Studi Analisis dan Desain Beton Bertulang dan Beton Prategang Untuk Gedung 5 Lantai.

STUDI ANALISIS DAN DESAIN BETON BERTULANG DAN
BETON PRATEGANG UNTUK GEDUNG 5 LANTAI
Dicky Aditriya Hermana
NRP : 0421038
Pembimbing : Ir. Daud R. Wiyono M.Sc.
FAKULTAS TEKNIK JURUSAN SIPIL
UNIVERSITAS KRISTEN MARANATHA
BANDUNG

ABSTRAK
Gedung pertemuan dengan area yang luas membutuhkan jarak kolom yang
jauh agar tidak menghalangi pemandangan dan memberikan keleluasaan gerak.
Dengan demikian akan ditemukan bentang balok yang panjang sehingga perlu
menggunakan beton prategang agar dimensi balok tidak terlalu tinggi.
Desain struktur tahan gempa yang dipakai pada gedung 5 lantai ini adalah
analisis Dinamik Spektrum Respons dengan menggunakan beban gempa menurut
Peta Gempa 2002 dan Peta Gempa 2010. Dari hasil analisis struktur didapatkan
waktu getar alami yang sama antara kedua Peta Gempa tersebut, peralihan dan drift
didapatkan bahwa Peta Gempa 2002 lebih besar dan berkisar antara 1,4-3,7%.

Desain balok prategang menggunakan metode analisis dengan cara manual

dan memakai perangkat lunak ADAPT-PT versi 7.10. Menghasilkan jumlah
tendon 5-31@31strands sedangkan dengan menggunakkan perangkat lunak
ADAPT-PT didapatkan hasil pada Tendon Type B dan C didapatkan nilai
Required Number = 10.

vii

STUDY AND ANALYSIS OF CONCRETE REINFORCED AND
CONCRETE PRESTRESSED FOR 5 FLOOR BUILDING
Dicky Aditriya Hermana
NRP : 0421038
Advisor : Ir. Daud R. Wiyono M.Sc.
FACULTY OF CIVIL ENGINEERING
MARANATHA CHRISTIAN UNIVERSITY
BANDUNG

ABSTRACT

A convention hall which has a wide space needs some quite distance
between its columns to assure that the view is visible and provide a comfort to

move. Thus, a long prestressed beam type will be needed in this case to prevent
too much height of the beam.
The response spectrum analysis is used for the earthquake detention
structure design with an earthquake load according to earthquake map 2002 and
2010. As a result from the structure analysis the conclusion are, both of the map
has a same nature vibration time, the second map has a bigger drift and
displacement than the first one in about 1,4 – 3,7%.
The prestressed beam design uses two kind of analysis methods, manually
and through software using ADAPT-PT 7.10 version. These methods result 531@31 strand of tendon on manual, and from ADAPT-PT, the Required Number
of B, and C tendon = 118,6.

viii

DAFTAR ISI

Halaman Judul .................................................................................................... i
Surat Keterangan Tugas Akhir ......................................................................... ii
Surat Keterangan Selesai Tugas Akhir............................................................. iii
Lembar Pengesahan............................................................................................ iv
Pernyataan Orisinalitas Laporan Tugas Akhir ............................................... v

Pernyataan Publikasi Laporan Penelitian ........................................................ vi
Abstrak................................................................................................................. vii
Abstract ................................................................................................................. viii
Kata Pengantar ................................................................................................... ix
Daftar Isi .............................................................................................................. xi
Daftar Gambar .................................................................................................... xv
Daftar Tabel ........................................................................................................ xx
Daftar Notasi Dan Singkatan ............................................................................. xxii
Daftar Lampiran ................................................................................................. xxvi

BAB I PENDAHULUAN .................................................................................... 1
1.1

Latar Belakang ............................................................................................ 1

1.2

Tujuan Penelitian ........................................................................................ 2

1.3


Ruang Lingkup Penulisan ........................................................................... 2

1.4

Sistematika Penulisan ................................................................................. 3

BAB II TINJAUAN PUSTAKA ....................................................................... 4
2.1

2.2

Teori Dasar .................................................................................................. 4
2.1.1

Beton ............................................................................................... 4

2.1.2

Material Penyusun Beton ................................................................ 5


2.1.3

Sifat Beton ...................................................................................... 7

Beton Bertulang .......................................................................................... 7
2.2.1

Kelebihan Beton Bertulang ............................................................. 8
ix

2.2.2
2.3

Kelemahan Beton Bertulang ........................................................... 8

Beton Prategang .......................................................................................... 9
2.3.1

Kelebihan Beton Prategang ............................................................. 16


2.3.2

Kelebihan Beton Prategang Dibandingkan Beton Bertulang .......... 16

2.3.3

Perencanaan Beton Prategang ......................................................... 17

2.3.4

Sistem Prategang ............................................................................. 44

2.3.5

Pendekatan Desain Pasca Tarik ...................................................... 44

2.3.6

Profil Tendon .................................................................................. 46


2.3.7

Kehilangan Gaya Prategang ............................................................ 47

2.4

Pembebanan ................................................................................................ 48

2.5

Analisis Struktur Terhadap Beban Gempa ................................................. 50
2.5.1

Wilayah Gempa Menurut SNI 03-1726-2002 ................................. 50

2.5.2

Sistem Rangka Pemikul Momen ..................................................... 51


2.5.3

Wilayah Gempa Menurut RSNI 03-1726-201x .............................. 53

2.5.4

Respons Spektra .............................................................................. 54

2.5.5

Koefisien-Koefisien Situs dan Parameter-Parameter Respons
Spektra Percepatan Gempa Maksimum yang Dipertimbangkan
Resiko-Tertarget (MCER) ................................................................ 56

2.5.6

Parameter Percepatan Spektra Desain ............................................ 57

2.5.7


Prosedur Pembuatan Respons Spektra Desain Berdasarkan
RSNI 03-1726-201x ........................................................................ 59

2.5.8

Pembatasan Waktu Getar Alami Fundamental ............................... 60

2.5.9

Kuat Batas Terfaktor (Load Resistance Factor/RFD) .................... 61

2.5.10 Kombinasi Pembebanan .................................................................. 62
2.6

Analisis Struktur dengan Program .............................................................. 64
2.6.1

ETABS ............................................................................................ 64

2.6.2


ADAPT-PT ..................................................................................... 65

BAB III STUDI KASUS DAN PEMBAHASAN ............................................. 68
3.1

Studi Kasus ................................................................................................. 68

x

3.1.1

Data Struktur ................................................................................... 68

3.1.2

Data Material .................................................................................. 70

3.1.3


Data Pembebanan ............................................................................ 71

3.1.4

Kombinasi Pembebanan .................................................................. 73

3.1.5

Analisis dan Desain Struktur .......................................................... 73

3.2

Pemodelan Gedung ..................................................................................... 74

3.3

Analisis dan Desain Bangunan Terhadap Gempa Dinamik Berdasarkan
SNI 03-1726-2002 ...................................................................................... 87

3.4

3.5

3.6

3.3.1

Memasukkan Input Respon Dinamik .............................................. 87

3.3.2

Faktor Skala dan Arah Utama ......................................................... 89

3.3.3

Pembahasan Hasil Analisis Dinamik Respons Spektrum ............... 96

Analisis Dinamik Respons Spektrum Berdasarkan SNI 03-1726-201x ..... 98
3.4.1

Memasukkan Input Respon Dinamik .............................................. 98

3.4.2

Faktor Skala dan Arah Utama ......................................................... 102

3.4.3

Pembahasan Hasil Analisis Dinamik Respons Spektrum ............... 110

Perhitungan Balok Prategang ...................................................................... 111
3.5.1

Perhitungan Balok Induk Beton Prategang ..................................... 111

3.5.2

Perhitungan Balok Anak Beton Prategang ..................................... 138

Analisis dan Desain Balok Prategang Menggunakan Software
ADAPT-PT .................................................................................................. 164

3.6

Pembahasan ................................................................................................. 179
3.6.1

Waktu Getar Alami ......................................................................... 179

3.6.2

Peralihan dan Drift .......................................................................... 180

3.6.3

Respons Spektrum .......................................................................... 183

3.6.3

Output Gaya-Gaya Dalam ............................................................... 183

3.6.4

Analisis Beton Prategang ................................................................ 185

BAB IV KESIMPULAN DAN SARAN ........................................................... 186
4.1

Kesimpulan ................................................................................................. 186

4.2

Saran ........................................................................................................... 187

xi

Daftar Pustaka ................................................................................................... 188
Lampiran ............................................................................................................ 189

xii

DAFTAR GAMBAR
Gambar 2.1 Proses Pembuatan Beton Prategang Tarik ...................................... 10
Gambar 2.2 Proses Pembuatan Beton Prategang Pascatarik .............................. 11
Gambar 2.3 Balok Prategang dengan Tendon Parabola ..................................... 12
Gambar 2.4 Beban Imbang wb ........................................................................... 12
Gambar 2.5 Tegangan Serat pada Beton dengan Tendon Lurus [Nawy, 2003] . 13
Gambar 2.6 Diagram freebody balok beton bertulang dan balok beton
prategang [Nawy, 2003] ................................................................. 15
Gambar 2.7 Kedudukan Gaya Tekan Pada C-Line [Nawy, 2003] ..................... 15
Gambar 2.8 Skema Penampang Balok ............................................................... 18
Gambar 2.9 Skema Penampang dalam Keadaan Lentur Batas .......................... 21
Gambar 2.10 Definisi Aρh ..................................................................................... 27
Gambar 2.11 Bagan Alir Perencanaan Geser dan Torsi ....................................... 30
Gambar 2.12 Bagan Alir Perencanaan Geser dan Torsi (Lanjutan) ..................... 31
Gambar 2.13 Daerah Angkur ............................................................................... 35
Gambar 2.14 Pengaruh dari Perubahan Potongan Penampang ............................ 36
Gambar 2.15 Contoh Model Penunjang dan Pengikat ......................................... 37
Gambar 2.16 a) Profil Parabola Sederhana, b) Profil Parabola Sebagian
c) Profil Parabola Terbalik, d) Profil Harpa [Aalami, 2005] .......... 47
Gambar 2.17 Wilayah Gempa Indonesia dengan Percepatan Puncak Batuan
Dasar dengan Perioda Ulang 500 Tahun [SNI 03-1726-2002] ...... 52
Gambar 2.18 Peta Respons Spektra Percepatan 0,2 detik di Batuan Dasar SB
untuk Probabilitas Terlampaui 2% dalam 50 Tahun (redaman
5%) Berdasarkan RSNI 03-1726-201x ........................................... 53
Gambar 2.19 Peta Respons Spektra Percepatan 1 detik di Batuan Dasar SB
untuk Probabilitas Terlampaui 2% dalam 50 Tahun (redaman
5%) Berdasarkan RSNI 03-1726-201x ........................................... 54
Gambar 2.20 Spectra Acceleration Bedrock ........................................................ 58
Gambar 2.21 Response Spectra Desain ................................................................ 58
xiii

Gambar 2.22 Ilustrasi Perambatan Percepatan Gempa ........................................ 59
Gambar 2.23 Spektrum Respons Desain .............................................................. 61
Gambar 2.24 Parabola Terbalik dan Beban Imbang [Aalami, 2005] ................... 66
Gambar 2.25 Bagan Alir Solusi Interaksi dengan ADAPT-PT [Aalami, 2005] .. 67
Gambar 3.1 Gambar Tampak 3D Desain Awal ................................................. 68
Gambar 3.2 Gambar Denah Kolom Gedung Pertemuan .................................... 69
Gambar 3.3 Gambar Denah Struktur Gedung Pertemuan Lantai 1, 2 dan 3 ...... 69
Gambar 3.4 Denah Gedung Pertemuan Tampak Samping ................................. 70
Gambar 3.5 Langkah Kerja ................................................................................ 74
Gambar 3.6 Denah Tipikal Bangunan ................................................................ 74
Gambar 3.7 Building Plan Grid System and Story Data Definition .................. 75
Gambar 3.8 Edit Story Data ................................................................................ 76
Gambar 3.9 Material Property Data .................................................................. 77
Gambar 3.10 Define Frame Properties ................................................................ 77
Gambar 3.11 Rectangular Section untuk Balok
(sebelum Reinforcement Data diubah) ........................................... 78
Gambar 3.12 Reinforcement Data untuk Balok ................................................... 78
Gambar 3.13 Rectangular Section untuk Balok
(setelah Reinforcement Data diubah) ............................................. 79
Gambar 3.14 Define Frame Properties ................................................................. 79
Gambar 3.15 Rectangular Section untuk Kolom
(sebelum Reinforcement Data diubah) ........................................... 80
Gambar 3.16 Reinforcement Data untuk Kolom .................................................. 80
Gambar 3.17 Rectangular Section untuk Kolom
(setelah Reinforcement Data diubah) ............................................. 81
Gambar 3.18 Define Frame Properties ................................................................ 81
Gambar 3.19 Wall / Slab Section .......................................................................... 82
Gambar 3.20 Define Mass Source ........................................................................ 82
Gambar 3.21 Assign Restraints ............................................................................ 83
Gambar 3.22 Select Sections ................................................................................ 83

xiv

Gambar 3.23 Assign Diaphragm .......................................................................... 83
Gambar 3.24 Diafragma Lantai ............................................................................ 84
Gambar 3.25 Set Analysis Option ......................................................................... 85
Gambar 3.26 Dynamic Analysis Parameters ....................................................... 85
Gambar 3.27 P-Delta Parameters ........................................................................ 86
Gambar 3.28 Response Spectrum Function ......................................................... 88
Gambar 3.29 Response Spectrum Cases .............................................................. 89
Gambar 3.30 Run Analysis ................................................................................... 89
Gambar 3.31 Center Mass Rigidity ...................................................................... 91
Gambar 3.32 Override Eccentricities ................................................................... 93
Gambar 3.33 Define Load Combinations
Sebelum COMB3 Dimasukkan ...................................................... 93
Gambar 3.34 Load Combination Data untuk COMB3 ........................................ 94
Gambar 3.35 Define Load Combinations Setelah Semua
Kombinasi Pembebanan Dimasukkan ............................................ 94
Gambar 3.36 Response Spectrum Case Data ....................................................... 95
Gambar 3.37 Hasil Response Spectrum Base Reaction ....................................... 95
Gambar 3.38 Response Spectra ............................................................................ 96
Gambar 3.39 Respons Spektrum Gempa Rencana RSNI 03-1726-201x ............. 100
Gambar 3.40 Response Spectrum NEHRP 97 Function Definition ..................... 101
Gambar 3.41 Response Spectrum Cases .............................................................. 102
Gambar 3.42 Run Analysis ................................................................................... 102
Gambar 3.43 Center Mass Rigidity ...................................................................... 105
Gambar 3.44 Override Eccentricities ................................................................... 106
Gambar 3.45 Define Load Combinations
Sebelum COMB3 Dimasukkan ...................................................... 107
Gambar 3.46 Load Combination Data untuk COMB3 ........................................ 107
Gambar 3.47 Define Load Combinations Setelah Semua
Kombinasi Pembebanan Dimasukkan ............................................ 108
Gambar 3.48 Response Spectrum Case Data ....................................................... 108

xv

Gambar 3.49 Hasil Response Spectrum Base Reaction ....................................... 109
Gambar 3.50 Response Spectra ............................................................................ 109
Gambar 3.51 Balok Induk Beton Prategang yang Ditinjau .................................. 112
Gambar 3.52 Balok Anak Beton Prategang yang Ditinjau .................................. 138
Gambar 3.53 General Settings ............................................................................. 165
Gambar 3.54 Design Settings ............................................................................... 165
Gambar 3.55 Span Geometry ............................................................................... 166
Gambar 3.56 Supports-Geometry ......................................................................... 167
Gambar 3.57 Supports-Boundary Conditions ...................................................... 167
Gambar 3.58 Loading ........................................................................................... 168
Gambar 3.59 Material-Concrete .......................................................................... 169
Gambar 3.60 Material-Reinforcement ................................................................. 169
Gambar 3.61 Material-Post-Tensioning ............................................................... 170
Gambar 3.62 Criteria-Allowable Stresses ............................................................ 171
Gambar 3.63 Criteria-Recommended Post-Tensioning Values ........................... 171
Gambar 3.64 Criteria-Calculation Options ......................................................... 172
Gambar 3.65 Criteria-Calculation Options
(Long-term Loss Parametersi) ....................................................... 173
Gambar 3.66 Criteria-Tendon Profile .................................................................. 174
Gambar 3.67 Criteria-Minimum Covers .............................................................. 175
Gambar 3.68 Criteria-Minimum Bar Extension .................................................... 175
Gambar 3.69 Load Combination .......................................................................... 176
Gambar 3.70 Criteria-Design Code ..................................................................... 177
Gambar 3.71 PT Recycling ................................................................................... 177
Gambar 3.72 PT Recycling Tendon Selection & Events ...................................... 177
Gambar 3.73 Execution Succesfully Completed ................................................... 178
Gambar 3.74 Perbandingan Respons Spektrun Gempa Rencana SNI 03-17262002 dan RSNI 03-1726-201x ........................................................ 183
Gambar 3.75 PT Recycling untuk Balok Induk Beton Prategang ........................ 184
Gambar 3.76 PT Recycling untuk Balok Induk Beton Prategang ........................ 185

xvi

DAFTAR TABEL
Tabel 2.1

Perbedaan Beton Bertulang vs Beton Prategang ............................ 14

Tabel 2.2

Percepatan Puncak Batuan Dasar dan Percepatan Puncak Muka
Tanah untuk Masing-Masing Wilayah Gempa Indonesia [SNI
03-1726-2002] ................................................................................ 51

Tabel 2.3

Klasifikasi Situs Berdasarkan RSNI 03-1726-201x ....................... 55

Tabel 2.4

Koefisien Situs, Fa Berdasarkan RSNI 03-1726-201x ................... 56

Tabel 2.5

Koefisien Situs, Fv Berdasarkan RSNI 03-1726-201x ................... 57

Tabel 2.6

Koefisien ξ yang Membatasi Waktu Getar Alami Fundamental
Struktur Gedung [SNI 03-1726-2002] ............................................ 60

Tabel 2.7

Load Combination Yang Digunakan .............................................. 63

Tabel 3.1

Dimensi Balok dan Kolom Bangunan ............................................ 77

Tabel 3.2

Tabel Modal Participating Mass Ratios ......................................... 86

Tabel 3.3

Center Mass Rigidity ...................................................................... 87

Tabel 3.4

Berat Struktur ................................................................................. 87

Tabel 3.5

Response Spectrum Base Reaction ................................................. 90

Tabel 3.6

Nilai Eksentrisitas Arah x untuk Pusat Gempa .............................. 92

Tabel 3.7

Nilai Eksentrisitas Arah y untuk Pusat Gempa .............................. 92

Tabel 3.8

Nilai Eksentrisitas Rencana untuk Pusat Gempa ............................ 92

Tabel 3.9

Point Displacement ........................................................................ 96

Tabel 3.10

Kinerja Batas Layan Arah x ........................................................... 97

Tabel 3.11

Kinerja Batas Layan Arah y ........................................................... 97

Tabel 3.12

Analisa Δm Akibat Gempa Arah x ................................................. 97

Tabel 3.13

Analisa Δm Akibat Gempa Arah y ................................................. 98

Tabel 3.14

Response Spectrum Base Reaction ................................................. 103

Tabel 3.15

Nilai Eksentrisitas Arah x untuk Pusat Gempa .............................. 105

Tabel 3.16

Nilai Eksentrisitas Arah y untuk Pusat Gempa .............................. 105

Tabel 3.17

Nilai Eksentrisitas Rencana untuk Pusat Gempa ............................ 106

Tabel 3.18

Point Displacement ........................................................................ 110
xvii

Tabel 3.19

Kinerja Batas Layan Arah x ........................................................... 110

Tabel 3.20

Kinerja Batas Layan Arah y ........................................................... 110

Tabel 3.21

Analisa Δm Akibat Gempa Arah x ................................................. 111

Tabel 3.22

Analisa Δm Akibat Gempa Arah y ................................................. 111

Tabel 3.23

Waktu Getar Alami ......................................................................... 179

Tabel 3.24

Gaya Geser Dasar ........................................................................... 179

Tabel 3.25

Peralihan (Displacement) Arah x .................................................... 180

Tabel 3.26

Peralihan (Displacement) Arah y .................................................... 180

Tabel 3.27

Drift Δs Antar Tingkat Arah x ........................................................ 181

Tabel 3.28

Drift Δs Antar Tingkat Arah y ........................................................ 181

Tabel 3.29

Drift Δm Antar Tingkat Arah x ....................................................... 182

Tabel 3.30

Drift Δm Antar Tingkat Arah y ....................................................... 182

Tabel 3.31

Gaya Dalam Balok Induk Beton Prategang .................................... 184

Tabel 3.32

Gaya Dalam Balok Anak Beton Prategang .................................... 184

xviii

DAFTAR NOTASI DAN SINGKATAN
a

: Tinggi balok tegangan persegi ekivalen

ABS

: Scaled Absolute Sum Method

ACI

: American Concrete Institute

Ac

: Luas beton pada penampang yang ditinjau

Aps

: Luas tulangan prategang dalam daerah tarik, mm2

As

: Luas tulangan yang diperlukan

As min : Luas tulangan minimum, mm2
As max : Luas tulangan maksimum, mm2
Asl

: Luas total tulangan longitudinal, mm2

Av

: Luas tulangan, mm2

bw

: Lebar penampang, mm

Ca

: Faktor Respons Gempa dinyatakan dalam percepatan gravitasi yang nilainya
bergantung pada waktu getar alami struktur gedung dan kurvanya
ditampilkan dalam Spektrum Respons Gempa Rencana.

Cb

: Garis berat bawah

Cc’

: Gaya tekan pada beton

Cs’

: Gaya pada tulangan tekan

Ct

: Garis berat atas

Cv

: Faktor Respons Gempa vertikal untuk mendapatkan beban gempa vertikal
nominal statik ekuivalen pada unsure struktur gedung yang memiliki
kepekaan yang tinggi terhadap gravitasi.

d

: Tinggi efektif penampang, mm

di

: Lengan momen prategang tulangan non komposit

DL

: Beban mati, berat dari semua bagian suatu gedung yang bersifat tetap

dp

: Lengan momen prategang komposit

dpi
Ec

: Lengan momen prategang non komposit
: Modulus elastisitas beton, MPa

Es

: Modulus elastisitas baja, MPa
xix

Eqx

: Beban gempa arah x

Eqy

: Beban gempa arah y

f’c

: Kuat tekan beton yang disyaratkan, MPa

f’ci

: Kuat tekan beton pada saat pemberian prategang awal, MPa

fpc

: Tegangan tekan beton rata-rata akibat gaya prategang efektif saja (sesudah
memperhitungkan semua kehilangan prategang yang mungkin terjadi), MPa

fps

: Tegangan pada tulangan prategang disaat penampang mencapai kuat
nominalnya, MPa

fpu

: Kuat tarik tendon prategang yang disyaratkan, MPa

fpy

: Kuat leleh tendon prategang yang disyaratkan, MPa

fy

: Kuat leleh tulangan yang disyaratkan, MPa

f’ys

: Kuat leleh tulangan tranversal yang disyaratkan, MPa

g

: Percepatan gravitasi

h

: Tebal total komponen struktur, mm

hi

: Ketinggian lantai tingkat ke-i, diukur dari taraf penjepitan lateral

hmin

: Tinggi minimum balok, mm

I

: Faktor keutamaan gedung

LL

: Beban hidup, semua beban yang terjadi akibat penghunian atau penggunaan
suatu gedung

Ln

: Bentang bersih untuk momen positif atau geser dan rata-rata dari bentangbentang bersih yang bersebelahan untuk momen negative

Mu

: Momen terfaktor pada penampang, Nmm

Mn

: Momen nominal penampang

np

: Jumlah pelat

Pu

: Beban aksial terfaktor, N

Psu

: Gaya tendon prategang pada ujung angkur, N

R

: Faktor reduksi gempa

s

: Jarak antar sengkang, mm

SDL

: Beban mati tambahan

SDS

: Parameter percepatan spektrum respons desain pada periode pendek

xx

SD1

: Parameter percepatan spektrum percepatan desain periode 1 detik

SNI

: Standar Nasional Indonesia

SRSS : Square Root of the Sum of the Squares
Ss

: Parameter respons spektral percepatan gempa MCER terpetakan pada
periode pendek, T = 0,2 detik

t

: Umur beton saat ditegangkan, hari

T

: Waktu getar alami struktur

Tp

: Gaya pada kabel prategang

Ts

: Gaya pada tulangan tarik

Vb

: Base Shear Struktur

Vc

: Kuat geser nominal yang dipikul oleh beton, N

Vs

: Gaya geser dasar nominal akibat beban gempa yang dipikul oleh suatu jenis
subsistem struktur gedung tertentu di tingkat dasar

Vs max : Gaya geser maksimum
Vu

: Gaya geser terfaktor pada penampang, N

W

: Berat total gedung, termasuk beban hidup yang sesuai

x

: Jarak garis netral dari serat tekan terluar

Δεp

: Regangan kabel prategang akibat lentur

α

: Rasio kekakuan lentur prategang balok terhadap balok bertahap kekakuan
lentur penampang balok terhadap kekakuan lentur pelat dengan lebar yang
dibatasi secara lateral oleh garis-garis sumbu tengah dari panel yang
bersebelahan (bila ada) pada tiap sisi balok

Δ

: Simpangan antar lantai tingkat desain

Δm

: Rasio antara simpangan maksimum struktur gedung akibat pengaruh gempa
rancana pada saat mencapai kondisi di ambang keruntuhan

Β

: Faktor pelapis

γbeton

: Berat jenis beton

Ø

: Diameter baja tulangan

ξ

: Koefisien yang membatasi waktu getar alami fundamental struktur gedung
berdasarkan SNI 03-1726-2002

xxi

ϕ

: Faktor kekuatan

ϕs

: Faktor kekuatan geser

ρ

: Rasio tulangan tekan non-prategang

ρb

: Rasio tulangan yang memberikan kondisi regangan seimbang

εpi

: Regangan awal kabel prategang

xxii

DAFTAR LAMPIRAN
Lampiran 1

Peta Wilayah Gempa ...................................................................... 189

Lampiran 2

Spesifikasi VSL .............................................................................. 193

Lampiran 3

Hasil Output Program ADAPT-PT untuk Balok Induk Beton
Prategang ........................................................................................ 215

Lampiran 3 Hasil Output Program ADAPT-PT untuk Balok Anak Beton
Prategang ........................................................................................ 237

xxiii

LAMPIRAN 1
PETA WILAYAH GEMPA

189

Gambar L1.1Wilayah Gempa Indonesia dengan Percepatan Puncak Batuan Dasar dengan Perioda Ulang 500 Tahun [SNI1726-2002]

190

Gambar L1.2 Peta Respons Spektra Percepatan 0,2 detik di Batuan Dasar SB untuk Probabilitas Terlampaui 2% dalam 50
Tahun (redaman 5%) Berdasarkan RSNI 03-1726-201x

191

Gambar L1.3 Peta Respons Spectra Percepatan 1 detik di Batuan Dasar SB untuk Probabilitas Terlampaui 2% dalam 50
Tahun (redaman 5%) Berdasarkan RSNI 03-1726-201x
192

LAMPIRAN 2
SPESIFIKASI VSL

193

VSL M U LT IS T R A N D S Y S T EM S :

Strand and Tendon Properties
Strand Properties

0.5”
(13 mm)

Strand Type
inch
inch2
lbs/ft
ksi
kips
ksi
%

Nominal diameter
Nominal area
Nominal weight/mass
Tensile strength
Min. breaking load
Young’s modulus
Relaxation

Tendon Properties

0.5
0.6
0.153
0.217
0.53
0.74
270
270
41.3
58.6
approx. 28,500
max 2.5

Strands Type 0.5” (270 ksi)
Number of
Strands Per
Tendon
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

0.6”
(15 mm)

Area of tendon
inch2

Min breaking
load kips

0.15
0.31
0.46
0.61
0.77
0.92
1.07
1.22
1.38
1.53
1.68
1.84
1.99
2.14
2.30
2.45
2.60
2.75
2.91
3.06
3.21
3.37
3.52
3.67
3.83
3.98
4.13
4.28
4.44
4.59
4.74
4.90
5.05
5.20
5.36
5.51
5.66
5.81
5.97
6.12
6.27
6.43
6.58
6.73
6.89
7.04
7.19
7.35
7.50
7.65
7.80
7.96
8.11
8.26
8.42

41.3
82.6
123.9
165.2
206.5
247.8
289.1
330.4
371.7
413.0
454.3
495.6
536.9
578.2
619.5
660.8
702.1
743.4
784.7
826.0
867.3
908.6
949.9
991.2
1032.5
1073.8
1115.1
1156.4
1197.7
1239.0
1280.3
1321.6
1362.9
1404.2
1445.5
1486.8
1528.1
1569.4
1610.7
1652.0
1693.3
1734.6
1775.9
1817.2
1858.5
1899.8
1941.1
1982.4
2023.7
2065.0
2106.3
2147.6
2188.9
2230.2
2271.5

www.vsl.net
888-489-2687

Strands Type 0.6” (270 ksi)
Number of
Strands Per
Tendon
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Area of tendon
inch2

Min breaking
load kips

0.22
0.43
0.65
0.87
1.09
1.30
1.52
1.74
1.95
2.17
2.39
2.60
2.82
3.03
3.26
3.47
3.69
3.91
4.12
4.34
4.56
4.78
4.99
5.21
5.43
5.64
5.86
6.08
6.29
6.51
6.73
6.94
7.16
7.38
7.60
7.81
8.03
8.25
8.46
8.68
8.90
9.11
9.33
9.55
9.77
9.98
10.20
10.42
10.63
10.85
11.07
11.28
11.50
11.72
11.94

58.6
117.2
175.8
234.4
293.0
351.6
410.2
468.8
527.4
586.0
644.6
703.2
761.8
820.4
879.0
937.6
996.2
1054.8
1113.4
1172.0
1230.6
1289.2
1347.8
1406.4
1465.0
1523.6
1582.2
1640.8
1699.4
1758.0
1816.6
1875.2
1933.8
1992.4
2051.0
2109.6
2168.2
2226.8
2285.4
2344.0
2402.6
2461.2
2519.8
2578.4
2637.0
2695.6
2754.2
2812.8
2871.4
2930.0
2988.6
3047.2
3105.8
3164.4
3223.0

VSL US Technical Data and Dimensions • Strand and Tendon Properties • 0308 ©VStructural, LLC

VSL M U LT IS T R A N D S Y S T EM S :

Type ECI Stressing Anchorage

Dimensions (Inches)
øE

øF
PT+
Duct

øF
Steel
Duct

øF
SCH 40
Pipe

8.54
8.54

6.69 2.37 5.33 3.31
6.69 2.37 5.33 3.31

2.87
2.87

2.88
2.88

3.00
3.00

11.00 12.00
11.00 12.00

3500
5500

9.88
9.88

8.66 3.00 6.85 4.62
8.66 3.00 6.85 4.62

3.58
3.58

3.24
3.24

3.50
3.50

13.00 14.00
13.00 13.50

3500
5500

11.42 6.91 3.75 8.13 5.90
11.42 6.91 3.75 8.13 5.90

4.57
4.57

4.10
4.10

4.50
4.50

17.00 19.00
15.00 17.00

Tendon
Unit

f’ci
(psi)

A

6-7
6-7

3500
5500

6-12
6-12
6-19
6-19

B

C

øD

øG

H

K
PT+
Duct

K
Steel
Duct

K
SCH 40
Pipe

L

n

P

Q

R

X

No Trumpet on 6-7

#4
#4

6.50
6.50

3.00
3.00

7.40
7.40

4.17
4.17

13.00
13.00

No Trumpet on 6-12

#5
#4

7.00
7.00

3.00
3.00

8.66
8.66

4.90
4.90

15.00
15.00

#5
#5

11.50
10.50

2.00
2.00

10.24
10.24

5.63
5.63

19.00
17.00

15.19
15.19

12.09
12.09

9.29
9.29

Notes:
Anchorage spacings are in accordance with test requirement of AASHTO (The Special
Anchorage Device Acceptance Test Procedure, AASHTO 2000).
For proper design and detailing of anchorage zones and related reinforcement, refer to the
VSL Publication Detailing for Post-Tensioning.

www.vsl.net • 888-489-2687

Dimensions are valid for:

f’ci (psi) is the nominal minimum concrete cylinder strength at the time of stressing.

Maximum prestressing force may be applied when concrete reaches a cylinder
strength of 3,500 psi (24 MPa) and 5,500 psi (38 MPa) respectively.

Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.

Yield strength of spiral reinforcement: Grade 60 (400 MPa).

Tie one and one-half turns of spiral at both ends.

Additional orthogonal reinforcement may be required in the local anchorage zone as
determined by design.

Spirals may be replaced by suitable orthogonal reinforcement.

Information for other concrete strengths and conditions is available from your local
VSL Representative.

Spiral reinforcement shall be centered on the anchorage assembly and be placed
directly behind the bearing plate as indicated above.
VSL US Technical Data and Dimensions • ECI Multistrand 1207 • ©VStructural, LLC

Multistrand Post-Tensioning

VSL

Stressing Anchorage VSL Type ES

K (super)
~1.25"

K (std)

øA

H

øE

øD

J

C

øG

Spiral reinforcement
L x n turns (pitch = H/n)

X = Anchorage spacing
XR = Clearence to edge
XR = 12 X + required cover of
spiral reinforcing

B

Draw ings not to scale

Tendon Unit

Dimensions Inches
C

øD

øE

øG

H

J

K

K

(std)

(super)

L

n

X

Strand
Type 0.5''

B

5-12
5-19
5-31
5-43
5-55

8.74
10.16
12.60
15.35
16.54

2.36
3.15
3.94
4.72
5.12

2.38
3.00
4.00
5.20
5.50

6.00
7.00
9.00
11.10
12.00

4.06
5.13
6.59
8.57
9.01

10.50
13.75
18.00
21.75
24.75

10.00
14.00
18.00
20.00
22.50

4.33
4.82
5.91
7.24
7.80

13.00
16.93
19.69
28.75
27.55

16.38
20.22
23.86
NA
NA

#4
#5
#5
#5
#6

5
7
9
10
10

12.50
15.75
20.50
23.75
26.75

Strand
Type 0.6''

øA

6-7
6-12
6-19
6-22
6-31
6-37

8.74
10.16
11.81
12.60
15.35
16.54

2.36
3.15
3.54
3.94
4.72
5.12

2.38
3.25
3.75
4.00
5.20
5.50

6.00
7.00
8.25
9.00
11.10
12.00

4.06
5.13
5.88
6.59
8.57
9.01

10.50
13.75
17.00
18.00
21.75
24.75

10.00
14.00
18.00
18.00
20.00
22.50

4.33
4.82
5.61
5.91
7.24
7.80

13.00
16.93
19.69
19.69
28.75
27.55

16.38
20.22
22.13
23.86
NA
NA

#4
#5
#5
#5
#5
#6

5
7
9
9
10
10

12.50
15.75
19.00
20.50
23.75
26.75

Other sizes available on request
Anchorage spacings are in accordance w ith test requirements of FIP
(Recommendations for Acceptance of Post-Tensioning Systems: March
1992). For proper design and detailing of anchorage zones and related
reinforcement, refer to the VSL Publication “Detailing for Post-Tensioning”.
Dimensions are valid for:
• Nominal concrete cylinder strength at 28 days: 4,000 psi (28 MPa).
• Maximum prestressing force may be applied w hen concrete reaches
a cylinder strength of 3,500 psi (24 MPa).

Subject to modification
• Additional orthogonal reinforcement may be required in the local
anchorage zone as determined by design.
• Spirals may be replaced by suitable orthogonal reinforcement.
• Information for other concrete strengths and conditions are available from
your local VSL Representative.
Spiral reinforcement shall be centered on the anchorage assembly and be
placed directly behind the bearing plate.

• Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.
• Yield strength of spiral reinforcement: Grade 60 (400 MPa).

VSL/ DSUS_Multi_SA_ES

1M 5/ 02 © VStructural, LLC

w w w.vsl.net

2

Multistrand Post-Tensioning

VSL

Stressing Anchorage VSL Type EC

~1.25"
C

A

B

A

øF

øE

øD

øG

H

X = Anchorage spacing
XR = Clearence to edge

Spiral reinforcement
L x n turns (pitch = H/n)

XR = 12 X + required cover of
spiral reinforcing

Strand
Type 0.5''

Tendon Unit
5-7
5-12
5-19
5-27
5-31

Dimensions Inches
A

B

C

øD

øE

øF

øG

H

L

n

X

6.50
8.88
11.00
12.38
14.00

5.25
7.06
10.25
13.63
13.63

2.38
2.38
3.00
4.00
4.00

4.50
6.00
7.00
9.00
9.00

2.91
4.31
5.56
7.00
7.00

2.50
3.13
3.75
4.75
4.75

9.00
11.75
15.00
18.00
19.00

12.00
16.00
18.00
18.00
20.25

#4
#4
#5
#6
#6

6
8
8
8
9

9.50
12.50
15.75
18.75
20.00

Other sizes available on request
Anchorage spacings are in accordance w ith test requirements of FIP
(Recommendations for Acceptance of Post-Tensioning Systems: March
1992). For proper design and detailing of anchorage zones and related
reinforcement, refer to the VSL Publication “Detailing for Post-Tensioning”.
Dimensions are valid for:
• Nominal concrete cylinder strength at 28 days: 4,000 psi (28 MPa).
• Maximum prestressing force may be applied w hen concrete reaches
a cylinder strength of 3,500 psi (24 MPa).

Subject to modification
• Yield strength of spiral reinforcement: Grade 60 (400 MPa).
• Spirals may be replaced by suitable orthogonal reinforcement.
• Information for other concrete strengths and conditions are available
from your local VSL Representative.
Spiral reinforcement shall be centered on the anchorage assembly and
be placed directly behind the bearing plate.
Additional orthogonal reinforcement may be required in the local
anchorage zone as determined by design.

• Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.

VSL/ DSUS_Multi_SA_EC

1M 5/ 02 © VStructural, LLC

w w w.vsl.net

3

VSL M U LT IS T R A N D S Y S T EM S :

Type E Stressing Anchorage
~1.25"
C

F

A

A

øE

øD

øG

H

Spiral reinforcement
L x n turns (pitch = H/n)

B

X = Anchorage spacing
XR = Clearance to edge
XR =

1
2X

+ required cover of
spiral reinforcing

Dimensions (Inches)
Bearing Plate
(Steel)

Grout Hose
Tendon Unit

A

B

0.5”
Strand

5-1
5-3
5-4
5-7
5-12
5-19
5-22
5-31
5-37
5-43
5-55

2.76
4.53
5.12
6.89
9.06
11.42
12.40
14.57
15.94
17.32
19.69

0.59
0.79
0.79
0.98
1.38
1.57
1.77
2.17
2.36
2.36
2.76

0.6”
Strand

6-1
6-2
6-3
6-4
6-7
6-12
6-19
6-22
6-31
6-37
6-43
6-55

2.95
4.33
5.31
6.30
8.07
10.63
13.39
14.57
17.13
18.90
20.47
22.83

0.59
0.59
0.79
0.98
1.38
1.57
1.97
2.17
2.56
2.76
2.95
3.54

Duct

Trumpet
Anchor Head

www.vsl.net • 888-489-2687

F

øG

H

J

J 2)

L

n

X

1.77 1.65 0.59
1.97 3.54 1.97
1.97 3.74 2.17
2.17 4.33 2.91
2.36 5.91 4.09
2.95 7.09 5.31
3.35 7.48 5.91
3.74 9.06 6.77
4.13 9.45 7.40
4.33 10.24 8.50
5.12 11.42 9.06

2.76
7.48
7.48
7.48
14.57
18.50
18.90
21.65
22.44
26.77
26.77

3.15
5.12
6.30
8.07
11.22
14.37
15.55
18.50
20.08
21.65
24.41

3.54
5.91
5.91
7.87
9.84
11.81
14.17
15.75
16.54
18.90
21.26

0.98
1.57
1.77
2.17
2.56
3.15
3.35
3.94
4.72
5.12
5.51

1.18
1.17
1.97
2.36
2.83
3.43
3.62
4.21
5.00
5.39
5.91

#3
#4
#4
#4
#4
#5
#6
#5
#7
#7
#7

2
3
3
4
5
6
6
8
7
8
9

3.54
6.10
7.09
9.25
12.01
15.16
16.34
19.29
21.06
22.83
25.79

1.97
1.97
1.97
2.17
2.36
2.95
3.74
3.94
4.72
5.31
5.71
6.30

2.76
7.48
7.48
7.48
11.42
18.11
23.23
27.17
27.17
32.68
37.40
37.40

3.15
5.12
6.30
7.48
10.24
13.58
17.32
18.50
22.05
24.02
25.59
29.13

3.54
5.91
5.91
7.87
9.84
11.81
13.78
15.75
18.90
21.26
25.20
24.80

1.18
1.77
1.77
1.97
2.36
3.15
3.74
4.33
5.12
5.51
5.91
6.69

1.38
1.97
1.97
2.17
2.64
3.43
4.02
4.61
5.39
5.91
6.30
7.09

#3
#4
#4
#4
#4
#5
#5
#6
#7
#7
#8
#8

2
3
3
4
5
6
9
8
8
9
8
9

4.13
5.91
7.28
8.27
11.02
14.37
18.11
19.49
23.23
25.20
27.17
30.71

C

øD

øE

2.09
3.54
3.74
4.33
5.31
6.69
7.87
8.66
10.24
11.02
11.81
13.39

0.71
1.97
2.20
2.56
3.31
4.65
5.91
6.77
7.56
8.46
9.69
10.04

Notes:
• Other sizes available on request.
• Anchorage spacings are in accordance with test requirements of FIP (Recommendations for Acceptance of Post-Tensioning Systems: March 1992). For proper
design and detailing of anchorage zones and related reinforcement, refer to the VSL Publication Detailing for Post-Tensioning.
Dimensions are valid for:
• Nominal minimum concrete cylinder strength at 28 days: 4000 psi (28 MPa).
• Maximum prestressing force may be applied when concrete reaches a cylinder strength of 3,500 psi (24 MPa).
• Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.
• Yield strength of spiral reinforcement: Grade 60 (400 MPa).
• Information for other concrete strength and conditions are available from your local VSL Representative.
• Large bearing plates are available where bearing stress is arbitrarily limited to 3,000 psi (21 MPa) with the tendon locked off at 70% Guaranteed Ultimate Tensile
Strength.
• Spiral reinforcement shall be centered on the anchorage assembly and be placed directly behind the bearing plate.
• Additional orthogonal reinforcement may be required in the local anchorage zone as determined by design.
VSL US Technical Data and Dimensions • E Multistrand • 0308 ©VStructural, LLC

VSL M U LT IS T R A N D S Y S T EM S :

Type K Coupler

Dimensions (Inches)
Tendon Unit

Grout Hose
Coupling
Head K

A

B

C

øD

0.5”
Strand

5-3
5-7
5-12
5-19
5-22
5-31
5-37
5-42
5-55

16.93
21.65
25.59
29.13
32.68
44.88
51.97
50.79
53.94

5.51
5.51
5.51
5.51
5.51
5.51
7.09
7.09
7.87

1.57
2.36
2.36
3.15
3.54
3.54
4.72
5.12
5.91

5.12
6.69
7.87
9.45
10.24
13.78
15.35
15.55
16.54

0.6”
Strand

6-2
6-3
6-4
6-7
6-12
6-19
6-22
6-31
6-37

14.96
19.29
20.47
24.80
28.74
33.86
36.61
42.91
54.72

5.91
6.30
6.30
6.30
6.30
6.30
6.30
7.09
7.87

1.18
2.36
2.36
2.76
3.15
3.54
3.54
5.12
5.12

5.51
5.91
6.30
7.48
9.45
11.02
12.20
14.17
16.93

Bearing Plate
Type EC, ES or E
Duct

Notes:
• Tension ring required as shown.
• Refer to applicable systems data sheet for bearing plate data and dimensions.
• Use of couplers requires special procedures and detailing. Contact your local
VSL Representative.

Trumpet

Tension Ring

Compression
Fittings

www.vsl.net • 888-489-2687
VSL US Technical Data and Dimensions • K Multistrand • 0308 ©VStructural, LLC

VSL M U LT IS T R A N D S Y S T EM S :

Type T Dead-End Anchorage

C

øG

A

B

Spiral reinforcement
L x n turns (pitch = H/n)

X = Anchorage spacing
XR = Clearance to edge

Tension Ring

XR =

X + required cover of
spiral reinforcing

Dimensions (Inches)
Tendon Unit

A

B

C

øG

X

11.75
15.00
19.00

12.50
15.75
20.00

0.5”
Strand

5-12
5-19
5-31

6.60
11.00
16.00

8.80
11.00
11.00

36.00
36.00
36.00

0.6”
Strand

6-7
6-12
6-19

6.75
6.75
9.00

6.75
6.00
11.25

36.00
36.00
36.00

12.50
15.75
20.00

Notes:

Grout Hose

Tension Ring

Duct

Seal

• Anchorage spacings are in accordance with test requirement of AASHTO (The Special Anchorage
Device Acceptance Test Procedure, AASHTO 2000).
• For proper design and detailing of anchorage zones and related reinforcement, refer to the VSL
Publication Detailing for Post-Tensioning.

Dimensions are valid for:
• Nominal minimum concrete cylinder strength at 28 days: 4000 psi (28 MPa).
• Maximum prestressing force may be applied when concrete reaches a cylinder strength of 3,500
psi (24 MPa).
• Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.
• Information for other concrete strength and conditions are available from your local VSL
Representative.

Type T Anchorage

www.vsl.net • 888-489-2687
VSL US Technical Data and Dimensions • T Multistrand • 0308 ©VStructural, LLC

VSL M U LT IS T R A N D S Y S T EM S :

Type Z Intermediate Anchorage
Stressing Jack

C

D

E

Curved stressing chair

F+L

Tendon #2

B

Tendon #1

G+L

A

H

Tension Ring

L = Elongation of tendon #2
E = C/2 + required cover

Tendon #2

Tendon #1

Dimensions (Inches)
A

B

C

D

F2

G2

H

0.5”
Strand

5-2 1)
5-4 1)
5-6
5-8
5-12
5-22

5.12
6.30
7.87
8.62
11.02
13.78

2.36
2.76
3.54
4.12
5.51
6.69

3.15
3.54
5.12
4.50
5.51
7.87

2.36
2.56
3.35
3.00
3.54
4.72

15.75
19.69
23.62
29.50
39.37
57.09

22.05
28.35
35.04
46.38
56.69
81.50

6.69
7.87
9.45
10.25
12.60
15.35

0.6”
Strand

6-2 1)
6-4 1)
6-6
6-12
6-22

5.51
6.69
8.27
11.81
15.75

2.76
3.15
3.94
6.30
7.48

3.54
3.94
5.51
6.30
9.84

2.56
2.76
3.54
3.94
5.71

17.72
35.43
39.37
53.15
59.06

24.41
44.49
51.97
75.20
90.16

7.09
8.27
9.84
13.39
17.32

Tendon Unit

Notes:
Grout Hose

Tension Ring
with Anchors

Anchor Head
Type Z

Duct

• Tension ring required on #2 side of the anchorage.
• Blockout dimensions dependent upon the shape of the
concrete surface and the tendon elongation.
• The values stated apply for surfaces which are not curved.

Retainer Plate

www.vsl.net • 888-489-2687
VSL US Technical Data and Dimensions • Z Multistrand • 0308 ©VStructural, LLC

Multistrand Post-Tensioning

VSL

Dead-End Anchorage VSL Type L

øA

R

Hairpin bar reinforcement

Strand
Type 0.5''

Tendon Unit

Dimensions Inches
øA Internal

5-7
5-12
5-19
5-31

2.62
3.50
3.94
5.75

øA External
2.88
3.75
4.19
6.00

R min.
24.00
36.00
36.00
36.00

Other sizes available on request
For proper design and detailing of anchorage zones and related
reinforcement, refer to the VSL Publication “Detailing for Post-Tensioning”.
Dimensions are valid for:
• Nominal concrete cylinder strength at 28 days: 4,000 psi (28 MPa).
• Maximum prestressing force may be applied w hen concrete reaches
a cylinder strength of 3,500 psi (24 MPa).

Subject to modification
• Yield strength of spiral reinforcement: Grade 60 (400 MPa).
• Custom size VSL Loops are available.
• Information for other concrete strengths and conditions are available from
your local VSL Representative.
• Simultaneous stressing of both tendon ends is necessary.

• Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.

VSL/ DSUS_Multi_DEA_L

1M 5/ 02 © VStructural, LLC

w w w.vsl.net

8

VSL M U LT IS T R A N D S Y S T EM S :

Type AF Dead-End Anchorage
ØF

ØG

E

2nd injection

H

K

Overflow of
1st. injection

D

L

C

M

1st. injection
X = Anchorage spacing
XR = Clearance to edge

ØA
Spiral reinforcement
L x n turns (pitch = H/n)

Dimensions (Inches)
Tendon Unit
0.6”
Strand

6-12
6-19
6-31

øA

C

D

E

øF
Int.

10.43
12.40
14.76

2.36
2.36
2.36

18.11
18.11
25.98

3.54
3.54
3.54

3.74
4.72
5.91

øF (2)
Ext.

øG

H

K

øL

n

M

X

4.02
5.00
6.18

14.96
18.90
24.41

17.72
21.26
25.98

27.56
27.56
35.43

#5
#6
#7

9.00
9.00
12.00

2.36
2.36
3.15

16.00
20.00
26.00

Notes:
• Anchorage spacings are in accordance with test requirement of AASHTO (The Special
Anchorage Device Acceptance Test Procedure, AASHTO 2000).
• For proper design and detailing of anchorage zones and related reinforcement, refer to
the VSL Publication Detailing for Post-Tensioning.

Duct

Trumpet
Cover Plate

Strand

Dimensions are valid for:
• Nominal minimum concrete cylinder strength at 28 days: 4000 psi (28 MPa).
• Maximum prestressing force may be applied when concrete reaches a cylinder strength
of 3,500 psi (24 MPa).
• Temporary overstressing to 80% of Guaranteed Ultimate Tensile Strength.
• Yield strength of spiral reinforcement: Grade 60 (400 MPa).
• Spirals may be replaced by suitable orthogonal reinforcement.
• Information for other concrete strength and conditions are available from your local VSL
Representative.

www.vsl.net • 888-489-2687
VSL US Technical Data and Dimensions • AF Multistrand • 0308 ©VStructural, LLC

VS L M U LT IST RAND S Y S T E M S :

PT-Plus™ Duct
Ducts PT-Plus™ System
Polypropylene (PP) Plastic Duct

www.vsl.net • 888-489-2687
H

G

Unit

øF

1.5

øC

D
øA

øB

Grout/vent
connection

0.88

E

Dimensions (Inches)