu air limbah domestik pada hari ke-2 percobaan sehingga
ditetapkan waktu tinggal limbah adalah 2 hari untuk menentukan dimensi kolam WWG.

Perhitungan dimensi kolam WWG
Volume limbah harian diukur selama 5 hari berturut-turut dan dirata-ratakan dan didapat nilai 640,7 liter per hari
( ). Volume kolam (Qt) diperoleh diperoleh 1.28 m3 . Berdasarkan luas lahan yang tersedia, ditentukan luas kolam 2
x 1 m2 , diperoleh kedalaman 0,65 m dan ditambah 20 cm sebagai tinggi jagaan untuk mengantisipasi apabila terjadi
fluktuasi volume air limbah sehingga kedalaman kolam adalah 0,85 m.

Perhitungan saluran inlet

Gambar 2. Tampak Belakang Kantin

Gambar 3. Rencana saluran pipa
Data-data perencanaan saluran antara lain:
Diameter pipa sal. 1
= 0,5 inci = 0,0127 m
Diameter pipa sal. 2
= 0,5 inci = 0,0127 m
Diameter pipa sal. 3
= 1 inci = 0,0254 m
Koefisien roughness (n) = 0,011
Elevasi awal pipa 1
= 0,9 meter
Elevasi awal pipa 2
= 0,3 meter
Elevasi akhir
= 0 meter
Jarak antar saluran outlet kantin 1 dan 2 = 3,25 m
Hasil perhitungan masing-masing saluran akan disajikan dalam tabel di bawah ini.

Paper ID : TL04 Teknik Lingkungan
926

Prosiding Konferensi Nasional Teknik Sipil 9 (KoNTekS 9)
Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Tabel 3. Hasil kontrol kapasitas pipa
Sal. 1
Sal. 2
Sal.3
1,087.10-4 1,087.10-4 1,087.10-4
A (m2)
2,812.10-2 2,812.10-2 2,812.10-2
P (m)
3,866.10-3 3,866.10-3 3,866.10-3
R
0,26
0,291
0,0499
I
99970
104400
43219
V (m/hari)
10,867
11,348
4,698
Q (m3/hari)
Q limbah
0,1715
0,4692
0,6407
(m3/hari)
OK
OK
OK
Kontrol

Kontrol tegangan tanah
Data-data perhitungan:
γtanah (γs)
γair
Sudut geser tanah(ɸ)
σijin tanah
Faktor kohesi tanah (c)
Tinggi bak kontrol (h)
Tinggi bak pengolahan

= 2,625 ton/m3
= 1 t/m3
= 350
= 5 kg/cm2 (PPIUG 1983)
=0
= 0,3 meter
= 0,6 meter

Hasil perhitungan disajikan dalam Tabel 4.
Tabel 4. Hasil perhitungan tegangan tanah
Bak Kontrol
Bak Pengolahan
0,271
0,271
Ka
1
1
q (t/m2)
0,271
0,271
Ph1 (t/m2)
0,213
0,427
Ph2 (t/m2)
0,0813
0,1626
Fa1 (t)
0,032
0,1281
Fa2 (t)
0,1133
0,2907
Ftotal (t)

Kontrol kuat tekan batako
-Bak kontrol
Data-data yang tersedia:
Kuat tekan batako = 25 kg/cm2
Gaya tekan akibat tanah (F) = 0,1133 t = 113,3 kg
Dimensi bak = 30 x 30 x 30 cm
Gaya tekan akibat tanah akan dibagi dengan luas permukaan dinding bak kontrol. Hasil dari perhitungan harus
lebih kecil daripada kuat tekan batako.

-Bak pengolahan
Data-data yang tersedia:
Kuat tekan batako = 25 kg/cm2
Gaya tekan akibat tanah (F) = 0,2907 t= 290,7 kg

Paper ID : TL04 Teknik Lingkungan
927

Prosiding Konferensi Nasional Teknik Sipil 9 (KoNTekS 9)
Komda VI BMPTTSSI - Makassar, 7-8 Oktober 2015

Dimensi bak = 300 x 100 x 60 cm
Gaya tekan akibat tanah akan dibagi dengan luas permukaan dinding paling kecil pada bak pengolahan. Hasil
dari perhitungan harus lebih kecil daripada kuat tekan batako.

4.

SIMPULAN

Rumput gajah ternyata lebih tahan terhadap kandungan air limbah kantin dibandingkan dengan cattail, papirus, dan
eceng gondok, walaupun menurut skala laboratorium cattail mampu menurunkan nilai COD dari 600 menjadi 65,4,
yang memenuhi baku mutu air limbah domestik menurut Keputusan Menteri Lingkungan Hidup Nomor 112 tahun
2003, yakni sebesar 100 mg/l. Dengan debit harian rata-rata sebesar 640,7 liter/hari, dimensi kolam WWG yang
dibutuhkan adalah 3 x 1 x 0,6 m3. Kolam WWG akan dilengkapi dengan 1 bak kontrol sebagai pemisah padatan pada
air limbah dengan dimensi 0,3 x 0,3 x 0,3 m3. Saluran inlet dan outlet kolam menggunakan pipa PVC dengan
diameter 0,5 inci.

5.

UCAPAN TERIMA KASIH

Terima kasih disampaikan kepada Jurusan Teknik Sipil Universitas Udayana yang telah mendanai penelitian ini.

DAFTAR PUSTAKA
Badan Standarisasi Nasional. (1989). Bata Beton Pejal, Mutu, dan Cara Uji SNI 03-0348-1989. Standar Nasional
Indonesia.
Desta, A. F., Assefa, F., Leta, S., Stomeo, F., Wamalwa, M., Njahira, M., & Appolinaire, D. (2014). “Microbial
community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed
wetland for the treatment of tannery wastewater in Modjo, Ethiopia”. PLoS One Vol.9(12).
Direktorat Penyelidikan Masalah Bangunan. (1983). Peraturan pembebanan Indonesia untuk gedung. Edisi 2.
Yayasan lembaga Penyelidikan Masalah Bangunan, Bandung.
Giordani, C., Cecchi, S., and Zanchi, C. (2005). “Phytoremediation of soil polluted by nickel using agricultural
crops”. Environmental Management Vol.36(5): 675-81.
Irawanto, R. (2010). “Fitoremediasi Lingkungan dalam Taman Bali”. Jurnal LIPI Vol II(4): 29-35.
Keputusan Menteri Lingkungan Hidup Nomor 112 (2003). Baku mutu air limbah domestik.
Liu, R., Dai, Y., and Sun, L. (2015). “Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil
using five plant species”. PLoS One Vol.10 (3).
Mbuligwe, S. E. (2005). “Applicability of a septic tank/engineered wetland coupled system in the treatment and
recycling of wastewater from a small community”. Environmental Management Vol.35(1), 99-108.
Rossi, L., Queloz, P., Brovelli, A., Margot, J., & Barry, D. A. (2013). “Enhancement of micropollutant degradation
at the outlet of small wastewater treatment plants”. PLoS One Vol.8(3).
UNEP (tt). Phytoremediation: An environmentally sound technology for pollution prevention, control and
remediation. An introductory guide to decision-makers. Newsletter and Technical Publications. Freshwater
Management Series No. 2. http://www.unep.or.jp/Ietc/Publications/Freshwater/F.
Widyawati, E. (2008). Peranan mikroba tanah pada kegiatan rehabilitasi lahan bekas tambang. Pusat Litbang
Hutan dan Konservasi Alam Bogor.
Zhang, Y., Wang, L., Hu, Y., Xi, X., Tang, Y., Chen, J., Sun, Y. (2015). “Water organic pollution and
eutrophication influence soil microbial processes, increasing soil respiration of estuarine wetlands: Site study in
Jiuduansha wetland”. PLoS One Vol.10(5).

Paper ID : TL04 Teknik Lingkungan
928

yenni ciawi-konteks
by Yenni Ciawi

FILE

T IME SUBMIT T ED
SUBMISSION ID

PROSIDING_KONT EKS_9_3.PDF (341.04K)

04-FEB-2016 04:44PM
627705264

WORD COUNT

2264

CHARACT ER COUNT 12503

yenni ciawi-konteks

16

ORIGINALITY REPORT

%

SIMILARIT Y INDEX

15%

INT ERNET SOURCES

11%

PUBLICAT IONS

10%

ST UDENT PAPERS

PRIMARY SOURCES

1

Giordano, Cesira, Francesco Spennati, Anna
Melone, Giulio Petroni, Franco Verni, Giulio
Munz, Gualtiero Mori, and Claudia Vannini.
"Biological Sulfur-Oxidizing Potential of
Primary and Biological Sludge in a Tannery
Wastewater Treatment Plant", Water Air &
Soil Pollution, 2015.
Publicat ion

2

eprints.undip.ac.id

3

journals.plos.org

4

Int ernet Source

Int ernet Source

Zhang, Yue, Lei Wang, Yu Hu, Xuefei Xi,
Yushu Tang, Jinhai Chen, Xiaohua Fu, and
Ying Sun. "Water Organic Pollution and
Eutrophication Influence Soil Microbial
Processes, Increasing Soil Respiration of
Estuarine Wetlands: Site Study in
Jiuduansha Wetland", PLoS ONE, 2015.
Publicat ion

5

www.ecohyd.org
Int ernet Source

2%

2%
2%
2%

1%

6

Submitted to Glasgow Caledonian University

7

r4d.dfid.gov.uk

8

St udent Paper

Int ernet Source

Shafiq, Muhammad. "Effect of Composting
on Phytoextraction of Heavy Metals from
Tannery Solid Waste Amended Soil", Journal
of Solid Waste Technology &
Management/10881697, 20100201
Publicat ion

9

Cesare Giordani. "Phytoremediation of Soil
Polluted by Nickel Using Agricultural Crops",
Environmental Management, 11/2005
Publicat ion

10

www.pip2bdiy.org

11

www.pu.go.id

12

Submitted to iGroup

13

eprints.upnjatim.ac.id

14

tapiokapati.com

15

www.polines.ac.id

Int ernet Source

Int ernet Source

St udent Paper

Int ernet Source

Int ernet Source

Int ernet Source

1%
1%
1%
1%