A UNIFIED PRESENTATION OF SOME CLASSES p-VALENT FUNCTIONS WITH FIXED SECOND NEGATIVE COEFFICIENTS
Bulletin of Mathematics Vol. 03, No. 01 (2011), pp. 61–68.
A UNIFIED PRESENTATION OF SOME
CLASSES p-VALENT FUNCTIONS WITH
FIXED SECOND NEGATIVE COEFFICIENTS
Abstract.Saibah Siregar
In this paper we consider the problem involving the unification of some
classes of p- valent functions with fixed second negative coefficients. Coefficient
inequality, growth and distortion theorems are also determined.1. INTRODUCTION Let T (p, n) denote the class of functions f of the form: X ∞
p k
f a z a p, n (z) = z − k ; k ≥ 0, ∈ N = {1, 2, 3, . . .}, (1)
k =p+n
which are analytic and p-valent in the unit disk U = {z : z ∈ C; 0 < |z| < 1}. Let ST α (p, n) and CT α (p, n) be the subclasses of T (p, n) consisting of p- valently starlike functions of order α and p-valently convex functions of order α, respectively, that is, ( ( ) ) ′ zf
(z) ST α (p, n) = f ∈ T (p, n) : Re > α (z ∈ U ) f
(z) Received 10-12-2010, Accepted 15-12-2010.
2000 Mathematics Subject Classification : 46F20, 52A41 Key words and Phrases : Analytic function, starlike and convex function, unified, growth and distortion
Saibah Siregar – A Unified Presentation of Some Classes
and ( ( ) ) ′′ zf (z) CT f > α ,
α (p, n) = ∈ T (p, n) : Re 1 + (z ∈ U )
f (z) where 0 ≤ α < p. Yamakawa (1992) easily derived the following X ∞ f
∈ ST α (p, n) ⇐⇒ (k − α)a k ≤ p − α; 0 ≤ α ≤ p, (2)
k =p+n
and X ∞ f ∈ CT (p, n) ⇐⇒ k (k − α)a ≤ p(p − α); 0 ≤ α ≤ p. (3)
α k k =p+n
A function f ∈ T (p, n) is said to be a member of the class T (p, n, α) if it satisfies the inequality: ( ) f (z) Re > α (z ∈ U ), ′ zf
(z)
1 where 0 ≤ α < . p
We note that T (p, n, α) is a subclass of T (p, n), since ( ) ( ) ′ f (z) zf (z)
1 Re > α ⇒ Re > 0; 0 ≤ α < . ′ zf f p (z) (z) For the class T (p, n, α), [3] has given the following Lemma.
Lemma 1.1 X ∞ Let f ∈ T (p, n) satisfies the inequality
1 (2k − pkα − p)a ≤ p(1 − αp); 0 ≤ α ≤ , (4)
k
p
k =p+n
then f ∈ T (p, n, α).
Saibah Siregar – A Unified Presentation of Some Classes
However, the converse of the lemma is not true and [3] defined the subclass A(p, n, α) of T (p, n, α) consisting of functions f which satisfy (4). And let B(p, n, α) denote the subclass of T (p, n) consisting of functions f such that ′ zf (z) ∈ A(p, n.α).
Thus Yamakawa [3] gave the following: Lemma 1.2
A function f defined by (1) is in the class B(p, n, α) if and only if X ∞
1
2
(2k − pkα − p)a ≤ p (1 − αp); 0 ≤ α ≤ . (5)
k
p
k =p+n
In view of Lemma 1.1, can be seen that the function f defined by (1) in the class T (p, n, α) X ∞ 1 . (2k − pkα − p)a k ≤ p(1 − αp); 0 ≤ α ≤ (6) p
k =p+n
so p (1 − αp)
1 . |a p | ≤ ; 0 ≤ α ≤ (7)
- n
(p + n)(2 − pα) − p p Let T (p, n, α, c) denote the class of function f (z) in T (p, n, α) of the form X ∞ cp (1 − αp) (c − 1)p(1 − αp)
p p +n p +n+1
f z z , (z) = z − −
(p + n)(2 − pα) − p (p + n + 1)(2 − pα) − p
k =p+n+1
(8) with 0 < |c| < 1.
2. PRELIMINARIES To prove our main results, we will need the following definitions and lemmas presented in this section.
Lemma 2.3 Let the function f be defined by (5) be in the class T (p, n, α, c) and X ∞
1 . (2k − pkα − p)a k ≤ (1 − c)p(1 − αp); 0 ≤ α ≤ (9) p
k =p+n with 0 < |c| < 1. Then f (z) ∈ A(p, n, α, c).
Saibah Siregar – A Unified Presentation of Some Classes Proof.
By putting p (1 − αp)
|a | ≤ , (10)
p +n
(p + n)(2 − pα) − p with 0 < |c| < 1.
In (9), will get the results. The result is sharp for function, X ∞ cp (1 − αp) (1 − c)p(1 − αp)
p p +n p +n+1
f z z , (z) = z − −
(p + n)(2 − pα) − p (p + n + 1)(2 − pα) − p
k =p+n+1
(11) with 0 < |c| < 1.
Lemma 2.4 Let the function f be defined by (1) be in the class T (p, n, α, c) and X ∞
1
2
k .
(2k − pkα − p)a k ≤ (1 − c)p (1 − αp); 0 ≤ α ≤ (12) p
k =p+n with 0 < |c| < 1. Then f (z) ∈ B(p, n, α, c).
Proof. By putting
2
cp (1 − αp)
|a p | ≤ ; (13)
- n
(p + n)(2 − pα) − p with 0 < |c| < 1. The result will have in (12). The results is sharp for function ∞
2
cp (1 − αp) (c − 1)p (1 − αp)
p p +n p +n+1
f z z , (z) = z − −
(p + n)(2 − pα) − p (p + n + 1)(2 − pα) − p
k =p+n+1
(14) Saibah Siregar – A Unified Presentation of Some Classes
1 with 0 < |c| < 1 and 0 ≤ α ≤ . p
In view of (9) and (12), will be introduced and study the some proper- ties and characteristics of the following general class U[p, n, α, λ] of function f ∈ T (p, n) which also satisfy the inequality: X ∞ k
(2k −pkα−p)(1−λ+λ( ))a k ≤ (1−c)p(1−αp); 0 ≤ λ ≤ 1. (15) p
k =p+n
It can be see easily U[p, n, α, c, λ] = (1 − λ)A(p, n, c, α) + λB(p, n, α, c), so that
U[p, n, c, α, 0] = A(p, n, c, α) and U[p, n, c, α, 1] = B(p, n, c, α). The main objective here is to give some properties the unified classes of A(p, n, α) and B(p, n, α) in a more general form U(p, n, α, β).
The idea is motivated form the work done by Srivastawa [2], and Siregar and Darus [4]. In, Srivastawa the authors gave results on distortion theorem.
In fact,the properties mentioned for unification of the classes ST (p, n)
α and CT α (p, n) defined by (2) and (3) respectively can be easily derived.
Note that when p = 1 and c = 1 in the unification of classes ST (p, n) and
α
CT α (p, n).
3. GROWTH AND DISTORTION THEOREM A growth property for function in the class U [p, n, α, c, λ] is given as following:
Theorem 3.1 Let the function f defined (1) be in the class U [p, n, c, λ], then cp (1 − αp) (1 − c)p(1 − αp)
p p +n p +n+1
|z| − |z| − |z|
k
(p + n)(2 − pα) − p (2k − pkα − p)(1 − λ + λ( ))
p
cp (1 − αp)
p p +n
- ≤ |f (z)| ≤ |z| |z|
(p + n)(2 − pα) − p (1 − c)p(1 − αp)
p +n+1
|z| + . (16)
k
(2k − pkα − p)(1 − λ + λ( )) Saibah Siregar – A Unified Presentation of Some Classes
The result is sharp for X ∞ cp k
(1 − αp)
p p
- n
f (z) = z − z − (2k − pkα − p)(1 − λ + λ( )a
k
p (p + n)(2 − pα) − p
k =p+n
≤ (1 − c)p(1 − αp); (17) with 0 < |c| < 1 and 0 ≤ λ ≤ 1.
Proof. X ∞ (1 − c)p(1 − αp)
|a k | ≤ ; 0 ≤ λ ≤ 1. (18)
k
(2k − pkα − p)(1 − λ + λ( ))
p k =p+n+1
Since f ∈ U [p, n, c, λ], then X ∞ cp (1 − αp)
p p k
- n
|f (z)| ≥ |z| − |z| − |a | |z|
k
(p + n)(2 − pα) − p
k =p+n+1 ∞
cp X (1 − αp)
p p p
- n +n+1
≥ |z| − |z| − |z| |a |
k
(p + n)(2 − pα) − p
k =p+n+1
cp (1 − αp)
p p +n
≥ |z| − |z| (p + n)(2 − pα) − p
(1 − c)p(1 − αp)
p +n+1
− |z|
k
(2k − pkα − p)(1 − λ + λ( ))
p
and X ∞ cp (1 − αp)
p p +n k
- |f (z)| ≤ |z| |z| + |a k | |z| (p + n)(2 − pα) − p
k =p+n+1 X ∞
cp (1 − αp)
p p p
- n
- ≤ |z| |z| + |z| |a k |
(p + n)(2 − pα) − p
k =p+n+1
cp (1 − αp)
p p +n
≤ |z| |z| + (p + n)(2 − pα) − p
(1 − c)p(1 − αp)
p
- n+1 |z| + .
k
(2k − pkα − p)(1 − λ + λ( ))
p The proof is complete.
The distortion property for function in the class U [p, n, α, c, λ] is given as following:
Saibah Siregar – A Unified Presentation of Some Classes
Theorem 3.2 Let the function f defined (1) be in the class U [p, n, c, λ], then cp (p + n)(1 − αp) (1 − c)p(p + n + 1)(1 − αp)
p− 1 p +n−1 p +n
p |z| − |z| − |z|
k
(p + n)(2 − pα) − p (2k − pkα − p)(1 − λ + λ( ))
p ′ (p + n)(1 − αp) cp
p− p
1 +n−1≤ |f + (z)| ≤ p|z| |z| (p + n)(2 − pα) − p
(1 − c)p(p + n + 1)(1 − αp)
p
- |z| (19)
k
(2k − pkα − p)(1 − λ + λ( ))
p
The result is sharp for X ∞ cp (1 − αp) k
p p +n
f z (z) = z − − (2k − pkα − p)(1 − λ + λ( )a k
(p + n)(2 − pα) − p p
k =p+n
≤ (1 − c)p(1 − αp); (20) with 0 < |c| < 1 and 0 ≤ λ ≤ 1.
Proof. X ∞ (1 − c)p(1 − αp)
|a k | ≤ ; 0 ≤ λ ≤ 1. (21)
k
(2k − pkα − p)(1 − λ + λ( ))
p k =p+n+1
Since f ∈ U [p, n, c, λ], then ∞ cp X ′ (p + n)(1 − αp)
1
p− 1 p +n−1 k−
|f (z)| ≥ p|z| − |z| − k |a | |z|
k
(p + n)(2 − pα) − p
k =p+n+1 X ∞
cp (p + n)(1 − αp)
p−
1 p +n−1 p +n
k ≥ p|z| − |z| − |z| |a k |
(p + n)(2 − pα) − p
k =p+n+1
cp (p + n)(1 − αp)
p− p 1 +n−1
≥ p|z| − |z| (p + n)(2 − pα) − p
(1 − c)p(p + n + 1)(1 − αp)
p
- n
− |z|
k
(2k − pkα − p)(1 − λ + λ( ))
p Saibah Siregar – A Unified Presentation of Some Classes
and X ∞ ′ cp (p + n)(1 − αp)
1
p− 1 p +n−1 k−
|f (z)| ≤ p|z| + |z| |a k | |z| (p + n)(2 − pα) − p
- k
k =p+n+1 X ∞
cp (p + n)(1 − αp)
p− p p
1 +n−1 +n≤ p|z| |z| + |z| |a k | (p + n)(2 − pα) − p
- k
k =p+n+1
cp (p + n)(1 − αp)
p− 1 p +n−1
- ≤ p|z| |z|
(p + n)(2 − pα) − p (1 − c)p(p + n + 1)(1 − αp)
p
- n
|z| +
k
(2k − pkα − p)(1 − λ + λ( ))
p The proof is complete.
References
[1] Siregar, S. & Darus, M. Unified treatment of p-valently analytic func- tions. Far East J. Math. Sci. 2005,17(1):69–79 [2] Srivastawa, H. M., Owa, S., Obradovic, M. and Nikic,M., A unified presentation of certain classes of starlike and convex functions with negative coefficients, Utilitas Math. 36(1989), 107–113. [3] Yamakawa, R., Certain subclasses of p-valently starlike functions with negative coefficients. in H. M. Srivastava & S. Owa, (eds.), Current topics in analytic function theory, Publishing Company, New Jersey, 1992, 393-402. [4] Siregar, S. and Darus, M. A unified presentation of some classes of meromorphically p-valent functions with fixed second negative coeffi- cients. Proc. Simposium Kebangsaan Sains Matematik ke-12 by IIUM, 2004, pg. 116-130.
Saibah Siregar : Faculty of Science and Biotechnology, Universiti Industri Selan- gor, 43600 Bestari Jaya, Selangor D.E., Malaysia
E-mail: [email protected]