De Broglie Wave Analysis of the Heisenberg Uncertainty Minimum Limit under the Lorentz Transformation Fima

De Broglie Wave Analysis of the Heisenberg Uncertainty Minimum Limit under the Lorentz Transformation

Fima Ardianto Putra Department of Physics, Universitas Jenderal Soedirman, Jl. Dr. Soeparno 61, Kampus UNDOED Karangwangkal, Purwokerto, 53123 - INDONESIA Email: ardiantoputraf2@gmail.com

Abstract - A simple analysis using differential calculus has been done to consider the minimum limit of the Heisenberg uncertainty principle in the relativistic domain. An analysis is made by expressing the form of ∆ , ∆ , ∆ , and ∆ based on the Lorentz transformation, and their corresponding relation according to the de Broglie wave packet modification. The result shows that in the relativistic domain, the minimum limit of the Heisenberg uncertainty is ∆p∆x≥ ћ/2 and/or ∆E∆t≥ ћ/2, with is the Lorentz factor which depend on the average/group velocity of relativistic de Broglie wave packet. While, the minimum limit according to ∆p∆x≥ћ/2 or ∆E∆t≥ћ/2, is the special case, which is consistent with Galilean transformation. The existence of the correction factor signifies the difference in the minimum limit of the Heisenberg uncertainty between relativistic and non-relativistic quantum. It is also shown in this work that the Heisenberg uncertainty principle is not invariant under the Lorentz transformation. The form ∆p∆x≥ ћ/2 and/or ∆E∆t≥ ћ/2 are properly obeyed by the Klein-Gordon and the Dirac solution.

Keywords: De Broglie wave packet, Heisenberg uncertainty, Lorentz transformation, and minimum limit.

INTRODUCTION appear explicitly in the Heisenberg uncertainty The Heisenberg uncertainty principle, which is

relation, as far as we know. In Relativistic mathematically expressed as  p  x   / 2 Quantum Theory, we can find uncertainty 2

and/or  E  t   / 2 , is a fundamental principle

relations m 0 c  c   and/or m 0 c    [9,10].

in the quantum domain. This Principle restricts But it does not give explanations about time simultaneous measurements of p-x and E-t pair

dilation and length contraction, while these to be not less than ћ/2 [1-4], which is the

phenomena do happen, for example in the case smallest limit of the Heisenberg uncertainty.

of muon particle when it is moving along the The interesting point according to the authors’

earth atmosphere [2].

viewpoint, is that the forms  p  x   / 2

In this paper, we propose a hypothesis that and/or  E  t   / 2 do not consider whether

E , and t are subject to a the observations are done in the non-relativistic

if quantities p , x ,

different transformation rule, it should result in or in the relativistic domain, inspite of the fact

a different form of their corresponding that each domain obeys different transformation

rule. In the non-relativistic domain, quantities p, uncertainties. This is the question we seek to x, E, and t have to be consistent with Galilean

answer, i.e. whether or not distinct form of the transformation and in the relativistic domain,

Heisenberg uncertainty exist for each non- these quantities have to be consistent with the

relativistic and relativistic domain. To address  ,x  ,

Lorentz transformation[2]. It is not evident if

that point, in this paper we will subject p

 E , and t  to the Lorentz transformation. The actually consistent with both Galilean and

the form  p  x   / 2 and/or  E  t   / 2 are

condition for  p ,x  ,  E and t  can be Lorentz transformation or with either one of

manifested in the picture of de Broglie wave these transformations.

packet explicitly [3]. Based on that viewpoint, whether or not the form of Heisenberg

There were speculations that when the  p  x   / 2 and/or  E  t   / 2 changes will Heisenberg uncertainty relation was built, there

had been the Einstein-deBroglie relation,which

be investigated. Thus, it will be revealed if the had taken into account the relativistic effect [5-

minimum value of Heisenberg uncertainty in the 8]. But the relativistic effect did not seem to DOI

0 (3) some other values.

relativistic domain is still  / 2 or changes to

Alternatively, Eq. (2) can be written in the

A generalized uncertainty relation, which gives the correction factor to Heisenberg

following form

uncertainty and is used as reference in String

0 c (4)

Theory, has been proposed to be  2 p  x   / 2

 1     p  ...  [11-14].

Eq. (3) and (4) combined implies the following However, it is intriguing for the authors to

relation

review the uncertainty based on the idea that the

0 / k 0  c (5)

Lorentz transformation is the generalization of Galilean transformation [2]. Hence, the

which is analogous to the relation for photons, Heisenberg uncertainty relation observed based

k c . Eq. (5) allows us to compare frequencywave number relation to that of

i.e.

on the Lorentz Transformation will be more

general and may be able to show something massless particles as the standard form. For hidden when it is subjected to Galilean

massless particles, all the forms in Eq.(5) are transformation. This approach may be able to

reduced to simply one relation, i.e.  / k c . give an evident difference between relativistic

2 and non-relativistic quantum domain. 2 In Eq. (4), the terms  2 2 k and  k

0 appear have the dimension of momentum, though both

of them do not relate to the de Broglie

Equivalence of the relatvistic energy equation

wavelength. The term  k 0 is related

from the particle picture to the wave picture

In this section, we will begin by making corresponds to the Compton wavelength [2,9- 2 particle-wave picture equivalence from equation 2 10] and  k is just a quantity whose value

E 2  pc 22  mc 22 0 . Equations for particle picture

 2  2 equal to 2 /c .

and the wave picture are written respectively as After we apply the technique above, the

 22 mc

0   mvcmc 0  0 (1) next step is to make the Lorentz factor appear

explicitly for frequency of the first and the and

second term of Eq.(3) as follows

 2  2   222 kc   2  2 ,

0 0 and   v . (6)

where  is the frequency related to total

Here,  v denotes a frequency that

energy, k is the wave number of relativistic corresponds to the particle momentum. The

reason for this definition is to put the wave which is related to the rest energy [1,5-8]. All

momentum, and  0 is the intrinsic frequency,

picture and its particle counterpart in an quantities in Eq.(2), that have the dimension of

analogous form such that direct comparison can energy and momentum will be expressed,

be drawn between both picture. Hence, Eq.(3) respectively in frequency and wave number.

can be written as

Some of these variables are dummy variables,

0     v   2  2 0 . (7)

which does not have a particular physical meaning. This technique is done merely to make

By using the same procedure as Eq.(6), Eq.(4)

de Broglie wave analysis at the latter stage

becomes

easier, because all analysis of uncertainty will

be expressed in de Broglie wave picture.

We begin with the term k c on in Eq. (2).   2 (8)

This term will be replaced by a dummy

. At

this point,  has no relationship with total energy or rest energy, but only a quantity whose

Here, k v relates with denotes a wavelength that dimension is energy when multiplied by ћ.

corresponds to  v . Comparing Eq.(8) and

Hence, Eq. (2) becomes Eq.(7) the following relations are inferred,

DOI 2

 0  k 0 c and  v / k v  c . (9)

It is equivalent to its particle picture, i.e

From the analyses above, we obtain quantities Eq. (14) and (16) can be expressed,

and variables. In the next step, these variables will

k  v , k 0 ,  v ,  , and k . They, which are dummy

 3   respectively, in the form  E K

p    p v , where  K v and  p v are uncertainties that have the same form as the

be used to simplify the wave analysis.

After making the equivalences above, uncertainty of non-relativistic kinetic energy we can express relativistic energy and

momentum, respectively, in frequency and wave and momentum, respectively. Both  K v and

number. Based on Eq.(7) and (8), the Lorentz  p v can be derived from the formula of non- factor in the wave picture is expressed as

relativistic kinetic energy and momentum, i.e.

and p v m 0 v  2 k 2 v . 

and   1 / 1 

The value of  K v and  p v must be in the

relativistic domain as the consequence of the Hence, relativistic energy and momentum in de

value of  E and  p on the left hand side. So, Broglie wave picture can be expressed as

we can suppose in the theoretical sense that

 p v as if the uncertainty form of

E and 

     / 1  v 0 2 (11)  non-relativistic energy and momentum for the

0 value v c . But in reality,  K v and  p v must and

be in domain that v ≪ c , correspond to

Schrodinger equation.

A comparison of momentum and energy p   k  

v / 1  2 . (12) k uncertainty with and without the Lorentz factor

or tells that for the same v   k v , the change in relativistic momentum  p will be larger than

Relativistic Energy

and

Momentum

that of non-relativistic momentum  p v . This

Uncertainty in The Wave Picture ( ∆ and

effect also happens to the total energy  E ∆k )

against  K v . Relativistic energy and momentum

The uncertainty of relativistic energy  E in

uncertainty will increase by a factor of 3  as the

de Broglie wave picture is obtained by consequence of the increase in rest mass in

differentiating Eq. (11) with respect to  v ,

particle picture.

which yields In order to show the relation between  E

and p , Eq.(13) can be stated into

 c  , and by virtue of Eq. (14), k  0  It is equivalent to its particle picture, i.e.

we get the following relation

 E   3 m 0 v  v . The uncertainty of relativistic

momentum ∆p in de Broglie wave picture is  k obtained by differentiating Eq. (12) with respect

E p  c . (15) to k v , which yields

 k  0 

3  By cancelling ћ , it becomes the derivation of p 

  k     k v . (14)

dispersion relation, i.e.

DOI 3 DOI 3

   d v      3  k v . (16)

  dk  the purpose of ∆ dan ∆ themselves.

0 So far, comparison between relativistic and non-relativistic wave packet is understood

The quantity inside the bracket which relates without considers comparison of the space  E in Eq.(13) and p  in Eq. (14) is the speed

uncertainty ∆ , i.e The comparison is still made

based on the same ∆ . On the next section, we [1,4,5]. The speed can also be expressed in other

of de Broglie wave packet, i.e. v g  d  / dk

will show that the Lorentz factor can affect the

space uncertainty ∆.

forms, i.e. v g 

For simply, if v c , so k v  k 0 and if v ≪ c so

Position and Time Uncertainty under Lorentz Transformation

k v ≪ k 0 . Equation .(15) can be formed to be the There is a point which we must explain to the

relation between uncertainty of non-relativistic readers about the uncertainty terminology of kinetic energy and uncertainty of non-

and . In quantum field theory, and are relativistic momentum by cancelling the Lorentz

viewed as a parameter, hence both of them are factor, i.e.

not properties of particle. The ∆ and ∆ respectivelly show how long and how far the

state changes correspond to the arbitrary

observable Q [1,3]. These process are described

 K v   p v  c  ,

as follow:

〈〉 ∆ of dispersion relation, i.e.

∆ and ∆ = (19) then by cancelling ћ, it becomes the derivation

Then ∆ means the space as large as we can  v

observe the wave packet along this and ∆ as the  

 duration when the wave packet as large as ∆ is

  k v (18)

0  dk 

moving. But in the context of Heisenberg uncertainty, we can view both ∆ and ∆ as if

an uncertainty such that can be connected with The existence of as a multiplication factor of

∆ and ∆ in the sense of uncertainty principle. ∆ and ∆ in Eq.(16) exhibits the range of

∆E and ∆p increase in the wave picture. If we notice, the relativistic position is x = x’ Consequently the wave packet is built according

[2].We write that form because position is to Eq. (16) is different than that of Eq. (18). The

viewed as a parameter. Nevertheless in the term inside the bracket on Eq.(16) and (18) is

description of de Broglie wave packet, we can the speed of wave packet (particle), nevertheless

view average values for both and as 〈 〉 and the speed value from both equations above, i.e.,

〈 〉 [1,3]. The average value of speed and are still close to c. The difference between

position can be related as we have seen according to Ehrenfest theorem [9]. Hence, in

Eq.(16) and (18) is just within the range of this context we can write as 〈 〉 = 〈 ′〉 frequency and wave number’s uncertainty as

(transformation of the central position of wave large as

∆ and ∆ . So, the form of packet), so properly it will connect with 〈 〉 = wave packet without the Lorentz factor i.e Eq.

〈 〉, with contains an average value of (18) is more appropriate to describe non-

particle’s speed i.e. the group speed of the wave relativistic condition, although here the value of

is still close to c. The form of wave packet 〈〉 packet [1,3], that is =1/ 1 − . without the Lorentz factor will has been truly

consistent describes non-relativistic particle if 〈〉 Equivalently, =1/ 1 − , hence 〈 〉 = the value of has been made to be smaller-

DOI 4

ћ 〈 〉. This average value also prevails for   3 p 1  x    p v   x ' energy-time pair. . The uncertainty of position so that it is

(23) consistent with Lorentz transformation must be

 x    x ' (20)

Based on ∆ = ∆ /〈 〉 and ∆ = 〈 〉∆ , we get Here, ∆x’ is interpreted as the proper width of

0 v  v   t ' . Then, energy-time wave packet in S’ reference frame which transforms as ∆x when it is observed from S uncertainty in the wave picture is

reference frame. Consequently, wave packet’s

3    width in relativistic case will contract according 1    t    v   v   t '

 to Lorentz-Fitzgerald contraction because of

factor , while for non-relativistic wave

 t ' . packet, it will not happen. Then, time

uncertainty is written as:

 2 E  t    / 2 , (24)   1 t    t ' . (21)

But on the other hand, formulation of energy- So, based on Eq.(20) and (21) we can

time uncertainty can also be obtained by taking understand that ∆x = ∆ . Here, ∆t shows the

∆ from Eq.(22), with the consequence that it’s time which is needed by the contracted wave

energy couple must be taken in the form of packet ∆x when it is moving through a point in

Lagrangian according to the rule ∫ = S reference frame according to observer who

/ 1 − [15]. In the wave stays in this frame. This reason comes from the relation ′ = 2 − . If we derive ′ only 

picture, the Lagrangian is L    0 1  with respect to , we get the relation ∆ ′ = v 2 .

|− ∆ | = ∆ ′ . Then from ∆ 0 = ∆ , we

Then we must take the differential form of so get the relation ∆ = ∆ as the contracted

that it is consistent with the rule of Heisenberg width of wave packet during the time ∆ .

 uncertainty relation, i.e.  L    v  If the uncertainty of time is viewed from  v . So,  0 understanding that the time in S’ frame runs

the uncertainty relation is slower according to the observer in S frame, so

we use inverse Lorentz transformation of time,

i.e.,

L v t    v   t '  ,

 t    't .

 L  t    K v   't .

Uncertainty of time for relativistic wave packet

will dilates as large as , the ∆ ′ is interpreted as

 L  t  2   / 2 (25)

if the proper time. We state like that because the definiton of proper time is ∆ ′ = ∆ ′/ , not

This form is not equivalent with uncertainty ∆ ′ = ∆ ′/ .

relation of momentum-position (not like ∆E∆ ). We do not use this later.

Notice that terms on the left hand side of Eq.

Heisenberg uncertainty under Lorentz

(23) and (24) show uncertainty relation which

transformation

are relativisticly consistent. While terms on the According to the Heisenberg uncertainty

right hand side show uncertainty relation which relation’s format, Eq. (14) and (20) are

are non-relativistic consistent (without Lorentz

3   combined to be 1 p  x   m  v   x ' factor) i.e. ∆ ∆ ′, ∆ ∆ ′. So, they are

compatible with the Galilean transformation wave picture, momentum-position uncertainty is

0 . In the

with the minimum limit is ћ/2. It is reasonable because if we take ≪ , value ≈ 1, hence

   k  x   3   1 k

Eq.(23) to be ∆p∆x ≈ ∆ ∆ ’ = ћ/2 (so for

DOI 5

Eq.(24) and (25)). It shows that the form of rest energy of particle does still exist. The can Heisenberg uncertainty for ≪ approximates

be interpreted as intrinsic periode that remind us the form of Heisenberg uncertainty when the

to intrinsic frequency in Eq.(2). We give the relativistic effect is not yet entered to the

terminology for the left hand side of Eq.(23) and quantum domain, as if that the form is derrived

Eq.(24) as the coordinate Heisenberg directly from equations 〈 〉=m〈 〉 and 〈x〉=〈x′〉

uncertainty while the hand side whose value are in non-relativistic limit [1,3].

always ћ/2 are the proper Heisenberg uncertainty. It is like the concept of proper

Based on this analysis, we can see that length/time and coordinate length/time. magnification of the Heisenberg uncertainty is

as the natural consequence of the Lorentz In the quantum field theory, we do not find transformation, and not because of intervention

commutational relation in the context of (p-x) in the measurement process. The phase space

and (E-t) but we use the relation will be larger if the speed of particle close to the

[Φ(x,t), (x’,t)]=iћ (x-x’) (for example:Klein- speed of light. It means that the minimum limit

Gordon equation) [17,18]. Nevertheless, it does of Heisenberg uncertainty in describing particle

not mean that uncertainty relation in the context will be different between relativistic and non-

of (p-x) and (E-t) cannot be used again. Both relativistic domain. While on reference [4], the

relations can still be used by the following Lorentz factor does not appear in uncertainty

convention:

relation, although it is in the relativistic domain.

Table 1 Commutational relation and non-relativistic

For massless particle, Eq.(23) and (24) revert to

uncertainty.

ordinary Heisenberg uncertainty like on

reference [16]. Energy-

Relation

Momentum –

Position Time

In some literatures, there have been confirmed that the Heisenberg uncertainty for

[p,x]=iћ - relativistic particle is ∆ ∆ =

Commutation

It means that our ability to localize a particle is ∆E∆t≥ћ/2 Uncertainty impossible more accurate than it’s Compton

Heisenberg

∆p∆x≥ћ/2

wavelength, because the change of particle momentum is impossible larger than Table 2 Commutational relation and relativistic . If

we notice Eq.(23) in the particle picture, uncertainty. certainly there is a part

∆ ∆ ’ whose value

Relation

Momentum- Energy-Time Position

equal to ћ/2, with 〈 〉 − 〈 〉 = 〈∆ 〉 and

- - 〈 ′ 〉 − 〈 ′〉 = 〈∆ ′ 〉 If ∆ ≪ , so ∆ ’

Commutation

reaches the value as large as it can. In this

Heisenberg Uncertainty

∆p∆x≥ ћ/2 ∆E∆t≥ ћ/2

situation, two possibility can occur, i.e.

or ≪ . For ≈ , the Lorentz factor is

significant, so the uncertainty relation is In non-relativistic quantum theory, x Eq.(23). Then for

≪ , the Lorentz factor is and p are operators. So, both of them can be not significant, so the uncertainty is ∆ ∆ =

formed to be [p,x]=iћ, but for E dan t cannot be ∆ ∆ ’. On the other side, if ∆ ≈ , so

formed like that because t is a parameter. ∆ ’ ≈ . In this situation,

Although there is no commutational relation for Eq.(23) becomes ∆ ∆ =

= 0. Hence,

E and t, both of them can still be formed in the can write ћ/2 just as ћ. Further, because of

= ћ/2, or we

uncertainty relation like p and x [2,3]. In the = 0 in the energy-time uncertainty, i.e.

relativistic domain, quantity x and t are a ∆∆=

∆ ∆ = ћ/2 , it gives consequence parameter. Both of them are not properties of that ∆ = 0 and ∆ = ∞. It seems contradictive the particle [17,18], so neither (E-t) nor (p-x)

has the commutational relation. Nevertheless, with ∆ ∆ =

= ћ [9,10]. Nevertheless, we uncertainty relation for both couples does exist. can see that energy relation = +

They must be written as ∆p∆x ≥ ћ/2 and ∆E∆t ≥ ћ/2. It is as the consequence of

imply that = when

= 0. Hence we

can replace ∆ =

consistence of Lorentz It means that although uncertainty of energy

, and obviously ∆ = .

keeping

the

transformation. It means that the Klein-Gordon which is related with velocity is zero, but the

and Dirac solution should follow this condition.

DOI 6

[7] de Broglie, L.: Recherches sur la theorie des quanta. Ph.D. theses, Paris (1924)

CONCLUSION

[8] de Broglie, L.: XXXV. A Tentative Theory De Broglie wave analysis of Heisenberg

uncertainty relation

of Light Quanta. Phil. Mag. 47, 446–458 transformation yields ∆p∆x≥ ћ/2 and

∆E∆t≥ ћ/2 for the mass particle. The [9] Greiner, W.: Relativistic Quantum minimum limit of Heisenberg uncertainty

Mechanics. Berlin, Springer-Verlag (2000) principle is ћ/2 if the group velocity of the

[10] Watcher, A.: Relativistic Quantum wave packet closes to the speed of light. It

Mechanics. Springer (2011) confirms that Heisenberg uncertainty principle

[11] Tkachuk, V.M.: Effect of the generalized does not invarian based on the Lorentz uncertainty principle on Galilean and transformation. Lorentz transformations. arXiv.1310.6243v1. (2013)

[12] Kempf, A., Mangano, G.: Minimal length [1] Morrison, M.A.: Understanding Quantum

REFERENCES

uncertainty relation and ultraviolet Physics: A User’s Manual, New Jersey,

regularization. Phys. Rev. D. 55, 7909– Prentice Hall (1990)

7920 (1997) [2] Beiser, A.: Concepts of Modern Physics 6 th [13] Kempf, A., Mangano, G., Mann, R.B.: edn., McGraw-Hill Companies, Inc. (1992)

Hilbert space representation of the minimal [3] Greiner, W.: Quantum Mechanics: An

length uncertainty relation. Phys. Rev. D. Introduction 4 th edn., Berlin, Springer-

52, 1108–1118 (1995) Verlag (2000)

[14] Adler, R.J.: Six easy roads to the Planck [4] Bruskiewich, P., Kiełbik, A.: The Lorentz

scale. Am. J. Phys. 78, 925–932 (2010) invariant measure and the Heisenberg

[15] Hobson, M.P., Efstathlou, G.P., Lasenby, uncertainty

A.N.: General Relativity: An Introduction Undergraduate Physics Journal VI, 16–17

principle.

Canadian

for Physicists 1 st edn., Cambridge (2008)

University Press (2006) [5] Weinberger, P.: Revisiting the 1924 Louis

[16] Bialynicki-Birula, I., Bialynicki-Birula, Z.:

de Broglie’s famous paper in the Uncertainty Relation for Photons. Phys. Philosophical Magazine. Philosophical

Rev. Lett. 108, 140401 (2012) Magazine Letters 86, 405–410 (2006)

[17] Ryder, L.H.: Quantum Field Theory, [6] de Broglie, L.: Ondes et quanta. Comptes

Cambridge University Press (1985) Rendus de l'Académie des Sciences 177,

[18] Mandl, F., Shaw, G.P.: Quantum Field 507–510(1923) nd Theory 2 edn., Wiley (2010)

DOI 7

Penerapan Second Vertical Derivative (SVD) Pada Data Gravitasi Untuk Mengidentifikasi Keberadaan Patahan Di Sepanjang Pegunungan Serayu Selatan Kabupaten Banyumas

Lasmita Sari, Sehah, dan Hartono

Program Studi Fisika, Fakultas MIPA, Universitas Jenderal Soedirman Jalan Dr. Suparno No.61 Karangwangkal Purwokerto Jawa Tengah Email: lasmi_indonesia@yahoo.co.id

Abstrak – Penelitian menggunakan data gravitasi telah dilakukan untuk mengetahui struktur patahan yang dapat meminimaisasi dampak bencana akibat aktivitas geologi di sepanjang Pegunungan Serayu Selatan Kabupaten Banyumas. Data yang digunakan dalam penelitian ini adalah data topografi yang diperoleh dari Scripps Institution of Oceanography, Universitas California San Diego dan peta lengkap anomali bouger di Kabupaten Banyumas. Pengolahan data dimulai dengan pendigitan untuk mengetahui nilai anomali bouger lengkap. Metode kontinuasi ke atas digunakan untuk memisahkan anomali regional dan residual. Analisis SVD dilakukan untuk menentukan patahan. Pemodelan bawah permukaan dilakukan menggunakan metode 2½ D Talwani dalam program grav2DC. Analisis SVD menunjukkan ada patahan di sekitar pegunungan Serayu Selatan Kabupaten Banyumas. Pemodelan dalam penelitian ini menunjukkan terdapatnya patahan yang memiliki kemiringan yang bervariasi antara 60⁰ hingga 72⁰. Patahan terletak pada kontak antara Formasi Halang dan anggota breksi Formasi Halang. Jenis patahan yang diidentifikasi adalah jenis patahan turun dengan kemiringan lapisan batuan <20⁰.

Kata kunci: Patahan,Metode Gravity, Second Vertical Derivative,Pegunungan Serayu Selatan.

Abstract – The research using gravity data has been done to find out the structure that can cause disaster due to geological activity along Serayu Selatan Mountain Banyumas Regency. The data that used in this research was

a topography data obtained from Scripps Institution of Oceanography, University of California San Diego and the map of complete bouguer anomaly Banyumas Regency. Data processing is begun by digitized to obtain complete bouguer anomalies. Upward Continuation method was used to separate regional and residual anomaly. The analysis of SVD was performed to determine of fault. Subsurface modeling was performed using 2 ½ D Talwani method in the grav2DC program. SVD analysis shows there is a fault in the surrounding mountains of South Serayu, Banyumas. Modeling shows that the structural fault in this research had a dip that varies between 60⁰ to 72⁰. The fault lies in contact Halang formation with breccia member of Halang formation. The type of fault identified is the fault type down with the slope of the rock layer <20⁰.

Key words: Fault, Gravity Method, Second Vertical Derivative, Mountain of South Serayu.

PENDAHULUAN rusak, seperti lahan perkebunan cengkeh masyarakat serta terancamnya jalan raya

Sebanyak 37 desa dari 13 kecamatan di Somagede-Banjarnegara (Dharmawan, 2007). Kabupaten Banyumas (Jawa Tengah) rawan

terjadi bencana tanah longsor yang diakibatkan Perilaku patahan di jalur Pegunungan Serayu gerakan tanah. Ke-37 desa itu terletak di jalur

Selatan dapat dipahami dengan melakukan sesar Pegunungan Serayu Selatan. Salah satu

penelitian terhadap pemodelan sesar yang ada di daerah yang diwaspadai Pemerintah Kabupaten

bawah permukaan daerah penelitian. Struktur (Pemkab) Banyumas adalah Bukit Kemawi atau

patahan di bawah permukaan ini mempunyai Bukit Watespogog di Desa Kanding, Kecamatan

peranan penting terhadap proses-proses yang Somagede. Enam hektar lahan di perbukitan

terjadi pada lapisan batuan di atasnya. Dengan tersebut longsor dan terdapat 25 hektar lahan di

mengetahui bentuk sesar yang ada di daerah bukit yang sama berpotensi terjadi longsor.

penelitian, maka proses yang mungkin terjadi Selain itu, gerakan tanah di Bukit Kemawi

berkaitan dengan aktivitas patahan dapat menyebabkan harta benda dan fasilitas umum

dipahami dengan baik. Untuk mengetahui dipahami dengan baik. Untuk mengetahui

metode-metode geofisika yang menggambarkan

2 r 2 [( x  x )'  ( y  y )'  (  2 z z )' ] 2 dan keadaan di bawah permukaan.

dengan

G adalah konstanta gravitasi umum yang besarnya adalah 6,6732.10 -11 Nm 2 /kg 2 Metode geofisika yang dilakukan dalam .

penelitian ini adalah metode gravitasi. Prinsip Persamaan (1) dapat diubah menjadi persamaan (2) dasar dari metode ini yaitu mengukur variasi

yang merupakan medan gravitasi yang dialami oleh medan gravitasi yang ditimbulkan oleh

m akibat tarikan m: 0

perbedaan rapat massa batuan di bawah  permukaan bumi (Telford, 1990). Metode 

    G 2 r ˆ (2) gravitasi berdasarkan pada hukum Newton

r tentang gravitasi. Metode gravitasi memiliki

kelebihan untuk survei awal eksplorasi geofisika Medan gravitasi merupakan medan yang bersifat karena dapat memberikan informasi yang cukup

konservatif, maka medan gravitasi dapat dinyatakan detail tentang struktur geologi dan perbedaan sebagai gradien dari suatu fungsi potensial skalar. densitas batuan (Adhi dkk, 2011). Pernyataan tersebut dapat dilihat pada persamaan

 yang digunakan adalah Second Vertical

Analisa Derivative medan gaya berat

U  r  (3) Derivative. Second Vertical Derivative dapat

  digunakan untuk menentukan karakteristik

patahan yang ada di sekitar Pegunungan Serayu 

    G merupakan potensial Selatan kabupaten Banyumas yaitu patahan

dengan

naik atau patahan turun (Sarkowi, 2010). gravitasi dari massa m. Potensial medan gravitasi dari suatu distribusi massa yang kontinu dapat dihitung dengan pengintegralan, yang dituliskan

LANDASAN TEORI

pada persamaan (4)

A. Metode Gravitasi dan Potensial Gravitasi

Konsep fisika yang mendasari metode gaya berat

dm

adalah Hukum Newton. Hukum ini menyatakan   (4)

bahwa besar gaya gravitasi antara dua massa r  r 0 sebanding dengan perkalian kedua massanya dan

berbanding terbalik dengan kuadrat jarak antar kedua B. Analisa Second Vertical Derivative (SVD) pusat massa tersebut (Telford, 1990).

SVD bersifat sebagai high pass filter, sehingga dapat menggambaran anomali residual yang berhubungan dengan struktur dangkal dan dapat digunakan untuk mengidentifikasi jenis patahan apakah termasuk patahan turun atau patahan naik. Perhitungan SVD diturunkan langsung dari persamaan Laplace untuk anomali gaya berat di permukaan yang dituliskan dalam persamaan:

 2 g = 0 atau

  Gambar 1. Interaksi antara dua benda (Telford, 1990).

 z Sehingga SVD diberikan oleh persamaan:

Gaya yang ditimbulkan antara partikel dengan massa  2 g  2 g  2 g

m 0 yang berpusat pada titik Q (x’,y’,z’) dan partikel

 x  y dengan massa m yang berpusat pada titik P (x,y,z)

dapat dilihat pada persamaan (1).

METODE PENELITIAN/EKSPERIMEN

Lokasi penelitian adalah di sekitar Pegunungan

F ( r )   G 2 r ˆ (1)

Serayu Selatan yang masuk ke dalam wilayah

administratif Kabupaten Banyumas. Data yang digunakan pada penelitian ini adalah data Anomali Bouguer Lengkap lembar Banyumas, Provinsi Jawa Tengah. Peta anomali Bouguer ini dibuat oleh

Siagian, et al (1995) yang diterbitkan oleh Pusat Survei Geologi Bandung (PSG) Bandung. Data topografi diperoleh dari website Satellite Geodesy at the Scripps Institution of Oceanography, University of California San Diego ( http://topex.ucsd.edu) . Daerah survei terletak di antara 109˚12’30 BT – 109˚27’ BT dan 7˚30’ LS – 7˚35’ LS dengan luas area 26 km x 9 km.

Prosedur penelitian ini meliputi 4 tahap yaitu persiapan, pendigitan, pengolahan data, dan interpretasi. Peralatan dan bahan yang digunakan ialah Personal Komputer, Program Aplikasi Microsoft Excel 2010 , Program aplikasi notepad,

Gambar 3. Diagram perhitungan pendekatan turunan Software Geocal, Software Matlab 2010, Software

kedua Menggunakan grid (Rosenbach, 1953). Surfer versi 13, Software Grav2dc for Windows, Software Fortran, Peta anomali Bouguer Lembar

Banyumas skala 1:100.000, Peta geologi Lembar Banyumas skala 1:100.000, dan Data sekunder

HASIL DAN PEMBAHASAN topografi.

Anomali Bouguer Lengkap

Data anomali Bouguer lengkap yang telah dilakukan proses pendigitan kemudian diolah menggunakan

Tinjauan Geologi Daerah Penelitian

Surfer 13.

Pegunungan Serayu Selatan merupakan antiklin yang

sederhana dan sempit di bagian Barat Kabupaten Banyumas, yaitu di sekitar Ajibarang. Sedangkan di bagian timur Banyumas berkembang antiklinorium dengan lebar mencapai 30 kilometer yaitu di sekitar Lok Ulo. Bagian timur Pegunungan Serayu Selatan merupakan struktur dome sedangkan berdekatan dengan Kecamatan Jatilawang terdapat suatu antiklin yang terpotong oleh Sungai Serayu (Sujanto & Roskamil, 1995 ) .

Gambar 4. Topografi daerah penelitian pada permukaan 2,5D

Gambar 2. Daerah Penelitian dari Google Earth.

Second Vertical Derivative

Analisa Second Vertical Derivative dilakukan pada data anomali bouger lengkap yang telah ada. Proses SVD dilakukan dengan menggunakan persamaan yang diturunkan oleh Rosenbach (1953):

 2 g 1 Gambar 5. Kontur anomali Bouguer lengkap di topografi.

2 ( 96 T 0  72 T 1  32 T 2  8 T 3 )  (7) z

24 s

Daerah penelitian pada peta anomali Bouguer lengkap diatas mencakup luas area sekitar 26 x 9 kilometer persegi dengan spasi antar titik pengukuran sebesar 597 m. Berdasarkan peta anomali Bouguer lengkap tersebut terlihat bahwa nilai anomali pada area pengukuran berkisar mulai

56 mGal hingga 112 mGal.

Anomali Residual merupakan pemisah antara

Reduksi Bidang Datar

anomali Bouguer lengkap di bidang datar dengan anomali regional pada bentuk struktur geologi lokal

Proses transformasi ini perlu dilakukan karena atau dangkal. Nilai anomali medan gravitasi residual pengolahan data berikutnya mensyaratkan input

dikelompokan menjadi anomali negatif (-22 s.d. -2 anomali medan gravitasi harus terdistribusi pada

mGal) dan anomali positif (0 s.d. 20 mGal). Peta bidang datar. Metode yang dapat digunakan untuk

kontur Anomali Residual beserta lintasannya daerah mengubah data anomali medan gravitasi yang masih

penelitian dapat dilihat pada Gambar 8. terdistribusi di bidang tidak datar ke bidang datar adalah melalui pendekatan deret Taylor (Taylor series approximation). Peta kontur ABL (Anomali Bouguer Lengkap) di bidang datar dapat dilihat pada Gambar 6.

Gambar 8. Peta kontur Anomali Residual (interval kontur

2 mGal)

Kontur rapat antara anomali positif dengan negatif pada daerah penelitian terletak pada bagian tengah

kontur dengan pola mengarah Timur Laut-Barat Gambar 6. Peta kontur ABL di bidang datar (interval

kontur 2 mGal). Daya. Selain itu, pada bagian Timur Laut daerah

penelitian juga terdapat kontur rapat antara anomali

Anomali Regional

positif dengan negatif dengan pola mengarah Barat Laut-Tenggara.

Anomali Regional mencerminkan adanya struktur geologi regional yang melandasi batuan diatasnya pada kedalaman tertentu. Metode yang digunakan untuk mengetahui anomali regional adalah metode

Second Vertical Derivative

pengangkatan ke atas (Upward Continuation). Pada penelitian ini diperoleh anomali regional pada pengangkatan ke atas ketinggian 10.100 meter dari bidang datar. Nilai anomali medan gravitasi regional merupakan anomali positif (85,25 s.d. 86,55 mGal). Peta kontur Anomali Regional daerah penelitian dapat dilihat pada Gambar 7.

Gambar 9. Peta kontur Second Vertical Derivative (SVD) . Peta kontur anomali Second Vertical Derivative

digunakan untuk menentukan lokasi keberadaan patahan. Berdasarkan kontur di atas dapat dilihat bahwa arahnya sesuai dengan peta geologi daerah penelitian yang diduga disanalah letak patahan berada.

Gambar 7. Peta kontur Anomali Regional (interval kontur

Interpretasi dan Pemodelan 2,5 D

0,05 mGal) Data hasil proses digitize dan slice anomali residual merupakan data masukan untuk program apllkasi

Grav2DC. Data ini merupakan data anomali medan

Anomali Residual

gaya berat hasil observasi. Dalam penelitian ini dibuat 4 penampang lintasan, yaitu lintasan A, B, C dan D.

Gambar 12. Model benda anomali lintasan A-A’ Gambar 10. Pengambilan penampang lintasan pada kontur

Formasi Alluvium memiliki perbedaan densitas anomali residual. sebesar -0,3501 g/cm 3 , batuan pada formasi ini

Penampang Lintasan A-A’

terdiri atas: lempung, lanau, pasir, kerikil dan kerakal. Formasi Halang memiliki perbedaan

densitas sebesar 0,0581 g/cm 3 , 0,0854 g/cm 3 , 0,1321 g/cm 3 dan 0,1543 g/cm 3 . Batuan pada formasi Halang terdiri atas: batu lempung, perselingan pasir, napal dan tuff dengan sisipan breksi. Anggota Breksi Formasi Halang memiliki perbedaan densitas sebesar

0,1937 g/cm 3 , 0,2541 g/cm 3 , 0,2938 g/cm 3 dan 0,3041 g/cm 3 . Batuan pada anggota breksi formasi Halang terdiri atas: batuan breksi, andesit dan lava basaltik. Patahan pada model B-B’ terlihat sangat jelas dengan adanya pergerakan relatif hanging wall ke bawah.

Gambar 11. Model benda anomali lintasan A-A’

Penampang Lintasan C-C’

Formasi Alluvium memiliki perbedaan densitas sebesar -0,67 g/cm 3 . Batuan pada formasi ini terdiri atas: lempung, lanau, pasir, kerikil dan kerakal. Sedangkan Formasi Halang memiliki perbedaan

densitas sebesar 0,0913 g/cm 3 , 0,1006 g/cm 3

dan 0,1809 g/cm 3

g/cm 3 . Pada Formasi Halang

terjadi perbedaan nilai densitas, Hal ini diakibatkan oleh peristiwa pemadatan yang menyebabkan batuan yang terletak paling bawah memiliki densitas lebih besar. Selain karena perbedaan densitas, fenomena fisis pemadatan juga terjadi karena adanya dominasi batuan tertentu. Batuan pada formasi Halang terdiri

atas: batu lempung, perselingan pasir, napal dan tuff Gambar 13. Model benda anomali lintasan C-C’. dengan sisipan breksi.

Formasi satuan batuan yang terdeteksi pada sayatan Anggota Breksi Formasi Halang Formasi

C adalah formasi Halang (Tmph) dan anggota breksi Halang memiliki perbedaan densitas sebesar 0,2052

formasi Halang (Tmph). Formasi Halang memiliki

perbedaan densitas sebesar 0,0768 g/cm 3 , 0,0998 g/cm 3 . Batuan pada anggota breksi formasi Halang

g/cm 3 , 0,2430 g/cm 3 , 0,3781 g/cm 3 dan 0,3904

g/cm 3 , 0,1098 g/cm 3 dan 0,1876 g/cm 3 . Batuan pada terdiri atas: batuan breksi, andesit dan lava basaltik.

formasi Halang terdiri atas: napal dan tuff dengan Patahan pada model A-A’ terlihat sangat jelas

sisipan breksi, batu lempung dan perselingan pasir. dengan adanya pergerakan relatif hanging wall ke

Anggota Breksi Formasi Halang memiliki perbedaan bawah. Hanging wall sendiri adalah dua buah sesar

densitas sebesar 0,2651 g/cm 3 , 0,2890 g/cm 3 , 0,3098 bersandingan secara non-vertikal. Berdasarkan

g/cm 3 dan 0,3986 g/cm 3 . Batuan pada anggota breksi pemodelan sayatan diperoleh informasi dip. Dip

formasi Halang terdiri atas: batuan breksi, andesit merupakan sudut kemiringan patahan terhadap

dan lava basaltik. Patahan pada model C-C’ terlihat permukaan.

sangat jelas dengan adanya pergerekan relatif hanging wall ke bawah. Berdasarkan pemodelan

sayatan diperoleh informasi dip.

Penampang Lintasan B-B’

Penampang Lintasan D-D’

bentangan patahan terlihat kontinu. Keberadaan patahan terdeteksi tepat mulai lintasan A sampai setelah lintasan D, adapun sudut kemiringan patahan bervariasi antara 60⁰ sampai 72⁰.

KESIMPULAN Berdasarkan hasil penelitian dapat disimpulkan bahwa analisa Second Vertical Derivative mampu mengidentifikasi untuk memperkirakan adanya patahan atau patahan daerah sekitar Pegunungan Serayu Selatan. Struktur patahan daerah penelitian memiliki dip yang bervariasi antara 60⁰ sampai 72⁰.

Gambar 14. Model benda anomali lintasan D-D’. Secara keseluruhan patahan terletak pada kontak antara Formasi Halang dan anggota breksi Formasi

Formasi Halang memiliki perbedaan densitas sebesar

Halang. Formasi Halang memiliki densitas rata-rata

2,7875 g/cm 3 3 yang tersusun atas batu lempung, 0,0824 g/cm . Batuan pada formasi Halang terdiri

0,0515 g/cm 3 , 0,1135 g/cm 3 , 0,0589 g/cm 3

dan

perselingan pasir, napal dan tuff dengan sisipan atas: batu lempung, perselingan pasir, napal dan tuff

breksi. Anggota breksi Formasi Halang memiliki dengan sisipan breksi. Anggota Breksi Formasi

densitas rata-rata 2,95 g/cm 3 yang tersusun atas Halang memiliki perbedaan densitas sebesar 0,1004 g/cm 3 , 0,1672 g/cm 3 , 0,2431 g/cm 3

batuan breksi, andesit dan lava basaltik. Setiap

lintasan terdapat patahan dengan daerah yang g/cm . Batuan pada anggota breksi formasi Halang

dan 0,2789

berbeda-beda. Lintasan A, B, C, dan D secara terdiri atas: batuan breksi, andesit dan lava basaltik.

berurutan melewati daerah Somagede, Ajibarang, Patahan pada model D-D’ terlihat sangat jelas

Talahab dan Karangsalam. Adapun jenis patahan dengan adanya pergerekan relatif hanging wall ke

yang teridentifikasi adalah jenis patahan turun bawah. Berdasarkan pemodelan sayatan diperoleh

dengan kemiringan lapisan batuan <20⁰. informasi dip.

Untuk penelitian selanjutnya akan lebih Berdasarkan gambar pemodelan, setiap

baik jika dilakukan metode geofisika lainnya seperti lintasan terdapat patahan dengan daerah yang

metode magnetik sebagai data pendukung dari berbeda-beda. Lintasan A, B, C, dan D secara

metode gaya berat. Hal tersebut bertujuan untuk berurutan melewati daerah Somagede, Ajibarang,

memperkuat hasil interpretasi dalam penarikan Talahab dan Karangsalam. Adapun jenis patahan

struktur pada daerah penelitian. Diperlukan juga yang teridentifikasi adalah jenis patahan turun

informasi hasil penelitian geologi yang lebih banyak dengan kemiringan lapisan batuan <20⁰. agar pemodelan struktur bawah permukaan tanah yang dibuat menggunakan program grav2DC lebih

Penggabungan Model-Model 2,5D

mendekati kebenaran.

Model - model pada sayatan A, B, C dan D dibuat

dengan arah lintasan sejajar serta memiliki panjang lintasan yang sama.

DAFTAR PUSTAKA Artikel jurnal:

[1] Rosenbach, O, 1953, A Contribution to The Computation of “Second Derivative”, from Gravity Data, Geophysics, Vol. 18, Hal. 894- 912.

[2] Sarkowi, M., 2010. Identifikasi Struktur Daerah Panas Bumi Ulubelu Berdasarkan Analisa Data SVD Anomali Bouger, Jurnal Sains Mipa Vol.16, Hal. 111-118 .

Buku:

[3] Adhi., P. M.., Muhtadi A. H., Achmari, P., Sina Z. Z., Aziz I. J., Subekti P. F. 2011. Metode Gambar 15. Penggabungan model-model 2,5D yang telah

Gaya Berat. Indonesia: Program Studi Fisika, dibuat. Institut Teknologi Bandung.

Hasil pemodelan 2,5D dibuat berdasarkan [4] Dharmawan, L. 2007. Redam Bencana nilai anomali residual yang dalam pemodelannya

Banyumas. Banyumas: Pusat Informasi Action dikorelasikan dengan informasi geologi dan hasil

Learning Project.

analisa Second Vertical Derivative. Penggabungan model-model tersebut menunjukkan keberadaan

[5] Siagian, H. P., Sjarif, N., dan Sobari, I. 1995. [7] Telford, W.M., Gedaart, L.P., Sheriff, R.E. Peta Anomali Bouger Lembar Banyumas.

1990. Applied Geophysics. Cambridge. New Bandung: Pusat Survei Geologi (PSG). York.

[6] Sujanto & Roskamil. 1995. Fisiografi tektonik Jawa Tengah bagian selatan.Yogyakarta: Universitas Gajah Mada.

Sensor Kebocoran Arus Listrik pada Aliran Air Water Heater Hartono * , Sugito dan R.Farzand Abdullatif

Jurusan Fisika, Fakultas MIPA, Universitas Jenderal Soedirman

Jl. Dr. Soeparno 61 Karangwangkal Purwokerto

* Corresponding Autor: harlaras@gmail.com

Abstrak – Kebocoran arus listrik pada water heater elektrik tidak dapat dideteksi secara visual. Hal ini dapat berdampak buruk pada penggunanya, karena arus listrik bocor akan mengikuti aliran air. Sensor arus listrik merupakan sensor yang dapat mendeteksi terjadinya kebocoran arus listrik pada water heater. Sensor akan mendeteksi terjadinya kebocoran arus listrik dalam aliran air dari water heater. Sensor dibuat dari elektroda tembaga yang ditanam dalam pipa PVC. Pengujian sensor dilakukan terhadap variasi tegangan pada hambatan tetap dan variasi hambatan pada tegangan tetap. Variasi tegangan AC dilakukan dari 0 sampai 220 volt sementara variasi hambatan mulai dari 1 K sampai 100 K. Kondisi hambatan 1 K mewakili hambatan kulit tubuh manusia dalam keadaan basah dan 100 K mewakili hambatan kulit tubuh dalam keadaan kering terisolasi. Hasil analisis menunjukkan bahwa sensasi syok tidak nyeri mulai dapat dirasakan pada tegangan 30 V arus sebesar 5,16 mA pada kondisi hambatan 1 K. Sementara pada kondisi kebocoran tegangan 220 V, sensasi syok tidak nyeri mulai dirasakan pada kondisi hambatan tubuh 42 K dengan arus sebesar 4,99 mA.

Kata kunci: sensor arus, kebocoran arus listrik, water heater, syok tidak nyeri.

Abstract – Leakage of electric current in electric water heater cannot be detected visually. This can have a negative impact on the user, because a leaky electric current will follow the flow of water. An electric current

sensor detecting current leak into water flowing out from a water heater has been constructed. The sensor is made of a copper electrode implanted in a PVC pipe. It is subjected to tests in which the voltage is varied at constant resistance and otherwise the resistance is varied at constant voltage. The variation of the AC voltage is conducted from 0 to 220 volt whereas that of the resistance is from 1 K to 100 K. The 1 K resistance is meant to represent the resistance of human skin in wet condition and the 100 K represents that of dry insulated skin. Analysis shows that unpainful shock sensation surges at 30 V, 5.16 mA, with 1 K resistance. In the current leak condition at 220 V, unpainful shock is sensed at body resistance of 42 K with 4,99 mA current.

Key words: Current sensor, current leak, water heater, unpainful shock

arus listrik yang terjadi pada tubuh manusia akan PENDAHULUAN memberikan dampak negatif yang bervariasi.

Kebocoran arus listrik pada water heater merupakan Dampak yang dapat terjadi mulai yang paling ringan masalah yang serius. Arus listrik tidak hanya

adalah kejutan otot, kejang pada sebagian organ mengalir melalui bahan penghantar atau konduktor

termasuk jantung sampai pada terbakarnya jaringan padat, melainkan juga dapat terjadi melalui medium

tubuh [2]. Kejadian sengatan arus listrik yang selama cair, seperti air. Akibat terjadinya kebocoran arus

ini sering terjadi adalah karena aliran arus listrik listrik dapat menyebabkan terjadinya sengatan listrik

bolak balik (AC). Berdasarkan pada penelitian yang pada tubuh manusia. Kebocoran arus listrik dari

pernah dilakukan Cekin N, dkk menunjukkan bahwa pemanas air elektrik pernah terjadi dan tidak

kematian akibat sengatan listrik tegangan rendah di terdeteksi secara visual, akibatnya adalah pengguna

rumah tangga dan tempat kerja mencapai 34,9% [3]. meninggal dunia.

Perubahan polaritas yang terjadi setiap waktu Setiap penghantar mempunyai hambatan yang

menyatakan frekuensi dari arus AC. Frekuensi arus bervariasi dalam mengalirkan arus listrik. Tubuh

AC akan mempengaruhi kontraksi pada otot. Hal ini manusia merupakan salah satu penghantar listrik

yang menyebabkan arus AC jauh lebih berbahaya yang baik sekalipun tubuh manusia memiliki

dibandingkan arus DC pada nilai tegangan yang hambatan listrik. Hambatan tubuh manusia pada

sama [4]. Sengatan arus listrik AC dapat kondisi kulit kering berkisar antara 1000 sampai

mengakibatkan kontraksi otot secara terus menerus dengan 100.000 , sedangkan pada kondisi kulit

selama aliran arus belum terputus. Hal ini basah akan menurun sampai  1000  [1]. Sengatan

menyebabkan korban mengalami kejang pada bagian menyebabkan korban mengalami kejang pada bagian

METODE PENELITIAN/EKSPERIMEN

ini yang menyebabkan korban tidak mempunyai Penelitian dilakukan dengan metode eksperimen kemampuan untuk melepaskan diri dari sengatan

arus listrik. Otot rangka merupakan jaringan yang di laboratorium. Sensor digunakan untuk

Dokumen yang terkait

Evaluasi Usabilitas dan Perbaikan Tampilan Desain Antarmuka Pengguna Situs Web Eventmalang.net dengan Pendekatan Human-Centered Design, WEBUSE, dan Importance-Performance Analysis

0 2 9

Evaluasi Kualitas Kebergunaan, Kualitas Informasi, Dan Kualitas Interaksi Pelayanan Pada Website Dinas Pendidikan Menggunakan Metode Webqual Dan Importance Performance Analysis (Studi Kasus : Website Dinas Pendidikan Kabupaten Pasuruan)

0 0 9

Evaluasi dan Perbaikan Desain Antarmuka Pengguna Dengan Menggunakan Metode Human-Centered Design (HCD), WEBUSE, WCAG 2.0, Research-Based Web Design Usability Guidelines, dan Importance – Performance Analysis (IPA) (Studi Kasus: PT Showa Indonesia Mfg.)

1 4 9

Implementasi Cluster Message Broker Sebagai Solusi Skalabilitas Middleware Berbasis Arsitektur Publish-Subscribe pada Internet of Things (IoT)

0 2 7

Kualitas dan Kesuksesan Implementasi Sistem Informasi Kesehatan dengan Menggunakan Model Unified Theory of Acceptance and Use of Technology dan Model Delone and Mclean

0 0 5

Evaluasi Kualitas Website Terhadap Kepuasan Masyarakat Menggunakan Metode Webqual 4.0 dan Importance Performance Analysis (IPA) (Studi Kasus pada Website disperkim.malangkota.go.id Dinas Perumahan dan Kawasan Permukiman Kota Malang)

0 0 5

View of Rancang Bangun Sistem Kontrol Berbasis Biopotensial Mata (Studi Kasus : Mengontrol Aplikasi Berbasis Android)

0 2 14

View of Struktur dan Konduktivitas Ionik Kaca LiMnPO4 sebagai Katoda pada Baterai Sekunder

0 1 8

View of Solusi Polinomial Romanovski pada Analisis Energi dan Fungsi Gelombang Potensial Non Central Rosen Morse Plus Rosen Morse

0 0 5

Equivalence of the relatvistic energy equation from the particle picture to the wave picture

0 2 7