A Comparison Of Mechanical Properties Between Kenaf Core Fiber And Kenaf Bast Fiber Reinforced Polyester Composite.

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

A Comparison of Mechanical Properties
between Kenaf Core Fiber and Kenaf Bast
Fiber Reinforced Polyester Composites

Thesis submitted in accordance with the partial requirements of the
Universiti Teknikal Malaysia Melaka for the Degree of Bachelor
of Engineering (Honours) Manufacturing (Process)
By

Mohamad Ridzwan Bin Ishak

Faculty of Manufacturing Engineering
May 2007

UTeM Library (Pind.1/2005)

UNIVERSITI TEKNIKAL MALAYSIA MELAKA

BORANG PENGESAHAN STATUS TESIS*


JUDUL: A COMPARISON OF MECHANICAL PROPERTIES BETWEEN KENAF CORE
FIBER AND KENAF BAST FIBER REINFORCED POLYESTER COMPOSITE

SESI PENGAJIAN: 2/ 2006-2007
Saya

MOHAMAD RIDZWAN BIN ISHAK
_____________________________________________________________________

mengaku membenarkan t esis (PSM/ Sarj ana/ Dokt or Falsaf ah) ini disimpan di
Perpust akaan Universit i Teknikal Malaysia Melaka (UTeM) dengan syarat -syarat
kegunaan sepert i berikut :
1. Tesis adalah hak milik Universit i Teknikal Malaysia Melaka.
2. Perpust akaan Universit i Teknikal Malaysia Melaka dibenarkan membuat salinan
unt uk t uj uan pengaj ian sahaj a.
3. Perpust akaan dibenarkan membuat salinan t esis ini sebagai bahan pert ukaran
ant ara inst it usi pengaj ian t inggi.
4. **Sila t andakan ( √)
SULIT


TERHAD



(Mengandungi maklumat yang berdarj ah keselamat an
at au kepent ingan Malaysia yang t ermakt ub di dalam
AKTA RAHSIA RASMI 1972)
(Mengandungi maklumat TERHAD yang t elah dit ent ukan
oleh organisasi/ badan di mana penyelidikan dij alankan)

TIDAK TERHAD

(TANDATANGAN PENULIS)

Disahkan oleh:

(TANDATANGAN PENYELIA)

Alamat Tet ap:

No. 2A, Jalan Cacar,
Kg. Kuala Jempol,
72100 Bahau, N. Sembilan.

Cop Rasmi:

Tarikh: _______________________

Tarikh: _______________________

* Tesis dimaksudkan sebagai t esis bagi Ij azah Dokt or Falsaf ah dan Sarj ana secara penyelidikan, at au
disert asi bagi pengaj ian secara kerj a kursus dan penyelidikan, at au Laporan Proj ek Sarj ana Muda (PSM).
** Jika t esis ini SULIT at au TERHAD, sila lampirkan surat daripada pihak berkuasa/ organisasi berkenaan
dengan menyat akan sekali sebab dan t empoh t esis ini perlu dikelaskan sebagai SULIT at au TERHAD.

APPROVAL

This thesis submitted to the senate of UTeM and has been accepted as partial fulfillment
of the requirements for the degree of Bachelor of Manufacturing Engineering
(Manufacturing Process). The members of the supervisory committee are as follow:


…………………………………………
Main Supervisor
(Official Stamp and Date)

………………………………………..
Co – Supervisor
(Official Stamp and Date)

DECLARATION

I hereby, declared this thesis entitled “A Comparison of Mechanical Properties between
Kenaf Core Fiber and Kenaf Bast Fiber Reinforced Polyester Composites.” is
the results of my own research except as cited in references

Signature

:

…………………………………………


Author’s Name

:

…………………………………………

Date

:

…………………………………………

ABSTRACT

The purpose of doing this project is to study the comparison of mechanical properties
and microstructure between kenaf core fiber and kenaf bast fiber reinforced polyester
composites. The matrix material used in this study was based on commercially available
unsaturated polyester, obtained from university’s Polymer Lab. The matrix was mixed
with curing catalyst, methyl ethyl ketone peroxide (MEKP) Butanox M50 at a

concentration of 0.01 w/w of the matrix for curing. Short kenaf bast and core fibers were
separated from mixture bast and core fibers using vibratory screen machine in Wooden
Composite Lab, for used as the reinforcement and were provided by Forest Research
Institute of Malaysia (FRIM). A combination of hand lay-up and compression moulding
method was used to prepare the kenaf fiber reinforce polyester composite specimens.
Moist kenaf bast and core fiber was first dried at 80 °C for 1.5 hours to remove storage
moisture in an oven and some of the kenaf bast fibers are left to moist in order to
investigate the effect of the moisture fiber composite specimens to the mechanical
properties. The mould was coated with a plastic, sprayed with silicone mould release
agent and subsequently coated with gelcoat. After pouring the resin, trapped air was
gently squeezed out using a roller. The kenaf fiber and polyester resin were then left for
about 3 min to allow air bubbles to escape from the surface of the resin. The mould was
closed and the composite panel was left to cure in a hydraulic press at a temperature of
25 °C and at a compaction pressure of 10 bars for 24 hours. After being taken out from
the hydraulic press, the panel being removed from the mould and was left to fully dry at
a temperature of 25 °C for 2 weeks. Subsequently, the panel composites were cut to

desired dimension of specimen follows the ASTM standard. The randomly oriented bast
and core fiber 5% – 40 % fiber volume fraction and unfilled composite were used to
prepare using similar procedure for comparison purpose. The sizes of bast and core

fibers used were found that 39.41µm and 563.6 µm respectively using Scanning
Electron Machine (SEM) from Zeiss, model EVO 50. The specimens were tested for
tensile, flexural, impact and provide the result as totally the kenaf bast fiber indicates the
higher strength, the exposure to moisture results in significant drops in tensile, flexural
and impact properties due to the degradation of the fiber–matrix interface. The core fiber
is found lead in high absorbent rate due their geometry structural after being water
absorption test. SEM analysis for surface topography found that the clean surface of bast
and non-uniform in term of fiber shape and size of core fiber.

ABSTRAK

Projek ini adalah bertujuan untuk mengkaji perbandingan sifat mekanikal dan
mikrostruktur di antara gentian daripada kulit dan empulur pokok kenaf diperkuatkan
dengan termoset poliester komposit. Matrik yang akan digunakan adalah matrik daripada
jenis polimer termoset iaitu poliester yang diperolehi dari Makmal Polimer universiti.
Termoset poliester dicampur dengan pemangkin metil etil keton peroksida (MEKP)
Butanox M50 dengan nisbah berat satu bahagian daripada seratus berat poliester bagi
tujuan proses pengerasan komposit. Gentian daripada kulit dan empulur kenaf telah
dibekalkan oleh Institut Penyelidikan Perhutanan Malaysia (FRIM), Kepong, Kuala
Lumpur setelah dipisahkan dengan menggunakan ‘Vibratory Screen Machine’ di

Makmal Komposit Kayu, FRIM. Gentian telah dikeringkan di dalam oven selama satu
setengah jam pada suhu 80 °C manakala sebahagian gentian daripada kulit kenaf
dibiarkan tanpa proses pengeringan bagi menguji kesan kelembapan gentian kepada sifat
mekanikal berbanding gentian yang telah dikeringkan. Pengacuan terbuka telah dibuat
daripada kepingan besi bergalvani bagi tujuan penghasilan spesimen setelah acuan
daripada acrylic, keluli lembut didapati gagal menghasilkan spesimen yang dikehendaki.
Bagi ujian mekanikal, piawaian yang dirujuk ialah ASTM D5083 bagi ujian tegangan,
ASTM D790 bagi ujian kelenturan dan ASTM D256 bagi ujian hentaman jenis
‘Charpy’. Kombinasi di antara kaedah bengkalai tangan dan kaedah mampatan tuangan
telah digunakan bagi menghasilkan spesimen komposit gentian daripada kulit dan
empulur kenaf diperkuat termoset poliester. Komposit dimampatkan pada tekanan 10
Bar pada suhu bilik dan dibiarkan mengeras selama 24 jam. Setelah dikeluarkan

daripada acuan, panel komposit dibiarkan pada suhu bilik selama 2 minggu bagi
memastikan komposit kering sepenuhnya sebelum dipotong mengikut dimensi ukuran
piawaian ASTM. Prosedur yang sama telah dijalankan bagi menghasilkan komposit
gentian daripada kulit dan empulur kenaf diperkuat poliester dengan pertambahan
peratusan berat pengisi bagi kedua-dua gentian. Komposit yang dihasilkan adalah 5%,
10%, 20%, 30%, 40% berat pengisi gentian dan komposit tanpa pengisi. Berdasarkan
eksperimen, peratusan maksimum berat gentian kenaf yang boleh diisi adalah sebanyak

40% berdasarkan sifat resapan cecair semulajadi bahan. Ujian mekanikal telah
dijalankan dan mendapati gentian daripada kulit kenaf diperkuat poliester memberikan
nilai kekuatan tegangan, kelenturan dan hentaman lebih tinggi. Komposisi terbaik bagi
menghasilkan nilai kekuatan tertinggi untuk gentian daripada kulit kenaf adalah sekitar
10%-20% manakala gentian daripada empulur kenaf adalah sekitar 5%-20% berat
pengisi. Kelembapan gentian didapati mengurangkan sifat mekanikal gentian. Analisis
topografi menggunakan Scanning Electron Microscope (SEM) keluaran Syarikat Zeiss,
model EVO 50 mendapati keadaan permukaan gentian daripada kulit kenaf yang lebih
halus dengan purata diameter 39.41µm manakala gentian daripada empulur kenaf
mempunyai permukaan agak kasar, berlubang-lubang dan mempunyai bentuk yang tidak
seragam dengan purata diameter yang lebih besar iaitu 563.6 µm. Berdasarkan struktur
geometri gentian daripada empulur kenaf, kadar resapan cecair didapati lebih tinggi
berbanding gentian daripada kulit kenaf setelah ujian resapan air dijalankan..

DEDICATION

For all your advice and encouragement, this thesis is gratefully dedicated to my family
and my friends. Thank you very much for your continuous support and effort towards
the publication of this thesis.


ACKNOWLEDGEMENT

I would like to express my appreciation to the individuals who had played a part in
ensuring a successful occurrence and flow of activities throughout the duration of my
final year project. Endless appreciation and gratitude to my supervisor, Mr. Edeerozey
Abd. Manaf and to my second examiner Mrs. Intan Sharhida Othman for their
encouragement and support and for spending quite some time with myself, providing a
lot of guidance and ideas for my project research. Their knowledge and experience
really inspired and spurred myself. I truly relished the opportunity given in working with
them. Last but not least, my appreciation to Dr. Rushdan Ibrahim and Mohd. Jani Saad
from FRIM which supplied raw material, kenaf fiber. Subsequently to Mohd Yuhazri
Yaakob, Mohd Azhar Abu Shah, Nazri Mokte and all technicians involved to complete
this project. Finally, my sincere appreciation is dedicated to my parents and family and
as well as the friends for their priceless assistance and patronage throughout the process
of data gathering.

TABLE OF CONTENTS

Abstract…………………………………………..…………………….…..…..…………i
Abstrak……………………………………………………………….….……..…..……iii

Dedication………………………………………………………….…..….…...………...v
Acknowledgement…………………………………………..……….………...………..vi
Table of Contents…………………………………………..…………………..…..…...vii
List of Figures………………………………………..…………………..……….…....xiii
List of Tables………………………………...………………………….……….….…xvii
List of Abbreviations, Symbols, Specialized Nomenclature……………....…....……xviii

1. INTRODUCTION……………………………………………………………….1
1.1 Introduction to Kenaf…………………………………………………...……….1
1.2 Statement of the Purpose……………………………………...…………………4
1.3 Hypotheses……………………………………………………...……………….5
1.4 Problem Statements……………………………………………………...………5
1.5 Objectives………………………………………………………………………..6
1.6 Scope of Study…………………………………………………………...……...7

2. LITERATURE REVIEW…………………………………………..……........8
2.1 Kenaf …………………..……………………………………………………….8
2.1.1

Plant Component Partitioning and Composition………………..……….8

2.1.1.1

Whole Stalk ……………………………………….……………..9

2.1.1.2

Bast Fiber………………….……………...………………….....10

2.1.1.3

Core Fiber……………………………………….………………11

2.1.2

Uses of Kenaf………………………………………………..………….12

2.1.2.1

Traditional Use of Kenaf………………………………..………12

2.1.2.2

Value Added Produces from Kenaf……………………………..13

2.1.3 General Properties of Kenaf Fibers………………………….………….15
2.1.4 Separation of Kenaf Fiber………………..……………………………..17
2.1.4.1

Mechanical Separation Method………………………………….17

2.1.4.2

Water Retting Method……………………...……………………19

2.2 Composite……………………………………………………………………….20
2.2.1 Introduction …………………………………..….………………….….20
2.2.2

Matrix ……………………………………………………….………….21

2.2.2.1

Types of Matrix Resin…………………….…………..….….….21

2.2.2.2

Matrix Characteristics………………………….……………….21

2.2.3

Reinforcement……………………………….………………………….22

2.2.3.1
2.2.4

Types of Fiber Reinforcement…………………..………………22

Manufacturing Techniques……………………………………….……..22

2.2.5 Characteristics Influence the Properties of Composites……….………..23
2.2.6

Thermoset Polyester Resin……………………………………………...25

2.2.6.1

Introduction……………………………………………………..25

2.2.6.2

Physical Form…………………………………….……………..25

2.3.2.5

Characteristics…………………………………………………..25

2.2.6.4

Catalyst………………………………………….………..……..28

2.3 Mechanical Testing……………………………….……………………………30
2.3.1 Tensile Test…………………………………..…………….……………30
2.3.1.1

Definition and Purposes………………………...………………30

2.3.1.2

Specimen Shape……………………………………..………..…30

2.3.1.3

UTM Machine…………………………………………………..30

2.3.1.4

Grip and Face Selection…………………….……….…………..30

2.3.1.5

Specimen Alignment…………………….…………….………..31

2.3.1.6

Typical Configurations…………………….……………………31

2.3.2

Flexural Test…………………………………………………………….32

2.3.2.1

Definition and Purposes……………………………………..….32

2.3.2.2

Specimen Shape…………………………………………………32

2.3.2.3

UTM Machine…………………………………………………..33

2.3.2.4

Typical Configuration…………………………………………..33

2.3.2.5

Three Point Flexural Test……………………………………….35

2.3.2.6

Testing calculation……………………………………..…….….36

2.3.3

Charpy and Izod Pendulum Impact Test………………………………..37

2.3.3.1

Definition and Purpose……………………………………...…..37

2.3.3.2

Specimen Shape……………………………………………..…..38

2.3.3.3

Impact Machine…………………………………………….…...39

2.4 Physical Testing………………………………………………………………...42
2.4.1

Water Absorption Test……………………………………………….…42

2.4.1.1

Definition and Purpose……………………………….…………42

2.4.1.2

Specimen Shape………………………………………….……..42

2.4.1.3

Tools and Equipment…………………………………………...42

2.5 Microstructure Observation………………………………………………...…..43
2.5.1

Definition and Purpose………………………………………………….43

2.5.2

Scanning Electron Machine (SEM)…………………………………..…43

2.5.3

Basic Operating ………………………………………………………...43

2.6 Previous Research on Natural Fiber Composite………………………………..45
2.6.1 High Fiber-Low Matrix Composites: Kenaf Fiber-Polypropylene…......45
2.6.2

Physical and Mechanical Properties of Composite Panels Made. From
Kenaf Plant Fibers and Plastics…………………………………………..46

2.6.3 Kenaf Fiber Reinforced Composite Athletic Wheelchair……………..…47
2.6.4

The Study on the Mechanical Properties of Natural Fiber Composite ...49

3. METHODOLOGY…………………………………………..……………..….50
3.1 Introduction………………………………………………..……………………50

3.2 Process Sequence…………………………………………………….…………51

3.3 Kenaf Fiber Preparations……………………………………………………….53
3.3.1

Separation of Fibers………………………………………………….…55

3.3.2

Fiber Drying Process……………………………………………..…….56

3.4 Mould Fabrication………………………………………………………………57
3.4.1

Mould Designing………………………………………………………..57

3.4.2 Selection of Mould Material…………………………………...………..57
3.4.3

Mould Fabrication………………………………………………………61

3.5 Composite Fabrication…………………………………………………………..61
3.5.1

Composite Formulation…………………………………………………61

3.5.2

Preparation of Polyester and Hardener………………………………….62

3.5.3

Formulation/Composition of resin/filler………………………………...62

3.5.4

Fabrication Process……………………………………….……………..63
3.5.4.1

Casting with Liquid Resin……………………….……………63

3.5.4.2

Cutting of Composite…………………………….…….……..68

3.5.4.3

Notching Process………………………………….………..…69

3.6 Testing and Analysis………………………………………….…………….…..71
3.6.1

Mechanical Testing……………………………………...…….………..71

3.6.1.1

Tensile Tests………………………………………..……………..71

3.6.1.2

Flexural Tests………………………………….…….…………....72

3.6.1.3

Impact Tests……………………………………….…………..….72

3.7 Physical Testing…………………………….………………..…………………73
3.7.1

Water Absorption Test…………………….……………………………73

3.8 Surface Topography of Bast and Core Fibers…………………………….…….74

4. RESULTS……………………………………………………….………76
4.1 Number of Specimens…………………………..................................………...76

4.2 Final Specimens…………………...……………………………………………78

4.3 Overall Specimens………………………………………………………….…..78

4.4 Kenaf Bast Fiber Reinforced Composite for Tensile Specimens………………79

4.5 Kenaf Core Fiber Reinforced Composite for Tensile Specimens………...……80

4.6 Surface Topography…………………….………………………….…..………81
4.6.1

Observation of Fiber Diameter……………………………….………....81

4.6.2

Observation of Fiber Surface………………………………….………...83

4.6.3

Matrix-Fiber Interfacial Bonding Observation………………………….84

5. DISCUSSION……………………………………………………………………86
5.1 Characteristic Influence the Composite Properties………………………….…86
5.1.1

Large Fiber Particle………………….………………….………………86

5.1.2

Dispersion of the Fiber………………………….………………………87

5.1.3

Influence of Fiber Length……………………….………………………87

5.1.4

Influence of Fiber Orientation…………………….…………………….89

5.1.5

Influence of Fiber Phase……………………….………………….…….89

5.1.6

Influence of Matrix Phase………………………….…………………...90

5.2 Challenges during Preparation of the Specimen …………...………………….91
5.3 Data Analysis……………………………………………………………………93
5.3.1

Mechanical Test…………………………………………………………93

5.3.1.1 Tensile Test………………………………………………………….93
5.3.1.2 Flexural Test…………………………………………………………99
5.3.1.3 Impact Test…………………………………………………………102
5.3.2 Physical Test…………………………………………………….…….103
5.3.2.1 Water Absorption Test……………………………………………..103
5.3.2.1.1 Sorption Behavior…………………………………….…….….104
5.3.2.1.2

Effect of Moisture Absorption on Mechanical Properties…...107

5.3.2.1.2.1 Tensile properties………………………………………...108
5.3.2.1.2.2 Flexural properties………………………………………..109
5.3.2.1.2.3 Impact Properties…………………………………………111

6. CONCLUSION ...…………………………………………….……………….113
6.1 Conclusion………………...………………………………….……………….113
6.2 Recommendations…………………………………………………………….115

7. REFERENCES………..…………………………………………………..….116
8. APPENDICES
A

The detail list of property values for a range of thermoset polyester compounds

B

Machines involved in the mould fabrication

C

Formulation of composite fabrication

D

Calculation of tensile test

E

Calculation of flexural test

F

Calculation of impact test

LIST OF FIGURE
1.1

Kenaf Plantatition...……………… ...………….……… ...………………..…….2

1.2

Kenaf stalks...……………… ...………………… ...………………………..……3

2.1

Kenaf stalks with bast and core material...….…………… ...……………..……..9

2.2

Kenaf bast fiber strands...………………… ...………….…… ...………….…...11

2.3

Core fiber material...………………… ...………….…… ...……………….…...12

2.4

Kenaf Fiber Images...………………… ...……….……… ...……………….….16

2.5

Schematic of Stick Machine Trash Master...……….……… ...……………..….18

2.6

Water retting process...………………… ...……….……… ...……………..…..19

2.7

Formation of a composite material using fibers and resin...………………...….20

2.8

Continuous fiber composites and short fiber composites...…………….…..…...20

2.9

Crosslinking of thermoset molecules during curing...……………………...…...22

2.10

Schematic representations of various geometrical and spatial characteristics of.
particles...…………………………………………………… ……………….…24

2.11

Reaction A(1) ...………………… ...………………… ...…………………...…25

2.12

Reaction A (2) ...……..………… ...………………… ...………………………26

2.13

Reaction B...……………… ...………………… ...……….………………..…..26

2.14

MEKP catalyst ratio...……………… ...………………… ...………………..…29

2.15

Tensile configurations...……………… ...………………… ...………………...31

2.16

Location of tensile and compressive forces during three-point bending...……..33

2.17

Crack propagation and failure during three-point bending...…………………...34

2.18

Three point bending...……………… ...………………… ...………………...…36

2.19

Schematic striker movement of impact machine...……………………………..38

2.20

Impact machine...……………… ...………………… ...…………………..…...39

2.21

Charpy and Izod specimens’ positioning...……………… ...………………..…40

2.22

Charpy impact strike-specimen configuration...……………………….……..…41

2.23

SEM component...…………… ...………………… ...………...…………...…..43

2.24

SEM operating...………………… ..………………… ...………………………44

3.1

Process sequence...………………...………………… ...…………………...….51

3.2

Process flow chart...………………… ...………………… ...…………………..52

3.3

Moist kenaf fiber from kenaf stems...……………… ...……………………...…54

3.4

Dry kenaf fiber...………………… .………………… ...………………………54

3.5

Moist kenaf fiber after defibering process...……………… ...……………...…..55

3.6

The figure shows the separated dry kenaf...……………… ...……………….....56

3.7

Mould positioning...………………… ...……………… ...………………….....58

3.8

The failure of acrylic mould...………………… ...……………… ...…………..59

3.9

Mild steel mould...………………… ...……………… ...……………………....59

3.10

Mold with frame set...………………… ...……………… ...………………...…60

3.11

Tensile mould...………………… .………………… ...………………….…….60

3.12

Hand proportioning, mixing, pouring and curing with two components...……..63
liquid reactive polyester resin system

3.13

Schematic of the composite consolidation...……………… ...…..……….…….64

3.14

Mould coated by plastic...……………… ...…………………………..…..…….64

3.15

Gelcoat...………………… ...…………………...………………… …….……..65

3.16

Polyester Resin...………………...………………… ...……….………………..65

3.17

Mixing the liquid composite...……………… ...………………….…………….65

3.18

Liquid composites are poured into the mould cavity...……………… ….…..…66

3.19

Mechanical cold press machine 100 Ton………………… ...……………….…67

3.20

Unfilled composite, moisture kenaf bast fiber and 20% kenaf bast fiber……....67

3.21

Cutting process...……………… ...………………… ...……………………..…68

3.22

Notching process...……………… ...………………… ...……………………...70

3.33

Notched impact’s specimen notch angle and depth of notch…………………...70

3.34

Water absorption test...……………… ...………………… ...……………….....73

3.35

The fibers are placed on the stage...……………… ...………………………….75

4.1

Figure shows for all specimens...……………… ...…………………….…..…..78

4.2

Kenaf bast fiber reinforce polyester composite..………………… ...…….…….79

4.3

Kenaf core reinforce polyester composite...……………… ...………….…...….80

4.4

Micrograph of kenaf bast fiber...……………… ...……………………………..81

4.5

Micrograph of kenaf core fiber...……………… ...………………………….….82

4.6

Micrograph of kenaf bast fiber with 2000 x magnification...…………………...83

4.7

Micrograph of kenaf core fiber with 335 x magnification...…………….…...…83

4.8

SEM fracture surface of kenaf bast fiber reinforce polyester composite…….....84

4.9

SEM image of fracture surface of kenaf core fiber with polyester…………..…85

5.1

The non uniform dispersion composite…………………...………………….....87

5.2

Matrix-fiber deformation pattern..………………… ...…………………………88

5.3

The failure of the composite pallet specimens...……………… ...…………..…91

5.4

Failure of unfilled composites...……………… ...…………………………...…92

5.5

Graph for tensile Strength vs. Volume Fiber Fraction for Kenaf Bast and.....…93
Core Fiber Reinforced Composites.

5.6

Histogram graph for tensile Strength vs. Volume Fiber Fraction for Kenaf.…..95
Bast and Core Fiber Reinforced Composites.

5.7

SEM micrograph for kenaf core fiber.. ...…………… ...……………..….…….96

5.8

Graph for Stress vs. Strain for 20% fiber volume fraction of kenaf bast……….97
fiber reinforced composites shows the highest value of maximum
force and modulus young.

5.9

Graph for Flexural Strength vs. Fiber Volume Fraction for Kenaf Bast and.......99
Core Fiber Reinforced Composites

5.10

Histogram graph for Flexural Strength vs. Fiber Volume Fraction for...…...…100
Kenaf Bast and Core Fiber Reinforced Composites.

5.11

Graph for Impact Strength vs. Fiber Volume Fraction for Kenaf Bast and…...102
Core Fiber Reinforced Composites.

5.12

Histogram graph for Impact Strength vs. Fiber Volume Fraction for Kenaf….103
Bast and Core Fiber Reinforced Composites

5.13

Graph for Weigh Gain vs. Fiber Volume Fraction for Kenaf Bast and…….....106
Core Fiber Reinforced Composites

5.14

Histogram graph for Weigh Gain vs. Fiber Volume Fraction for Kenaf……...107
Bast and Core Fiber Reinforced Composites

5.15

Graph for tensile strength vs. fiber volume fraction for kenaf bast fiber……..108

reinforced composite
5.16

Flexural strength vs. fiber volume fraction for kenaf core and bast fiber…..…110
reinforced composite

5.17

Histogram graph for Impact Strength vs. Fiber Volume Fraction for…………111
Kenaf Bast Fiber Reinforced Composites for notched impact specimen.

LIST OF TABLE

2.1

The characteristics of liquid resins for non electrical applications………..……27

2.2

MEKP Catalyst ratio............................................................................................28

4.1

Number of specimens had been produced………………………………...…….76

5.1

Data of Tensile Testing………………………………………….………..…….93

5.2

Table for data of graph Stress vs. Strain………………………………..…….…97

5.3

Data of Flexural Testing………………………………………………..…….…99

5.4

Data of Notched Charpy Impact Testing………………………...……..……...102

5.5

Data of Water Absorption Testing…………………………………...………..105

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED
NOMENCLATURE

in

-

inches

kg

-

kilograms

m

-

Meter

Max

-

maximum

Min

-

minimum

s

-

Second

V

-

velocity

0

C

-

degrees Celsius

0

F

-

degrees Fahrenheit

%

-

Percent

+/-

-

plus or minus

SEM

-

Scanning Electron Microscope

PP

-

Polypropylene

FRIM

-

Forest Research Institute of Malaysia

PMCs

-

Polymer–Matrix Composites

BMW

-

Bavaria Motor Works

SMC

-

Sheet Molding Compound

BMC

-

High Bulk Compound

TMC

-

Thick Molding Compound

MEKP

-

Methyl Ethyl Ketone Peroxide

oz

-

ounces

cc

-

cubic centimeter

qt

-

quantity

MOR

-

modulus of rupture

G

-

Giga

M

-

Mega

Pa

-

Pascal

RHP

-

Rice Husk Powder

HDPE

-

High Density Polyethylene

KFRUPE

-

Kenaf Fiber Reinforced Unsaturated Polyester

ASTM

-

American Standard Testing Material

UP

-

Unsaturated Polyester

MARDI

-

Malaysian Agricultural Research and Development Institute

ΔM(t)

-

% Water absorption

Mo

-

Dry weight

Mt

-

Wet weight

hp

-

Horse power

CHAPTER 1
INTRODUCTION

1.1

Introduction to Kenaf
Kenaf or its scientific name Hibiscus cannabinus L is a warm season annual fiber

crop closely related to cotton and jute. Historically, kenaf has been used as a cordage
crop to produce twine, rope and sackcloth. Nowadays, there are various new applications
for kenaf including paper products, building materials, absorbents and animal feeds. In
Malaysia, realizing the diverse possibilities of commercially exploitable derived
products from kenaf, the National Kenaf Research and Development Program has been
formed in an effort to develop kenaf as a possible new industrial crop for Malaysia. The
government has allocated RM12 million for research and further development of the
kenaf-based industry under the 9th Malaysia Plan (2006–2010) in recognition of kenaf
as a commercially viable crop.

Kenaf has a single, straight and branchless stalk. Kenaf stalk is made up of an
inner woody core and an outer fibrous bark surrounding the core. The fiber derived from
the outer fibrous bark is also known as bast fiber. Kenaf bast fiber has superior flexural
strength combined with its excellent tensile strength that makes it the material of choice
for a wide range of extruded, molded and non-woven products. Kenaf fiber could be
utilized as reinforcement material for polymeric composites as an alternative to glass
fiber.