07350015%2E2014%2E907059

Journal of Business & Economic Statistics

ISSN: 0735-0015 (Print) 1537-2707 (Online) Journal homepage: http://www.tandfonline.com/loi/ubes20

Comment
Shiqing Ling & Ke Zhu
To cite this article: Shiqing Ling & Ke Zhu (2014) Comment, Journal of Business & Economic
Statistics, 32:2, 202-203, DOI: 10.1080/07350015.2014.907059
To link to this article: http://dx.doi.org/10.1080/07350015.2014.907059

Published online: 16 May 2014.

Submit your article to this journal

Article views: 67

View related articles

View Crossmark data

Full Terms & Conditions of access and use can be found at

http://www.tandfonline.com/action/journalInformation?journalCode=ubes20
Download by: [Universitas Maritim Raja Ali Haji], [UNIVERSITAS MARITIM RA JA ALI HA JI
TANJUNGPINANG, KEPULAUAN RIAU]

Date: 11 January 2016, At: 20:46

Downloaded by [Universitas Maritim Raja Ali Haji], [UNIVERSITAS MARITIM RAJA ALI HAJI TANJUNGPINANG, KEPULAUAN RIAU] at 20:46 11 January 2016

202

Journal of Business & Economic Statistics, April 2014

Comment
Shiqing LING
Department of Mathematics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon,
Hong Kong, China (maling@ust.hk)

Ke ZHU
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, HaiDian District, Beijing, China
(mazkxaa@gmail.com)

1.

DISCUSSIONS

Congratulation to authors because of their interesting estimation approach. In this discussion, we compare the finite performance of the non-Gaussian quasi maximum likelihood estimator (NGQMLE) with that of the Laplacian QMLE
(LQMLE). Suppose that the data sample {yt }nt=1 is generated from their GARCH(p, q) model with θ = (σ, γ ′ )′ , where
γ = (a1 , . . . , ap , b1 , . . . , bq ). To introduce the LQMLE, we first
reparameterize their models as
xt = v˜t ε˜ t ,
v˜t2 = ω +

(1.1)
p

i=1

2
+
αi xt−i


q


2
,
βj v˜t−j

(1.2)

j =1

where ε˜ t = εt /r, v˜t = (rσ )vt , ω = r 2 σ 2 , αi = ai (rσ )2 ,
βj = bj , and r = E|εt |. Furthermore, we denote θ˜ =
(ω, α1 , . . . , αp , β1 , . . . , βq ) be the unknown parameter of models (1.1)–(1.2). By assuming that ε˜ t follows the standard Laplace
distribution, the log-likelihood function (ignoring some constants) can be written as

n 
|xt |
1
˜

˜
,
log v˜t (θ) +
Ln (θ) =
n t=1
v˜t (θ˜ )
where v˜t (θ˜ ) satisfies the following iteration:
˜
v˜t2 (θ)

=ω+

p


2
αi xt−i

i=1


+

q


2
˜
βj v˜t−j
(θ).

j =1

Then, the LQMLE is defined as


θ is θn = (σn , a1n , . . . , apn , b1n , . . . , bqn ), where σn = w˜ n /r,
ain = α˜ in /ω˜ n , and bj n = β˜j n .
We generate 1000 replications of sample size n = 500
and 1000 from models (1.1)–(1.2) with the true parameter
(σ, a1 , b1 ) = (0.5, 0.6, 0.3), where the innovations εt are chosen

as Student’s t and generalized Gaussian distributions such that
Eεt = 0 and var(εt ) = 1. Table 1 reports the sample bias and
root mean square error (RMSE) of each estimator. To make our
comparison feasible, we use the true value of r in all calculations. From Table 1, we find that the LQMLE is more efficient
than the NGQMLE for the cases that εt ∼ gg1 and gg0.8 . This
is because the LQMLE is an efficient estimator when εt ∼ gg1 .
For the remaining cases, the NGQMLE is more efficient than
the LQMLE due to the adaption property of the NGQMLE. But
the difference seems not to be very large except for very few
cases.
ACKNOWLEDGMENT
The authors thank the funding support in part from Hong
Kong RGC Grants (numbered HKUST641912 and 603413) and
National Natural Science Foundation of China (No. 11201459).

REFERENCES
Berkes, I., and Horv´ath, L. (2004), “The Efficiency of the Estimators of the
Parameters in GARCH Processes,” The Annals of Statistics, 32, 633–655.
[202]
Zhu, K., and Ling, S. (2011), “Global Self-Weighted and Local Quasi-Maximum

Exponential Likelihood Estimators for ARMA-GARCH/IGARCH Models,”
The Annals of Statistics, 39, 2131–2163. [202]

θ˜n = arg min Ln (θ˜ ),
θ˜

see, for example, Berkes and Horv´ath (2004) and Zhu and
Ling (2011). Unlike the NGQMLE, the LQMLE requires that
E|˜εt | = 1 for its identification, and only needs the finite second moment of ε˜ t for its asymptotically normal distribution.
In view of the relationship between θ and θ˜ , the LQMLE of

© 2014 American Statistical Association
Journal of Business & Economic Statistics
April 2014, Vol. 32, No. 2
DOI: 10.1080/07350015.2014.907059

Downloaded by [Universitas Maritim Raja Ali Haji], [UNIVERSITAS MARITIM RAJA ALI HAJI TANJUNGPINANG, KEPULAUAN RIAU] at 20:46 11 January 2016

Ling and Zhu: Comment


203

Table 1. Estimation results for LQMLE and NGQMLE
LQMLE
εt

n

t20

500
1000

t9

500
1000

t6


500
1000

t4

500
1000

t3

500
1000

gg4

500
1000

gg2


500
1000

gg1

500
1000

gg0.8

500
1000

gg0.4

500
1000

σn


NGQMLE

a1n

b1n

σˆ n

aˆ 1n

bˆ1n

Bias
RMSE
Bias
RMSE

0.0051
0.1016
0.0039
0.0826

0.0402
0.3573
0.0187
0.2495

−0.0324
0.2290
−0.0223
0.1932

0.0031
0.1008
0.0029
0.0822

0.0348
0.3472
0.0162
0.2432

−0.0305
0.2283
−0.0209
0.1924

Bias
RMSE
Bias
RMSE

0.0082
0.1017
0.0080
0.0782

0.0358
0.3578
0.0157
0.2441

−0.0418
0.2294
−0.0315
0.1832

0.0042
0.1010
0.0068
0.0781

0.0303
0.3499
0.0119
0.2397

−0.0354
0.2310
−0.0306
0.1832

Bias
RMSE
Bias
RMSE

−0.0028
0.1035
0.0031
0.0816

0.0500
0.3685
0.0080
0.2501

−0.0149
0.2350
−0.0186
0.1904

−0.0071
0.1049
0.0023
0.0816

0.0423
0.3607
0.0055
0.2461

−0.0088
0.2385
−0.0186
0.1906

Bias
RMSE
Bias
RMSE

−0.0018
0.1064
0.0024
0.0789

0.0621
0.4036
0.0352
0.2706

−0.0217
0.2416
−0.0211
0.1879

−0.0062
0.1062
−0.0033
0.0789

0.0532
0.3794
0.0314
0.2541

−0.0179
0.2398
−0.0137
0.1874

Bias
RMSE
Bias
RMSE

−0.0042
0.1037
−0.0003
0.0809

0.1031
0.5075
0.0507
0.3433

−0.0194
0.2414
−0.0166
0.1968

−0.0178
0.1025
−0.0063
0.0806

0.0808
0.4087
0.0405
0.2908

−0.0058
0.2359
−0.0126
0.1900

Bias
RMSE
Bias
RMSE

0.0075
0.1030
0.0068
0.0832

0.0207
0.3509
0.0251
0.2384

−0.0351
0.2318
−0.0315
0.1918

0.0075
0.0999
0.0076
0.0792

0.0099
0.3194
0.0169
0.2204

−0.0341
0.2266
−0.0322
0.1840

Bias
RMSE
Bias
RMSE

0.0013
0.1027
0.0026
0.0825

0.0461
0.3540
0.0393
0.2536

−0.0255
0.2323
−0.0223
0.1878

−0.0010
0.1025
0.0021
0.0805

0.0408
0.3425
0.0350
0.2428

−0.0209
0.2328
−0.0218
0.1848

Bias
RMSE
Bias
RMSE

−0.0024
0.1077
0.0002
0.0900

0.0446
0.4059
0.0240
0.2649

−0.0160
0.2429
−0.0165
0.2065

−0.0092
0.1111
−0.0017
0.0917

0.0489
0.4150
0.0237
0.2686

−0.0071
0.2507
−0.0152
0.2098

Bias
RMSE
Bias
RMSE

−0.0072
0.1111
−0.0021
0.0886

0.0819
0.4370
0.0405
0.2929

−0.0117
0.2521
−0.0116
0.02047

−0.0153
0.1136
−0.0089
0.0914

0.0900
0.4533
0.0456
0.2983

−0.0020
0.2564
−0.0006
0.2105

Bias
RMSE
Bias
RMSE

−0.0106
0.1274
−0.0035
0.1011

0.2216
0.8502
0.1032
0.4935

−0.0219
0.2827
−0.0195
0.2361

−0.0378
0.1276
−0.0214
0.1021

0.2403
0.7976
0.1272
0.4581

0.0103
0.2821
0.0036
0.2358