6. DAFTAR PUSTAKA - 12.70.0006 Elizabeth Caroline Setiawan LAMPIRAN

  Brejnholt, Sarah M. (2010). Pectin. Dalam Imeson, Alan (ed): Food Stabilisers, Thickeners and Gelling Agents. Blackwell Publishing Ltd. West Sussex, pp.

  237-265. Budiyanto dan Yulianingsih. (2008). Pengaruh Suhu dan Waktu Ekstraksi Terhadap

  Karakter Pektin dari Ampas Jeruk Siam (Citrus nobilis L.). J. Pascapapen 5 (2): 37-44. Buren, J. P. Van. (1991). Function of Pectin in Plant Tissue Structure and Firmness.

  Dalam Walter, Reginald H (ed). (1991). The Chemistry and Technology of Pectin. Academic Press. USA. Eliaz, Isaac; Elaine Weil dan Barry Wilk. (2007). Integative Medicine and the Role of

  Modified Citrus Pectin/Alginates in Heavy Metal Chelation and Detoxification – Five Case Reports. Forsch Komplementarmedizin 14: 358-364.

  Endress, H. U. (1991). Nonfood Uses of Pectin. Dalam Walter, Reginald H (ed).

  (1991). The Chemistry and Technology of Pectin. Academic Press. USA. Environmental Health Unit of Queensland Government. (2002). Copper. Public Health Guidance Note, March 2002.

  Fitriani, Vina. (2003). Ekstraksi dan Karaktrisasi Pektin dari Kulit Jeruk Lemon (Citrus medica var Lemon). Skripsi Sarjana. Institut Pertanian Bogor. Franchi, Maria Luisa; Maria Belen Marzialetti; Graciela N. Pose dan Sebastian

  Fernando Cavalitto. (2014). Evaluation of Enzymatic Pectin Extraction by a

  Recombinant Polygalacturonase (PGI) From Apples and Pears Pomace of Argentinean Production and Characterization of the Extracted Pectin. Journal of Food Process Technology 5 (8): 1-4.

  Guthrie, Helen A. (1983). Introductory Nutrition. Mosby Company. USA. Hariyati, Mauliyah Nur. (2006). Ekstraksi dan Karaktrisasi Pektin dari Limbah Proses Pengolahan Jeruk Pontianak (Citrus nobilis var microcarpa). Skripsi Sarjana.

  Institut Pertanian Bogor. Kursunge, Hemlata; A. Waheed Deshmukh, R. P. Ugwekar dan Mangesh Wagmare.

  (2014). Comparative Study of Adsorption of Cu (II) on Fresh Orange Peel and

  Pectin Extracted Orange Peel. Journal of Engineering Research and Studies 5 (2): 5-9. Lim, Jongbin; Jiyoung Yoo; Sanghoon Ko dan Suyong Lee. (2012). Extraction and

  Characterization of Pectin from Yuza (Citrus junos) pomace: A Comparison of Conventional-Chemical dan Combined Physical-Enzymatic Extractions. Food Hydrocolloids 29: 160-165.

  Martin, Sabine. dan Wendy Griswold. (2009). Human Health Effects of Heavy Metals.

  Environmental Science and Technology Briefs for Citizens, issue 15, March 2009.

  Nordic Council of Ministers. (2003). Cadmium Review no 1, issue 04, 28 Januari 2003. Park et al. (2005). Adsorption of Cadmium and Lead by Various Cereals from Korea.

  Bull. Environ. Contam. Toxicol. 74 (1): 470-476.

  Perina et al. (2007). Ekstraksi Pektin dari Berbagai Macam Kulit Jeruk. Widya Teknik 6 (1): 1-10. Pilgrim, G. W., R. H. Walter, dan D. G. Oakenfull. (1991). Jams, Jellies, and Preserves.

  Dalam Walter, Reginald H (ed). (1991). The Chemistry and Technology of Pectin. Academic Press. USA. Saputri et al. (2014). Kajian Penggunaan Pengkelat untuk Menurunkan Kandungan Besi dalam Minyak Daun Cengkeh. Online Jurnal of Natural Science 3 (2): 57-61. Sarwono, B. (1986). Jeruk dan Kerabatnya. Penebar Swadaya. Jakarta. SNI 06-6989.6-2004 mengenai Air dan air limbah – Bagian 6: Cara uji tembaga (Cu) dengan Spektrofotometri Serapan Atom (SSA)-nyala. SNI 06-6989.8-2004 mengenai Air dan air limbah – Bagian 8: Cara uji timbal (Pb) dengan Spektrofotometri Serapan Atom (SSA)-nyala. SNI 6989.16:2009 mengenai Air dan Air Limbah – Bagian 16: Cara Uji Kadmium (Cd) secara Spektrofotometri Serapan Atom (SSA) – nyala. Solidum, Judilyn N. (2013). Peel Wastes of Ananas comosus (L.) Merr., Sandoricum

  koetjape Merr., Citrus nobilis Lour. As Lead and Cadmium Biosorbent in Manila Tap Water. Journal of Environmental Science and Management 16 (2):

  28-35. Srivastava, Pranati dan Rishabha Malviya. (2011). Sources of Pectin, Extraction and Its

  Applications in Pharmaceutical Industry – An Overview. Indian Journal of Natural Products and Resources 2 (1): 10-18. U.S. Department of Health and Human Services. (2007). Toxicological Profile for Copper. August 2007. Urias-Orona, Vania; Agustin Rascon-Chu; Jaime Lizardi-Mendoza; Elizabeth Carvajal-

  Millan; Alfonso A. Gardea dan Benjamin Ramirez-Wong. (2010). A Novel Pectin Material: Extraction, Characterization and Gelling Properties.

  International Journal of Molecular Sciences 11: 3686-3695.

  Walter, R. H. (1991). Analytical and Graphical Methods for Pectins. Dalam Walter, Reginald H (ed). (1991). The Chemistry and Technology of Pectin. Academic Press. USA.

  Zhao, Zheng Yan; Li Liang; Xiaoqing Fan; Zhonghua Yu; Arland T. Hotchkiss; Barry J. Wilk dan Isaac Eliaz. (2008). The Role of Modified Citrus Pectin as An Effective Chelator of Lead in Children Hospitalized with Toxic Lead Levels.

  Alternative Therapies 14 (4): 34-38.

  LAMPIRAN

  R² = 0.996

  l P em bacaan SS A (ppm ) Konsentrasi Larutan Stock Tembaga (ppm)

  1.50 Hasi

  1.00

  0.50

  0.00

  1.20

  1.00

  0.80

  0.60

  0.40

  0.20

  0.00

  pembacaan SSA (ppm) Linear (pembacaan SSA (ppm)) y = 1.111x

  Lampiran 1. Kurva Standar Larutan Stock Kadmium Lampiran 2. Kurva Standar Larutan Stock Tembaga y = 0.987x

   P em bacaan SS A (pp m ) Konsentrasi Larutan Stock Kadmium (ppm)

  1.50 Hasil

  1.00

  0.50

  0.00

  1.20

  1.00

  0.80

  0.60

  0.40

  0.20

  0.00

  R² = 0.999

  pembacaan SSA (ppm) Linear (pembacaan SSA (ppm)) Lampiran 3. Kurva Standar Larutan Stock Timbal Lampiran 4. Penyerapan Kadmium pada Penelitian Pendahuluan Lampiran 5. Distribusi Kadmium pada Penelitian Pendahuluan Waktu Distribusi kadmium (%) y = 0.588x

  R² = 0.951

  l P em bacaan SS A (pp m ) Konsentrasi Larutan Stock Timbal (ppm)

  logam berat te rbaca SS A (µg) Waktu kontak (jam)

  5 Massa

  3

  1

  50 100 150 200 250 300 350 400 450

  71,624 ± 3,581 114,688 ± 3,584

  146,085 ± 1,839 129,608 ± 3,812

  280,936 ± 2,900 65,409 ± 1,148

  pembacaan SSA (ppm) Linear (pembacaan SSA (ppm))

  1.50 Hasi

  0.00

  1.00

  0.50

  0.00

  0.70

  0.60

  0.50

  0.40

  0.30

  0.20

  0.10

  fase terlarut (soluble) fase tidak terlarut (insoluble) Lampiran 6. Penyerapan Tembaga pada Penelitian Pendahuluan Lampiran 7. Distribusi Tembaga pada Penelitian Pendahuluan Waktu kontak

  (jam) Distribusi tembaga (%)

  5 Massa

  Massa logam berat te rbaca SS A (µg)

  80 100 120 140 160 180 200 220 240

  60

  40

  20

  140,404 ± 34,119

  25,841 98,671 ± 22,895

  81,467 ± 8,897 119,797 ±

  84,166 ± 18,732 45,015 ± 14,641

  Fase terlarut (soluble) Fase tidak terlarut (insoluble)

  logam berat te rbaca SS A (µg) Waktu kontak (jam)

  3

  Fase tidak terlarut (insoluble)

  1

  80 100 120 140 160 180 200

  60

  40

  20

  51,012 ± 3,644 43,628 ± 4,876

  73,386 ± 2,696 81,613 ± 4,372 52,479 ± 4,908

  Lampiran 8. Penyerapan Timbal pada Penelitian Pendahuluan 119,085 ± 1,401

  1 51,740 ± 0,609 22,801 ± 2,132 74,541 ± 2,017 3 31,885 ± 1,171 22,164 ± 1,583 54,048 ± 1,098 5 35,459 ± 1,900 18,956 ± 2,119 54,415 ± 0,458

  Recovery

  Fase terlarut (soluble)

  Fase terlarut (soluble) Lampiran 9. Distribusi Timbal pada Penelitian Pendahuluan Waktu Distribusi timbal (%) kontak Fase tidak terlarut Fase terlarut

  Recovery

  (jam) (insoluble) (soluble) 1 149,656 ± 33,107 213,010 ± 45,948 362,666 ± 79,245 3 80,040 ± 26,033 175,446 ± 40,709 255,487 ± 20,317 5 144,855 ± 15,820 249,652 ± 60,666 394,507 ± 70,769

  Lampiran 10. Penyerapan Kadmium pada Optimasi Penelitian Pendahuluan 600

  A

  87,124 ± 3,788 500

  SS

  456,975 ± 400

  0,175

  rbaca te

  300 Fase terlarut

  (µg)

  200 (soluble)

   berat

  145,741 ±

  m

  134,404 ± 4,023

  100 4,079

  loga

  72,208 ± 3,213 9,417 ± 2,042

  Massa

  1

  3

  5 Waktu kontak (jam) Lampiran 11. Distribusi Kadmium pada Optimasi Penelitian Pendahuluan

  Waktu Distribusi kadmium (%) kontak Fase tidak terlarut Fase terlarut

  Recovery

  (jam) (insoluble) (soluble) 1 2,139 ± 0,464 30,535 ± 0,927 32,675 ± 0,616 3 16,405 ± 0,730 33,111 ± 0,914 49,516 ± 0,837 5 103,820 ± 0,040 19,794 ± 0,861 123,614 ± 0,900 Lampiran 12. Penyerapan Tembaga pada Optimasi Penelitian Pendahuluan Lampiran 13. Distribusi Tembaga pada Optimasi Penelitian Pendahuluan

  Waktu kontak (jam)

  25

  7,980 ± 1,173 12,300 ± 1,506

  7,890 ± 2,125 28,710 ± 2,349

  31,734 ± 4,847 23,926 ± 4,257

  5

  10

  15

  20

  30

  logam berat te rbaca SS A (µg) Waktu kontak (jam)

  35

  40

  45

  50

  1

  3

  5 Massa

  logam berat te rbaca SS A (µg)

  Fase terlarut (soluble)

  5 Massa

  Distribusi tembaga (%) Fase tidak terlarut

  10

  (insoluble) Fase terlarut

  (soluble)

  Recovery

  1 30,787 ± 0,994 19,487 ± 2,112 50,274 ± 3,079 3 5,271 ± 0,502 28,742 ± 1,733 34,012 ± 2,116 5 6,502 ± 0,600 2,535 ± 0,434 9,037 ± 0,541

  Lampiran 14. Penyerapan Timbal pada Optimasi Penelitian Pendahuluan 70,859 ± 2,287

  12,131 ± 1,156 14,965 ± 1,381 44,852 ± 4,862

  66,152 ± 3,989 5,835 ± 0,998

  20

  3

  30

  40

  50

  60

  70

  80

  90 100 110 120 130

  1

  Fase terlarut (soluble) Fase tidak terlarut (insoluble) Lampiran 15. Distribusi Timbag pada Optimasi Penelitian Pendahuluan Waktu kontak

  (jam) Distribusi timbal (%)

  Fase tidak terlarut (insoluble)

  Fase terlarut (soluble)

  Recovery

  1 14,190 ± 2,086 51,050 ± 4,177 65,240 ± 4,669 3 21,870 ± 2,678 56,425 ± 8,619 78,295 ± 10,962 5 14,029 ± 3,778 42,543 ± 7,570 56,572 ± 11,340

  Lampiran 16. Homogenitas Data Penelitian Pendahuluan Lampiran 17. Normalitas Data Penelitian Pendahuluan

  Test of Homogeneity of Variances 1,787

  2 6 ,246 ,005 2 6 ,995 3,063 2 6 ,121 ,268 2 6 ,774 ,879 2 6 ,462 ,470 2 6 ,646 i_cd_insol i_cd_sol i_cu_insol i_cu_sol i_pb_insol i_pb_sol Levene

  Statistic df1 df2 Sig.

  Tests of Normality

  ,292 3 . ,923 3 ,463 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,175 3 . 1,000 3 1,000 ,175 3 . 1,000 3 1,000 ,175 3 . 1,000 3 1,000 ,292 3 . ,923 3 ,463 ,337 3 . ,855 3 ,253 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,235 3 . ,978 3 ,716 ,349 3 . ,832 3 ,194 ,337 3 . ,855 3 ,253 ,219 3 . ,987 3 ,780 ,253 3 . ,964 3 ,637 ,308 3 . ,902 3 ,391 jam

  1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 i_cd_insol i_cd_sol i_cu_insol i_cu_sol i_pb_insol i_pb_sol Statistic df Sig. Statistic df Sig.

  Kolmogorov-Smirnov a Shapiro-Wilk a. Lampiran 18. Analisa One Way Anova Data Penelitian Pendahuluan Lampiran 19. Uji Duncan Fase Insoluble Kadmium pada Penelitian Pendahuluan

  

ANOVA

71145,225 2 35572,612 8141,548 ,000 26,216

  6 4,369 71171,440 8 5439,259 2 2719,629 202,958 ,000 80,400 6 13,400 5519,659 8 3560,197 2 1780,098 188,364 ,000 56,702 6 9,450 3616,899 8 135,001 2 67,500 3,312 ,107 122,282 6 20,380 257,283 8 2868,890 2 1434,445 6,678 ,030 1288,788 6 214,798 4157,678 8 2612,683 2 1306,341 1,663 ,266 4712,032 6 785,339 7324,714

  8 Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total Between Groups Within Groups Total i_cd_insol i_cd_sol i_cu_insol i_cu_sol i_pb_insol i_pb_sol

  Sum of Squares df Mean Square F Sig. i_cd_insol

  Duncan a

  3 65,4087 3 146,0853 3 280,9357 1,000 1,000 1,000 jam 3,00 5,00 1,00 Sig.

  N

  1

  2

  3 Subset for alpha = .05 Means for groups in homogeneous subsets are displayed.

  Uses Harmonic Mean Sample Size = 3,000.

  a. Lampiran 20. Uji Duncan Fase Soluble Kadmium pada Penelitian Pendahuluan

  i_cd_sol a

  Duncan Subset for alpha = .05 jam N

  1

  2

  3 3,00 3 71,6240 5,00 3 114,6880 1,00 3 129,6080 Sig. 1,000 1,000 1,000

  Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 3,000.

  Lampiran 21. Uji Duncan Fase Insoluble Tembaga pada Penelitian Pendahuluan

  i_cu_insol a

  Duncan Subset for alpha = .05 jam N

  1

  2

  3 3,00 3 73,3863 5,00 3 81,6130 1,00 3 119,0850 Sig.

  1,000 1,000 1,000 Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 3,000.

  Lampiran 22. Uji Duncan Fase Insoluble Timbal pada Penelitian Pendahuluan

  i_pb_insol a

  Duncan Subset for alpha = .05 jam N

  1

  2 3,00 3 45,0147 5,00 3 81,4667 1,00 3 84,1663 Sig.

  1,000 ,829 Means for groups in homogeneous subsets are displayed.

  a.

  Uses Harmonic Mean Sample Size = 3,000. Lampiran 23. Homogenitas Data Optimasi Penelitian Pendahuluan Lampiran 24. Normalitas Data Optimasi Penelitian Pendahuluan

  Test of Homogeneity of Variances 3,844

  2 6 ,084 ,046 2 6 ,955 1,053 2 6 ,406 3,476 2 6 ,099 ,918 2 6 ,449 ,862 2 6 ,469 ii_cd_insol ii_cd_sol ii_cu_insol ii_cu_sol ii_pb_insol ii_pb_sol Levene

  Statistic df1 df2 Sig.

  

Tests of Normality

,269 3 . ,949 3 ,567 ,253

  3 . ,964 3 ,637 ,252 3 . ,965 3 ,641 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,196 3 . ,996 3 ,878 ,353 3 . ,824 3 ,174 ,367 3 . ,794 3 ,100 ,253 3 . ,964 3 ,637 ,349 3 . ,832 3 ,194 ,314 3 . ,893 3 ,363 ,292 3 . ,923 3 ,463 ,299 3 . ,914 3 ,433 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,263 3 . ,955 3 ,593 jam

  1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 1,00 3,00 5,00 ii_cd_insol ii_cd_sol ii_cu_insol ii_cu_sol ii_pb_insol ii_pb_sol

  Statistic df Sig. Statistic df Sig.

  Kolmogorov-Smirnov a Shapiro-Wilk Lilliefors Significance Correction a. Lampiran 25. Normalitas Data Penelitian Utama

  Tests of Normality

  ,253 3 . ,964 3 ,637 ,219 3 . ,987 3 ,780 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,175 3 . 1,000 3 1,000 ,337 3 . ,855 3 ,253 ,219 3 . ,987 3 ,781 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,314 3 . ,893 3 ,363 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,314 3 . ,893 3 ,363 ,232 3 . ,980 3 ,726 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,219 3 . ,987 3 ,780 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,292 3 . ,923 3 ,463 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,175 3 . 1,000 3 1,000 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,253 3 . ,964 3 ,637 ,276 3 . ,942 3 ,537 ,253 3 . ,964 3 ,637 ,175 3 . 1,000 3 1,000 ,175 3 . 1,000 3 1,000 ,219 3 . ,987 3 ,780 ,219 3 . ,987 3 ,781 menit

  30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 90,00 30,00 60,00 iii_cd_f_insol iii_cd_f_sol iii_cd_5_insol iii_cd_5_sol iii_cd_10_insol iii_cd_10_sol iii_cd_k_insol iii_cd_k_sol iii_cu_f_insol iii_cu_f_sol iii_cu_5_insol iii_cu_5_sol iii_cu_10_insol iii_cu_10_sol iii_cu_k_insol

  Statistic df Sig. Statistic df Sig.

  Kolmogorov-Smirnov a Shapiro-Wilk Lampiran 26. Homogenitas Data Penelitian Utama Lampiran 27. Analisa One-Way Anova (12 Kombinasi) Data Penelitian Utama

Lampiran 28. Penyajian Deskriptif Data Penelitian Utama

  Lampiran 30. Uji Duncan Fase Terlarut Kadmium pada Penelitian Utama Lampiran 29. Uji Duncan Fase Tidak Terarut Kadmium pada Penelitian Utama

  Lampiran 31. Uji Duncan Fase Tidak Terlarut Tembaga pada Penelitian Utama Lampiran 32. Uji Duncan Fase Terlarut Tembaga pada Penelitian Utama

  Lampiran 33. Analisa Korelasi dengan Uji Pearson