Design And Analysis Of Car Side Door Impact Beam.

(1)

DESIGN AND ANALYSIS OF CAR SIDE DOOR IMPACT BEAM

NUR EZRIN BINTI MAD SARIFF


(2)

I admit that have read

this report and to my opinion this report

fulfill in terms of scope and quality for the Bachelor of Mechanical Engineering (Design & Innovation).

SIGNATURE :

NAME OF SUPERVISOR 1 :


(3)

DESIGN AND ANALYSIS OF

CAR SIDE DOOR IMPACT BEAM

NUR EZRIN BINTI MAD SARIFF

This report is submitted in partial fulfillment of the requirements for the Bachelor of Mechanical Engineering (Design & Innovation)

Faculty of Mechanical Engineering Universiti Teknikal Malaysia Melaka


(4)

I hereby declare that this project report is written by me and is my own effort and that no part has been plagiarized without citations.

Signature :………

Name of writer : Nur Ezrin Bt. Mad Sariff


(5)

iii

ACKNOWLEDGEMENT

Syukur Alhamdulillah and thanks to Allah, the Al-Mighty for giving me the patience and high confidence to complete this final year research project. I would like to take this opportunity to express my gratitude towards my supervisor, Mr. Fadzli Abdollah who was guiding me through completing the process. He was the one who not only motivated me but also gave me encouragement and some advises that helps me a lot during the research project.

The deepest appreciation to Mr. Shakir as a technician in Car Noise and Chasis Lab and Mr. Azhar Shah in Material Science Lab (FKP) in UTeM for letting me using the lab and providing me with all the equipments that I needed. And also special thanks to Mr. Tan Chi Seng as giving me permission to use his workshop in Malim Jaya for research purposes.

Not to forget, my appreciation to relatives friends and families for their supports and also to all others who directly or indirectly involved in this final year research project.


(6)

ABSTRACT

In serving the best in fuel efficiency, the improvement of passenger car in term of lightweight, shape and impact energy absorption of impact beam are considered in conjunction with problems and safety issues nowadays. This report presents the findings of a need on designing and making analysis on the types of aluminum alloy car side door impact beam that can be sustained the maximum load using Finite Element Analysis (FEA) software instead of studying the impact energy of aluminum alloy compared to high strength steel. By having fully understanding of the stress and deformation due to bending on the impact beam, FEA software and bending theoretical formula can be applied together with impact testing done on both aluminum alloy and high strength steel in order to analyze the energy absorption and temperature effect. From the results, aluminum alloy is lighter and have higher impact energy absorption compared to high strength steel with square hollow cross sectional as the most appropriate shape to be used due to highest maximum load that it can sustained. Besides, the impact energy absorption for both materials does not affected by temperature change. The particular strength of this study is in providing insight into the current use of aluminum alloy as impact beam and its future potential in car manufacture.


(7)

v

ABSTRAK

Bagi menyediakan kecekapan minyak yang maksimum, penambahbaikan kepada kenderaan penumpang daripada segi jisim, bentuk dan penyerapan tenaga hentaman oleh rasuk hentaman adalah dipertimbangkan selaras dengan masalah dan isu-isu keselamatan yang melanda. Laporan kajian ini menyediakan keperluan untuk merekabentuk dan membuat analisis terhadap rasuk hentaman pintu sisi kenderaan penumpang daripada jenis aluminium aloi yang boleh menampung beban maksimum menggunakan Perisian Analisis Unsur Terhingga selain mengkaji mengenai tenaga tekanan dan deformasi disebabkan oleh lenturan ke atas rasuk hentaman, Perisian Analisis Unsur Terhingga dan Formula Teori Lenturan boleh diaplikasikan bersama ujian hentaman yang dilakukan ke atas aluminium aloi dan keluli bertenaga tinggi untuk menganalisa penyerapan tenaga dan kesan suhu terhadap rasuk hentaman. Berdasarkan keputusan, aluminium aloi adalah lebih ringan dan mempunyai penyerapan tenaga hentaman yang tinggi berbanding keluli bertenaga tinggi disamping bentuk segi empat lohong yang paling sesuai digunakan hasil daripada pencapaian beban maksimum. Selain itu, perubahan suhu tidak memberi sebarang kesan terhadap penyerapan tenaga hentaman bagi kedua-dua jenis bahan. Teras kekuatan kajian ini ialah dalam menyediakan wawasan kepada penggunaan terkini aluminum aloi sebagai rasuk hentaman dan potensinya dalam industri pengeluaran kereta.


(8)

TABLE OF CONTENTS

CHAPTER CONTENT PAGE

TITLE i

DECLARATION ii

ACKNOWLEDGEMENT iii

ABSTRACT iv

ABSTRAK v

TABLE OF CONTENTS vi

LIST OF TABLES ix

LIST OF FIGURES xi

LIST OF SYMBOLS xvii

LIST OF EQUATIONS xix

LIST OF APPENDICES xxi

CHAPTER 1 INTRODUCTION

1.1 Background 1

1.2 Objectives 2

1.3 Scopes 2

(a) Literature study on stress and deformation analysis due to bending as well as impact toughness.

2


(9)

vii

way to use FEA software (ANSYS)

(c) Impact testing on aluminum alloy and carbon steel

2

CHAPTER CONTENT PAGE

1.4 Problem statement 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Side Door Impact Beam 5

2.1.1 Types of Impact Beam 7

2.1.2 Examples of Impact beam 12

2.2 Aluminum alloy 14

2.2.1 Aluminum alloy characteristics

14

2.2.2 Types of aluminum alloy 15

2.2.3 6061T-6 Aluminum Alloy Properties

16

2.3 Stress and Deformation Analysis Due To Bending

18

2.3.1 Bending definition 18

2.3.2 Shear and Moment Diagram 20

2.3.3 Impact analysis on beam 21

2.3.4 Stress Concentration on Beam 24

2.4 FEA Software (ANSYS) 25

2.4.1 Advantages of FEA 26

2.4.2 Application 26


(10)

2.5.1 Types of Impact Testing 27

2.5.1.1 Charpy Impact Test 27

2.5.1.2 Izod Impact Test 31

2.5.1.3 Gardner Weight Drop Impact Test

31

CHAPTER CONTENT PAGE

CHAPTER 3 METHODOLOGY 33 3.1 Theoretical Analysis of Absorb Energy

using Bending Impact Formula

34

3.2 FEA Software (ANSYS 9.0) 35

3.3 Charpy Impact Test 42

CHAPTER 4 RESULTS AND DISCUSSION 48

4.1 Bending Impact Formula Result 49

4.2 Finite Element Analysis Result 50

4.3 Charpy Impact Testing Result 57

4.4 Fracture and Surface Contour 60

CHAPTER 5 CONCLUSION AND RECOMMENDATION 63

5.1 Conclusion 63

5.2 Recommendation 64

REFERENCES 66

BIBLIOGRAPHY 68


(11)

ix

LIST OF TABLES

BIL TITLE PAGE

2.1 Characteristic of Aluminum Alloy

(Source:http://www1.eere.energy.gov/industry/alum inum/pdfs/autoroadmap.pdf)

14

2.2 Aluminum Alloy Mechanical Properties (6061T-6) (Source: Retrieved September 21, 2007, from http://www.simalex.com/material.htm#Aluminum% 20Mechanical%20Properties)

16

2.3 Aluminum Alloy Physical Properties (6061T-6) (Source: Retrieved September 21, 2007, from http://www.simalex.com/material.htm#Aluminum% 20Mechanical%20Properties)

17

2.4 Aluminum Alloy Physical Properties (6061T-6) (Source: Retrieved September 21, 2007, from http://www.simalex.com/material.htm#Aluminum% 20Mechanical%20Properties)

17


(12)

4.1 Equivalent Static Force and Absorbed Energy for Different Types of Beam

49

4.2 Maximum Deflection and Load for Different Types of Beam

55

4.3 Impact Beam Weight 56

4.4 Impact Energy of Aluminum Alloy and High Strength Steel at Room Temperature

58

4.5 Influence of Temperature to The Absorbed Energy of Aluminum Alloy and High Strength Steel

59


(13)

xi

LIST OF FIGURES

BIL TITLE PAGE

2.1 Door Beam Construction

(Source: Retrieved July 25, 2007 from http://www..sussex.ac.uk/automotive/)

5

2.2 Rigidly Connected Beam

(Source: Retrieved July 25, 2007 from http://www..sussex.ac.uk/automotive/)

6

2.3 Geometric Restraints for Renault Twingo Door Model

(Source: Retrieved July 25, 2007 from http://www..sussex.ac.uk/automotive/)

6

2.4 Side-door impact beam with boundary conditions: (a) front side, (b) back side

(Source: Retrieved July 25, 2007 from http://www..sussex.ac.uk/automotive/)


(14)

2.5 Circular Hollow area 8

2.6 Shaded area 8

BIL TITLE PAGE

2.7 Plain area 8

2.8 Square Hollow area 9

2.9 Shaded area 9

2.10 Plain area 10

2.11 I-type area 10

2.12 Plain area 10

2.13 Shaded area 11

2.14 C-type area 11

2.15 Plain area 12

2.16 Shaded area 12


(15)

xiii

2.18 Impact Beam of Proton Wira 1.5 13

2.19 Bending on structural element 18

2.20 Bending deformation

(Source: Hibbeler, R. C. 2003)

19

BIL TITLE PAGE

2.21 Impact Beams

(Source: Retrieved July 16, 2007 from http://www.dwmic.co.kr)

19

2.22 Impact Beams in Side Door of Passenger Car (Source: Retrieved July 16, 2007 from http://www.dwmic.co.kr)

19

2.23 Shear and moment diagram 20

2.24 Applied force on beam 22

2.25 Maximum bending stress 24

2.26 Schematic Drawing of a standard impact-testing apparatus.

(Source: Smith, W. F. (2004). Foundations of materials science and engineering (3rd ed.). New York: Mc Graw Hill.)


(16)

2.27 Effect of temperature on the energy absorbed upon impact by different types of materials.

(Source: Smith, W. F. (2004). Foundations of materials science and engineering (3rd ed.). New York: Mc Graw Hill.)

29

2.28 BCC unit cell.

(Source :http://www.science.uwaterloo.ca/~cchieh/c act/applychem/metals.html)

29

BIL TITLE PAGE

2.29 Lateral expansion of Charpy Impact specimen (Source:http://www.csun.edu/~tarek/EXP2%20Char py%20Impact.htm.)

30

2.30 TMI Impact Tester

(Source: http://www.ptli.com/default.asp.)

31

2.31 Gardner tester

(Source:http://www.instron.us/wa/home/default_en. aspx.)

31

3.1 Parameters for various cross sectional shape 33

3.2 Maximum bending stress. 34


(17)

xv

3.4 Beam Tool 36

3.5 Cross Section View (Square Hollow) 37

3.6 Cross Section View (Circular Hollow) 37

3.7 Cross Section View (I-type) 38

3.8 Cross Section View (C-type) 38

3.9 Nodes Created 39

BIL TITLE PAGE

3.10 Straight line 39

3.11 Element Length 40

3.12 Mesh Line 40

3.13 Load analysis 40

3.14 Displacement 41

3.15 Force 41


(18)

3.17 Dimensions of Specimens 43

3.18 Charpy Impact Machine Specifications 44

3.19 Centering Tongs for V-Notch Charpy Specimens 45

4.1 Square Hollow Beam 50

4.2 Circular Hollow Beam 51

4.3 I-type Beam 52

4.4 C-type Beam 52

4.5 Deformation and Contour Plot (Aluminum Alloy) 54

BIL TITLE PAGE

4.6 Deformation and Contour Plot (High Strength Steel) 54

4.7 The Loads of Various Cross Section Shapes for Side Door Impact Beam

56

4.8 Absorbed Energy of Aluminum Alloy and High Strength Steel by using Charpy Impact Test

58

4.9 Effect of Temperature on The Energy Absorbed upon Impact by Different Types of Material.


(19)

xvii

4.10 Fractures and Surface Contour of Specimens 60

4.11 Crack of specimens 62


(20)

LIST OF SYMBOLS

A = Area

B = Depth of The Door

BCC = Body-Centered-Cubic

b = Width

c = Centroid

CFD = Computational Fluid Dynamic

d = Length

E = Modulus of Elasticity

F = Force

Fe = Equivalent Static Force

FCC = Face Centered Cubic

FEA = Finite Element Analysis

g = Gravity Acceleration

H = Height

h = Height

HT = Heat-Treatable

I = Moment Of Inertia

L = Length

M = Moment


(21)

xix

NHT = Non-Heat-Treatable

r = Radius

t = Thickness

V = Shear

v = Velocity

W = Width

wf = Final Lateral Dimension

wi = Initial Lateral Dimension

Δw = Lateral Expansion

x = x-axis

y = y-axis

Π = pi

σ = Stress

δ = Deformation/Deflection


(22)

LIST OF EQUATIONS

BIL PAGE

2.1 8

2.2 9

2.3 9

2.4 9

2.5 10

2.6 10

2.7 11

2.8 11

2.9 11

2.10 12

2.11 12

2.12 12

2.13 21

2.14 21

2.15 21

2.16 22

2.17 22


(23)

xxi

2.19 23

2.20 23

2.21 23

2.22 24

BIL PAGE

2.23 24

2.24 24

3.1 34

3.2 34

3.3 34

3.4 35

3.5 43

3.6 43


(24)

LIST OF APPENDICES

BIL TITLE

A Deformation and Contour Plot for Circular Hollow, I-type and C-type

B Maximum Deflection for Different Types of Beam

C Gantt Chart PSM 1 Gantt Chart PSM 2


(1)

xvii

4.10 Fractures and Surface Contour of Specimens 60

4.11 Crack of specimens 62


(2)

xviii

LIST OF SYMBOLS

A = Area

B = Depth of The Door

BCC = Body-Centered-Cubic

b = Width

c = Centroid

CFD = Computational Fluid Dynamic

d = Length

E = Modulus of Elasticity

F = Force

Fe = Equivalent Static Force

FCC = Face Centered Cubic

FEA = Finite Element Analysis

g = Gravity Acceleration

H = Height

h = Height

HT = Heat-Treatable

I = Moment Of Inertia

L = Length

M = Moment


(3)

xix

NHT = Non-Heat-Treatable

r = Radius

t = Thickness

V = Shear

v = Velocity

W = Width

wf = Final Lateral Dimension

wi = Initial Lateral Dimension

Δw = Lateral Expansion

x = x-axis

y = y-axis

Π = pi

σ = Stress

δ = Deformation/Deflection


(4)

xx

LIST OF EQUATIONS

BIL PAGE

2.1 8

2.2 9

2.3 9

2.4 9

2.5 10

2.6 10

2.7 11

2.8 11

2.9 11

2.10 12

2.11 12

2.12 12

2.13 21

2.14 21

2.15 21

2.16 22

2.17 22


(5)

xxi

2.19 23

2.20 23

2.21 23

2.22 24

BIL PAGE

2.23 24

2.24 24

3.1 34

3.2 34

3.3 34

3.4 35

3.5 43

3.6 43


(6)

xxii

LIST OF APPENDICES

BIL TITLE

A Deformation and Contour Plot for Circular Hollow, I-type and C-type

B Maximum Deflection for Different Types of Beam

C Gantt Chart PSM 1 Gantt Chart PSM 2