beta and gama

‫داﻟﺘﻲ ﺟﺎﻣﺎ وﺑﯿﺘﺎ‬
‫ﺗﻌﺮﯾﻒ داﻟﺘﻲ ﺟﺎﻣﺎ وﺑﯿﺘﺎ‬
‫ﺗﻌﺮف داﻟﺔ ﺟﺎﻣﺎ ﻛﺎﻵﺗﻲ‪:‬‬
‫∞‬

‫‪Γ(n) = ∫ e−t t n−1 dt‬‬

‫)‪(n > 0‬‬

‫)‪(1‬‬

‫‪0‬‬

‫وﻧﻼﺣﻆ أن اﻟﺪاﻟﺔ ‪ e − t t n−1‬ﻋﻨﺪ ∞ ﺗﺆول إﻟ ﻰ اﻟﺼ ﻔﺮ ﻷي ﻗﯿﻤ ﺔ ﻋﺪدﯾ ﺔ ﻟ ـ ‪ n‬وﻋﻠﯿ ﮫ ﻻﺗﻜ ﻮن ھﻨ ﺎك ﺻ ﻌﻮﺑﺎت‬
‫ﻋﻠﻤﯿ ﺔ ﻋﻨ ﺪ ∞ → ‪ t‬ﺑﯿﻨﻤ ﺎ ﻓ ﻲ اﻟﺠ ﺰء اﻟﺴ ﻔﻠﻲ ﺗﻮﺟ ﺪ ‪ t → 0‬ﻧﺠ ﺪ أن ‪ e −t ≅ 1‬وﻋﻠﯿ ﮫ ﺗﺼ ﺒﺢ اﻟﻤﻌﺎدﻟ ﺔ )‪ (1‬ﻋﻠ ﻰ‬
‫اﻟﺼﻮرة‬
‫∞‬

‫∞‬

‫‪c‬‬


‫‪1 ‬‬
‫‪Γ(n) = ∫ t dt + ∫ e t dt =  t n  + ∫ e −t t n−1dt‬‬
‫‪ n 0 c‬‬
‫‪0‬‬
‫‪c‬‬
‫‪−t n −1‬‬

‫‪c‬‬

‫‪n−1‬‬

‫وﻋﻠﯿﮫ إذا ﻛﺎن اﻟﺠﺰء اﻷول ﻣﻦ اﻟﻨﺎﺗﺞ ﻋﺪد ﻓﯿﺠﺐ ﻋﻠﯿﻨﺎ اﺧﺘﯿﺎر ‪ n > 0‬ﺣﺘﻰ ﻻ ﯾﻨﻌﺪم اﻟﻤﻘﺎم ‪.‬‬
‫ﺑﻌﺾ اﻟﻨﻈﺮﯾﺎت واﻟﺨﻮاص اﻟﮭﺎﻣﺔ‬
‫ﻧﻈﺮﯾﺔ ‪:١‬‬
‫‪Γ (1) = 1‬‬

‫اﻟﺒﺮھﺎن ‪:‬‬
‫ﻣﻦ ﺗﻌﺮﯾﻒ )‪ Γ (n‬ﻧﻀﻊ ‪ n = 1‬ﻓﻨﺤﺼﻞ ﻋﻠﻰ‬


‫]‬

‫∞‬

‫[‬

‫∞‬
‫‪0‬‬

‫‪Γ(1) = ∫ e −t dt = − e −t‬‬
‫‪0‬‬

‫‪Γ (1) = 1‬‬

‫)‪(3‬‬
‫ﻧﻈﺮﯾﺔ ‪:٢‬‬

‫)‪Γ (n + 1) = nΓ(n‬‬

‫اﻟﺒﺮھﺎن ‪:‬‬

‫ﻓﻲ اﻟﻤﻌﺎدﻟﺔ )‪ (1‬ﺑﺘﺤﺮﯾﻚ ﻛﻞ ‪ n → n + 1‬ﻧﺤﺼﻞ ﻋﻠﻰ‬
‫∞‬

‫‪Γ( n + 1) = ∫ e −t t n dt‬‬
‫‪0‬‬

‫ﺑﺎﻟﺘﻜﺎﻣﻞ ﺑﺎﻟﺘﺠﺰيء ﺑﺄﺧﺬ ‪u = t n‬‬

‫‪−t‬‬
‫‪ e dr = dv,‬ﻧﺤﺼﻞ ﻋﻠﻰ‬

‫‪) n t n −1dt‬‬

‫‪−t‬‬

‫∞‬

‫‪] − ∫ (−e‬‬

‫∞ ‪−t n‬‬

‫‪0‬‬

‫[‬

‫‪Γ ( n + 1) = − e t‬‬

‫‪0‬‬

‫ﻛﻤﺎ ﻧﻼﺣﻆ اﻧﻌﺪام اﻟﺠﺰء اﻷول ﻣﻦ اﻟﻨﺘﯿﺠﺔ اﻟﺴﺎﺑﻘﺔ ﻓﻨﺤﺼﻞ ﻋﻠﻰ‬
‫∞‬

‫‪Γ( n + 1) = n ∫ e −t t n−1 dt‬‬
‫‪0‬‬

‫)‪(4‬‬

‫) ‪Γ ( n + 1) = n Γ ( n‬‬

‫‪١‬‬


‫ﻣﻼﺣﻈﺎت ‪:‬‬
‫‪ (١‬اﻟﻌﻼﻗﺔ )‪ Γ (n + 1) = n Γ( n‬ﺗﺴﻤﻰ ﺑﺎﻟﺼﯿﻐﺔ اﻟﺘﻜﺮارﯾﺔ ﻟﺪاﻟﺔ ﺟﺎﻣﺎ ‪.‬‬
‫‪ (٢‬ﯾﻤﻜﻦ ﺗﻌﻤﯿﻢ داﻟﺔ ﺟﺎﻣﺎ ﻟﻘﯿﻢ ‪ ) n < 0‬ﻟﻸﻋﺪاد اﻟﺤﻘﯿﻘﯿﺔ ﻏﯿﺮ اﻟﺼﺤﯿﺤﺔ ( ﺑﺎﺳﺘﺨﺪام اﻟﺼﯿﻐﺔ اﻟﺴﺎﺑﻘﺔ ﻋﻠﻰ‬
‫اﻟﺼﻮرة ‪:‬‬
‫)‪Γ (n + 1‬‬
‫= )‪Γ (n‬‬
‫‪n‬‬
‫ﺗﻌﺮﯾﻒ داﻟﺔ ﺟﺎﻣﺎ ﻟﺴﻌﺔ اﻟﻌﺪد اﻟﺴﺎﻟﺐ‬
‫ﺛﺒﺖ ﻣﻦ اﻟﺴﺎﺑﻖ اﻟﻨﻈﺮﯾﺔ اﻵﺗﯿﺔ‪:‬‬
‫‪1‬‬
‫)‪Γ(n) = Γ(n + 1‬‬
‫‪n‬‬
‫ﻧﻼﺣﻆ ﻋﻨﺪﻣﺎ ‪ n = 0‬ﻓﺈن اﻟﻤﻘﺎم ﯾﻨﻌﺪم ﺑﯿﻨﻤﺎ ﺗﻜﻮن اﻟﺪاﻟﺔ )‪ Γ (n + 1‬ﻓﻲ ھﺬه اﻟﺤﺎﻟﺔ ﻣﻌﺮﻓ ﺔ ﻋﻨ ﺪ ‪ n = 0‬وﺗﻜ ﻮن ﺳ ﻌﺔ‬
‫اﻟﺪاﻟ ﺔ ﻓ ﻲ ھ ﺬه اﻟﺤﺎﻟ ﺔ ﻣﻮﺟﺒ ﺔ ‪ ,‬ﺣﯿ ﺚ ﻋﻨ ﺪﻣﺎ ‪ n → 0‬ﻓ ﺈن ‪ , Γ (n + 1) = Γ(1) → 1‬وﻋﻠﯿ ﮫ ﻧﺠ ﺪ أن‬
‫‪1‬‬
‫‪n‬‬
‫ﻹﯾﺠﺎد ﻗﯿﻢ ‪ x > −1‬وﻋﻠﯿ ﮫ ﯾﻤﻜ ﻦ اﻟﻘ ﻮل أن )‪ Γ(n‬ﻣﻌﺮﻓ ﺔ ﻟﻘ ﯿﻢ ‪ n > −1‬وﺗﻜ ﻮن ﺳ ﻌﺔ اﻟﻄ ﺮف اﻷﯾﻤ ﻦ ﻣﻌ ﺮف ﻟﻘ ﯿﻢ‬

‫∞ → )‪ Γ (n) = Γ (n + 1‬وﻋﻠﯿﮫ ﯾﻜﻮن اﻟﻄﺮف اﻷﯾﺴ ﺮ ﻣﻌ ﺮف ﻟﻘ ﯿﻢ ‪ n > 0‬وﻟﻜ ﻦ ﯾﻤﻜ ﻦ اﺳ ﺘﺨﺪام اﻟﻄ ﺮف اﻷﯾﻤ ﻦ‬


‫‪ x + 1 > −1‬أو ‪ . x > −2‬وﺗﻜ ﻮن ﻗﯿﻤ ﺔ )‪ Γ(n‬ﻣﻌﺮﻓ ﺔ ﻋﻨ ﺪ ‪ n > −2‬وھﻜ ﺬا وﯾﻤﻜ ﻦ ﺑﺎﻻﺳ ﺘﻤﺮار اﻟﻮﺻ ﻮل إﻟ ﻰ ھ ﺬا‬
‫اﻟﻤﻔﮭﻮم ∞ = )‪Γ (m‬‬
‫ﻋﻨ ﺪﻣﺎ ﺗﻜ ﻮن ‪ m‬ﻣﺴ ﺎوﯾﺔ ﺻ ﻔﺮاً أو ﻋ ﺪد ﺻ ﺤﯿﺢ ﺳ ﺎﻟﺐ‪ ,‬وھ ﺬا واﺿ ﺢ ﻋﻨ ﺪﻣﺎ ‪ m = 0‬ﻧﺠ ﺪ أن ∞ = )‪ , Γ (0‬ﻋﻨ ﺪﻣﺎ‬
‫‪ n = −1‬ﻧﺠﺪ أن‬
‫‪1‬‬
‫= )‪Γ(−1‬‬
‫∞ = ) ‪Γ (0‬‬
‫‪−1‬‬
‫‪1‬‬
‫= )‪Γ ( − 2‬‬
‫∞ = )‪Γ (−2 + 1‬‬
‫ﻛﺬﻟﻚ‬
‫‪−2‬‬
‫وھﻜﺬا ‪.‬‬
‫وﯾﻤﻜﻦ ﻟﻠﺪارس ﺗﻤﺜﯿﻞ داﻟﺔ ﺟﺎﻣﺎ ﺑﯿﺎﻧﯿﺎً ﻛﺎﻵﺗﻲ‪:‬‬

‫ﻧﻈﺮﯾﺔ ‪:٣‬‬
‫ﻷي ﻋﺪد ﺻﺤﯿﺢ ﻣﻮﺟﺐ‬
‫! ‪Γ ( n + 1) = n‬‬
‫‪٢‬‬


‫اﻟﺒﺮھﺎن‪:‬‬
‫ﻣﻦ ﺧﻼل اﻟﻨﻈﺮﯾﺔ )‪ (٢‬و )‪ (4‬ﻣﻊ ﺗﻜﺮار ﺗﺤﺮﯾﻚ ‪ n‬ﺑﺎﻟﻤﻘﺎدﯾﺮ ‪ n − 3, n − 2 ,n − 1‬وھﻜﺬا ﻧﺠﺪ أن‬
‫)‪Γ( n + 1) = n(n − 1)Γ(n − 1‬‬
‫)‪= n(n − 1)(n − 2)Γ(n − 2‬‬
‫)‪= n(n − 1)(n − 2)(n − 3) L 2 ⋅1Γ(1‬‬
‫وﺑﺎﺳﺘﺨﺪام )‪ (3‬ﻧﺤﺼﻞ ﻋﻠﻰ اﻟﻌﻼﻗﺔ‬
‫)‪(5‬‬
‫ﻧﺘﯿﺠﺔ ‪:١‬‬
‫إذا ﻛﺎن ‪ n = 0‬ﻓﺈن‬

‫!‪Γ ( n + 1) = n‬‬

‫‪0 ! = Γ ( 0 + 1) = Γ (1) = 1‬‬

‫ﻧﻈﺮﯾﺔ ‪:٤‬‬
‫∞‬

‫‪Γ ( n) = 2 ∫ e − t t 2 n −1dt‬‬
‫‪2‬‬


‫‪0‬‬

‫اﻟﺒﺮھﺎن‪:‬‬
‫‪t =u‬‬
‫ﺑﺎﺳﺘﺨﺪام اﻟﺘﻌﻮﯾﺾ‬
‫‪dt = 2u du‬‬
‫و ﻣﻨﮫ ﻧﺠﺪ أن‬
‫و ﻋﻠﻰ ذﻟﻚ ﻓﺈن‬
‫‪2‬‬

‫∞‬

‫) ‪Γ( n) = ∫ e −u (u 2 ) n −1 ( 2udu‬‬
‫‪2‬‬

‫‪0‬‬

‫وﺑﺎﻟﺘﺎﻟﻲ ﻧﺤﺼﻞ ﻋﻠﻰ‬
‫∞‬


‫‪Γ( n) = 2 ∫ e −u u 2 n−1du‬‬
‫‪2‬‬

‫)‪(6‬‬

‫‪0‬‬

‫وھﺬه اﻟﻨﻈﺮﯾﺔ ﻣﻔﯿﺪة ﻓﻲ اﻟﻌﻤﻠﯿﺎت اﻹﺣﺼﺎﺋﯿﺔ اﻟﻤﺴﺘﺨﺪم ﻓﯿﮭﺎ ﻣﺎ ﯾﺴﻤﻰ ﺑﺪاﻟﺔ اﻟﻜﺜﺎﻓﺔ وﻏﯿﺮھ ﺎ‪ .‬ﻣﺜ ﺎل ﻋﻠ ﻰ ذﻟ ﻚ ﻋﻨ ﺪ‬
‫‪1‬‬
‫وﺿﻊ‬
‫‪2‬‬

‫= ‪ n‬ﻧﺠﺪ أن‬
‫∞‬

‫)‪(7‬‬

‫‪2‬‬
‫‪1‬‬

‫‪Γ( ) = 2 ∫ e −u du‬‬
‫‪2‬‬
‫‪0‬‬

‫ﻧﻈﺮﯾﺔ ‪:٥‬‬
‫ﯾﻤﻜﻦ اﻟﺮﺑﻂ ﺑﯿﻦ اﻟﺪوال اﻟﻤﺜﻠﺜﯿﺔ وداﻟﺔ ﺟﺎﻣﺎ ﻛﺎﻵﺗﻲ‪:‬‬
‫)‪Γ ( n ) Γ ( m‬‬
‫⋅‬
‫) ‪2Γ ( n + m‬‬

‫‪2 n −1‬‬

‫= ‪θ⋅ sin 2 m −1θ dθ‬‬

‫‪π‬‬
‫‪2‬‬

‫‪∫ cos‬‬
‫‪0‬‬


‫اﻟﺒﺮھﺎن‪:‬‬
‫ﺑﺎﺳﺘﺨﺪام اﻟﻨﻈﺮﯾﺔ )‪ (4‬ﻧﻼﺣﻆ أن‬

‫‪٣‬‬



Γ( n) = 2 ∫ e −u u 2 n−1du
2

0



Γ( m) = 2 ∫ e −v v 2 n−1dv
2

0

: ‫وﻋﻞ ذﻟﻚ ﻓﺈن‬


Γ ( n )Γ ( m ) = 4 ∫ e u
−u 2

du ∫ e −v v 2 m−1dv

0

∞∞



2 n −1

2

0

= 4 ∫ ∫ e −(u +v ) u 2n−1 v 2 m−1 du dv
2

2

0 0

v

r
θ
u
uv − plane

‫ ﻧﺠﺪ أن‬dudv = rdrdθ ‫ ﻣﻊ ﺗﻄﺒﯿﻖ ﻧﻈﺮﯾﺔ اﻟﺠﺎﻛﻮﺑﯿﺎن‬u = r cos θ , v = r sin θ ‫ﺑﺎﺳﺘﺨﺪام اﻹﺣﺪاﺛﯿﺎت اﻟﻘﻄﺒﯿﺔ‬


π
2

Γ(n)Γ( m) = 4∫ ∫ e − r (r cos θ ) 2 n−1 ( r sin θ ) 2 m −1 r dr dθ
2

0 0



π
2

= 4 ∫ ∫ e −r r 2 n+2 m −1 cos 2 n −1θ sin 2 m −1θ dr dθ
2

0 0

(٤) ‫وﻟﻜﻦ ﻣﻦ ﻧﻈﺮﯾﺔ‬


Γ( n + m) = 2 ∫ e −r r 2( n + m )−1dr
2

0

‫وﻋﻠﯿﮫ ﻧﺠﺪ أن‬
π
2

Γ(n)Γ(m) = 2Γ(n + m) ∫ cos 2 n −1θsin 2 m −1θ dθ
0

‫وﻋﻠﯿﮫ ﻧﺠﺪ أن‬
π
2

∫ cos

2 n −1

θsin 2 m −1θ dθ =

0

٤

Γ ( n) Γ ( m )
2Γ(n + m)

(8)

‫ﻣﻼﺣﻈﺔ ‪:‬‬
‫‪1‬‬
‫ﻋﻨﺪﻣﺎ = ‪ n = m‬ﻧﺤﺼﻞ ﻋﻠﻰ‬
‫‪2‬‬
‫) ‪Γ( 12 )Γ( 12 ) Γ( 12 )Γ( 12‬‬
‫=‬
‫)‪2Γ(1‬‬
‫‪2‬‬

‫‪π‬‬
‫‪2‬‬

‫= ‪∫ dθ‬‬
‫‪0‬‬

‫ﺑﺈﺟﺮاء اﻟﺘﻜﺎﻣﻞ‬
‫}) (‪π {Γ‬‬
‫=‬
‫‪2‬‬
‫‪2‬‬
‫‪1‬‬
‫‪Γ( 2 ) = π‬‬

‫‪2‬‬

‫)‪(9‬‬

‫‪1‬‬
‫‪2‬‬

‫وأھﻤﻠ ﺖ اﻹﺷ ﺎرة اﻟﺴ ﺎﻟﺒﺔ ‪ − π‬ﻣ ﻦ اﻟﺘﻌﺮﯾ ﻒ ﺑﺤﯿ ﺚ أن اﻟﻌ ﺪد ‪ n‬ﻣﻮﺟ ﺐ ﻓﺘﻜ ﻮن ) ‪ Γ (n‬ﻣﻮﺟﺒ ﺔ وﺑﮭ ﺬه اﻟﻘﺎﻋ ﺪة‬
‫اﻟﮭﺎﻣﺔ ﻟﻠﻌﻼﻗﺔ )‪ (9‬ﯾﺘﻢ إﺛﺒﺎت أن داﻟﺔ اﻟﻜﺜﺎﻓﺔ ﻣﻦ اﻟﻤﻌﺎدﻟﺔ )‪ (7‬ﻟﮭﺎ اﻟﻘﯿﻤﺔ‬

‫‪π‬‬
‫⋅‬
‫‪2‬‬

‫)‪(10‬‬

‫= ‪du‬‬

‫‪−u 2‬‬

‫∞‬

‫‪∫e‬‬
‫‪0‬‬

‫ﻣﺜﺎل‪:١‬‬
‫اﺣﺴﺐ‬
‫) ‪6Γ( 83‬‬
‫) ‪5Γ( 23‬‬

‫)‪(iv‬‬

‫)‪Γ(3)Γ( 2.5‬‬
‫)‪Γ(5.5‬‬

‫) ‪Γ( 52‬‬
‫) ‪Γ( 12‬‬

‫)‪(iii‬‬

‫)‪(ii‬‬

‫)‪Γ ( 6‬‬
‫)‪2Γ(3‬‬

‫)‪(i‬‬

‫اﻟﺤﻞ‪:‬‬
‫!‪5‬‬
‫!‪5 ⋅ 4 ⋅ 3 ⋅ 2‬‬
‫)‪Γ(6‬‬
‫‪= 30‬‬
‫=‬
‫=‬
‫!‪2Γ(3) 2 ⋅ 2‬‬
‫!‪2 ⋅ 2‬‬
‫‪Γ( 52 ) Γ( 32 + 1) 32 Γ( 32 ) 32 Γ( 12 + 1) 32 ⋅ 12 Γ( 12 ) 3‬‬
‫=‬
‫=‬
‫)‪(ii‬‬
‫=‬
‫=‬
‫=‬
‫) ‪Γ( 12‬‬
‫) ‪Γ( 12‬‬
‫) ‪Γ( 12‬‬
‫) ‪Γ( 12‬‬
‫‪4‬‬
‫) ‪Γ( 12‬‬

‫)‪(i‬‬

‫ﺑﺎﻟﻤﺜﻞ‬

‫ﻧﻈﺮﯾﺔ ‪:٦‬‬

‫)‪2!(1.5)(0.5)Γ(0.5‬‬
‫!‪2‬‬
‫‪16‬‬
‫)‪Γ(3)Γ(2.5‬‬
‫= ‪= 9 7 5‬‬
‫‪.‬‬
‫=‬
‫‪(4.5)(3.5)(2.5)(1.5)(0.5)Γ(0.5) ( 2 )( 2 )( 2 ) 315‬‬
‫)‪Γ(5.5‬‬

‫)‪(iii‬‬

‫‪6Γ( 83 ) 6 ⋅ ( 53 )( 23 )Γ( 23 ) 4‬‬
‫=‬
‫‪= .‬‬
‫) ‪5Γ( 23‬‬
‫) ‪5Γ( 23‬‬
‫‪3‬‬

‫)‪(iv‬‬

‫‪π‬‬
‫‪sin πn‬‬

‫= )‪Γ( n)Γ(1 − n‬‬

‫ﻧﺘﯿﺠﺔ ‪:‬‬
‫‪1‬‬
‫ﻋﻨﺪﻣﺎ = ‪ n‬ﻓﺈن ‪:‬‬
‫‪2‬‬

‫‪π‬‬
‫‪1 1‬‬
‫‪=π‬‬
‫= ‪Γ  Γ ‬‬
‫‪ 2   2  sin  π ‬‬
‫‪ ‬‬
‫‪2‬‬
‫‪٥‬‬

‫و ﺑﺎﻟﺘ ﺎﻟﻲ ﻓﺈن‬

‫‪Γ( 12 ) = π‬‬
‫وھﻲ ﻧﻔﺲ اﻟﻨﺘﯿﺠﺔ اﻟﺘﻲ ﺣﺼﻠﻨﺎ ﻋﻠﯿﮭﺎ ﺳﺎﺑﻘﺎً‬
‫ﻣﺜﺎل‪: ٢‬‬
‫أوﺟﺪ ﻗﯿﻤﺔ‬
‫) ‪(ii) Γ( −25‬‬

‫) ‪(i) Γ( −21‬‬

‫اﻟﺤﻞ ‪:‬‬

‫)‪Γ( n + 1‬‬
‫‪n‬‬
‫‪−1‬‬
‫ﺑﻮﺿﻊ‬
‫‪2‬‬

‫= )‪Q Γ( n‬‬

‫=‪n‬‬

‫‪= −2Γ( 12 ) = −2 π‬‬
‫‪−5‬‬
‫أﯾﻀﺎً ﺑﻮﺿﻊ‬
‫‪2‬‬

‫)‪Γ( −21 + 1‬‬
‫‪−1‬‬
‫‪2‬‬

‫= ) ‪(i ) Γ( −21‬‬

‫=‪n‬‬

‫) ‪Γ( −23‬‬
‫) ‪( −25‬‬

‫= ) ‪(ii) Γ( −25‬‬

‫) ‪Γ( −21‬‬
‫) ‪( −23‬‬

‫‪, Γ( −21 ) = −2 π‬‬

‫= ) ‪∴ Γ( −23‬‬

‫وﻋﻠﯿﮫ ﻧﺠﺪ أن‬

‫‪8‬‬
‫‪π‬‬
‫‪15‬‬

‫= ) ‪Γ( −25 ) = ( −52 )( −32 )(−2 π‬‬

‫ﻣﺜﺎل‪:٣‬‬
‫اﺣﺴﺐ اﻟﺘﻜﺎﻣﻼت اﻵﺗﯿﺔ‪:‬‬
‫‪y e − y dy‬‬
‫‪3‬‬

‫∞‬

‫∫‬

‫‪dx‬‬

‫)‪(iii‬‬

‫∞‬

‫‪∫x e‬‬

‫‪6 −2 x‬‬

‫‪0‬‬

‫‪dx‬‬

‫)‪(ii‬‬

‫‪dx‬‬
‫‪− ln x‬‬

‫‪dx‬‬

‫‪0‬‬

‫)‪(i‬‬

‫‪0‬‬

‫‪1‬‬

‫∫‬

‫‪∫x e‬‬

‫‪3 −x‬‬

‫‪0‬‬

‫)‪( v‬‬

‫∞‬

‫‪−4 x2‬‬

‫∞‬

‫‪∫3‬‬

‫)‪(iv‬‬

‫‪0‬‬

‫اﻟﺤﻞ‪:‬‬
‫∞‬

‫!‪dx = ∫ x 4−1e − x dx = Γ ( 4) = 3‬‬
‫‪0‬‬

‫‪dx,‬‬

‫∞‬

‫‪∫x e‬‬

‫‪3 −x‬‬

‫‪0‬‬

‫∞‬

‫‪∫x e‬‬

‫‪6 −2 x‬‬

‫‪0‬‬

‫ﻧﺄﺧﺬ اﻟﻔﺮض‬

‫‪ du = 2 dx , u = 2 x‬و ﻋﻠﻰ ﻓﺈن‬

‫‪٦‬‬

‫)‪(i‬‬
‫)‪(ii‬‬







u 6 −u du
1
6! 45
6 −2 x
6 −u
∫0 x e dx = ∫0 ( 2 ) e 2 = (2) 7 ∫0 u e du = 27 = 8 .





(iii)

y e − y dy ,
3

0

‫ وﻧﻼﺣﻆ أن ﺣﺪود اﻟﺘﻜﺎﻣﻞ ﺗﺒﻘﻰ ﻛﻤﺎ ھﻲ‬,3 y 2 dy = du , y 3 = u




ye

− y3

0









1 −1
1 1 −1
1 −2
π
u e ⋅ u 3 du = ∫ u 2 e −u du = ∫ u 2 e −u du =
30
30
3
3

dy = ∫

1
3

0

(iv)

‫ﺑﻮﺿﻊ‬

−4 x
∫ 3 dx
2

−u

,3−4 x = (e ln 3 ) −4 x
2

Q 3 = e ln 3

2

3−4 x = e −4 x
2

2

ln 3

0

(4 ln 3) x 2 = u
1

u2
x=
2 ln 3


∫3

− 4 x2

0

1



( v)

0

u

dx =

‫ﺑﻮﺿﻊ‬

− 12

4 ln 3

du


 u−2 
1
π
−u − 2
 du = 1
dx = ∫ e ⋅ 
e
u
du
=




4
ln
3
4
ln
3
4
ln
3
0
0




1

−u

dx
,
− ln x

− ln x = u , x = e −u

, dx = −e −u du ‫ﺑﻮﺿﻊ‬

u = 0, x = 1 ‫ ﻋﻨﺪ‬, u = ∞ ‫ وﻋﻠﯿﮫ‬ln 0 = −∞ ‫ ﻧﺠﺪ أن‬x = 0 ‫ﻋﻨﺪﻣﺎ‬


dx
e −u du
−1
= − ∫ 1 = ∫ u 2 e −u du = π ⋅
2
− ln x
∞ u
0

1

0


0

:٤‫ﻣﺜﺎل‬
‫اﺣﺴﺐ‬


m − ax
∫ x e dx

, m, n > 0

n

0

:‫اﻟﺤﻞ‬
dx =




m −ax
−u
∫ x e dx = ∫ e ⋅ (
0

n

0

u

1
n

1
n

a

1
n

m

1 )

an

u

u

1
n

1
−1
n

na

1
n

−1

x =

du

du =



1
na

m
n

٧

+

1
n

u
a

1
n

‫ وﻋﻠﯿﮫ‬ax n = u ‫ﺑﻮﺿﻊ‬

1
n

−u
∫e un
0

m

+ 1n −1

du =

1
na

m +1
n

Γ(

m +1
)⋅
n

‫ﻣﺜﺎل‪:٥‬‬
‫اﺣﺴﺐ اﻟﺘﻜﺎﻣﻞ اﻵﺗﻲ‪:‬‬
‫‪1‬‬

‫‪(ln x) n dx‬‬

‫‪m‬‬

‫‪∫x‬‬
‫‪0‬‬

‫اﻟﺤﻞ‪:‬‬
‫ﺑﻮﺿﻊ ‪ ln x = −u‬ھﺬا اﻻﺧﺘﯿﺎر ﯾﺠﻌﻞ ﺣﺪود اﻟﺘﻜﺎﻣﻞ ﻋﻨﺪ ‪x = 0‬‬
‫‪u n du‬‬

‫‪−( m+1) u‬‬

‫∞‬

‫‪∫e‬‬
‫‪0‬‬

‫‪n‬‬

‫∞ = ‪ u‬وﻋﻨﺪ ‪x = 1‬‬
‫‪0‬‬

‫)‪(ln x) dx = ∫ (e ) (−u ) (e du ) = ( −1‬‬
‫‪−u‬‬

‫‪−u m‬‬

‫‪n‬‬

‫‪ u = 0‬وﻋﻠﯿﮫ‬

‫‪n‬‬

‫∞‬

‫‪−u‬‬

‫‪x=e‬‬

‫‪1‬‬

‫‪m‬‬

‫‪∫x‬‬
‫‪0‬‬

‫ﺑﻮﺿﻊ ‪( m + 1)u = v‬‬
‫∞‬

‫∞‬

‫‪( −1) n‬‬
‫‪(−1) n‬‬
‫‪v n dv‬‬
‫‪−v n‬‬
‫‪∫0 x (ln x) dx = (−1) ∫0 e (1 + m ) ⋅ 1 + m = (1 + m)n+1 ∫0 e v dv = (1 + m) n+1 Γ(n + 1).‬‬
‫‪−v‬‬

‫‪1‬‬

‫‪n‬‬

‫‪n‬‬

‫‪m‬‬

‫وﻋﻠﯿﮫ ﻧﺠﺪ أن‬
‫‪( − 1) n‬‬
‫!‪⋅ n‬‬
‫‪(1 + m ) n + 1‬‬

‫‪1‬‬

‫‪m‬‬
‫‪n‬‬
‫= ‪∫ x (ln x) dx‬‬
‫‪0‬‬

‫داﻟﺔ ﺑﯿﺘﺎ ‪:‬‬
‫ﺗﻌﺮف داﻟﺔ ﺑﯿﺘﺎ ﻛﺎﻵﺗﻲ‪:‬‬
‫‪1‬‬

‫)‪(10‬‬

‫)‪( n > 0, m > 0‬‬

‫‪β ( n, m) = ∫ t n−1 (1 − t ) m−1 dt‬‬
‫‪0‬‬

‫وواﺿﺢ ﻋﻨﺪ ‪ t → 0‬ﻻﺑﺪ ﻣﻦ وﺟﻮد ﻗﯿﻮد ﻋﻠﻰ ‪ t‬ﺑﯿﻨﻤﺎ ﻋﻨ ﺪ ‪ t = 1‬ﻻ ﺗﻮﺟ ﺪ أي ﻗﯿ ﻮد ﻋﻠﯿﮭ ﺎ وﻋﻠﯿ ﮫ ﯾﺘﻀ ﺢ ﻣ ﻦ‬
‫اﻟﻤﻌﺎدﻟﺘﯿﻦ )‪ (10), (1‬أن اﻟﻘﯿﻮد اﻟﻤﻔﺮوﺿﺔ ﻋﻨﺪ ﻧﻘﻄﺔ اﻷﺻﻞ ﻋﻠﻰ داﻟﺘﻲ )‪ β( n, m), Γ (n‬ﻗﺪ ﺗﺤﻜﻤﺖ ﻓﻲ ﺗﺤﺪﯾﺪ‬
‫ﻣﺎھﯿﺔ ‪. n, m‬‬
‫اﻟﻌﻼﻗﺔ ﺑﯿﻦ داﻟﺘﻲ ﺑﯿﺘﺎ وﺟﺎﻣﺎ ‪:‬‬
‫ﻧﻈﺮﯾﺔ ‪:٦‬‬
‫ھﺬه اﻟﻨﻈﺮﯾﺔ ﺗﺮﺑﻂ ﺑﯿﻦ داﻟﺘﻲ ﺑﯿﺘﺎ وﺟﺎﻣﺎ اﻋﺘﻤﺎداً ﻋﻠﻰ إﺛﺒﺎت ﻧﻈﺮﯾﺔ )‪ (٥‬ﻛﺎﻵﺗﻲ‪:‬‬
‫)‪Γ (n)Γ (m‬‬
‫= )‪β( n, m‬‬
‫)‪(11‬‬
‫)‪Γ (n + m‬‬
‫اﻟﺒﺮھﺎن ‪:‬‬
‫ﻣﻦ اﻟﺘﻌﺮﯾﻒ‬
‫‪1‬‬

‫‪β( n, m) = ∫ t n −1 (1 − t ) m −1 dt‬‬
‫‪0‬‬

‫‪π‬‬
‫ﺑﻔﺮض أن ‪ t = cos 2 θ‬وﻋﻠﯿﮫ ﻋﻨﺪ ‪ t = 0‬ﻧﺠﺪ أن‬
‫‪2‬‬

‫= ‪ θ‬وﻋﻨﺪ ‪ t = 1‬ﻧﺠﺪ أن ‪ θ = 0‬أﯾﻀ ﺎً ‪dt = −2 sin θ cos θdθ‬‬

‫وﻣﻦ ذﻟﻚ ﻧﺠﺪ أن‬

‫‪٨‬‬

‫)‪Γ ( n)Γ (m‬‬
‫)‪Γ ( n + m‬‬

‫)‪( n > 0, m > 0‬‬

‫= ‪dθ‬‬

‫‪sin 2 m−1 θ‬‬

‫‪π‬‬
‫‪2‬‬

‫‪β ( n, m) = 2 ∫ cos 2 n−1 θ‬‬
‫‪0‬‬

‫)ﺑﺎﺳﺘﺨﺪام ﻧﻈﺮﯾﺔ)‪( (٥‬‬
‫‪1‬‬
‫‪t‬‬
‫= ‪ x‬ﻓﻲ )‪ (10‬ﻓﺈن ‪dt‬‬
‫ﺑﻮﺿﻊ‬
‫‪2‬‬
‫‪t +1‬‬
‫) ‪(1 + t‬‬

‫= ‪ , dx‬ﻋﻨﺪﻣﺎ ‪ x = 0‬ﻓ ﺈن ‪ ، t = 0‬وﻋﻨ ﺪﻣﺎ ‪ x = 1‬ﻓ ﺈن‬

‫∞ = ‪ t‬وﻋﻠﻰ ذﻟﻚ ﻓﺈن ‪:‬‬
‫∞‬

‫‪t m−1‬‬
‫‪t n−1 1‬‬
‫‪dt‬‬
‫( ∫ = )‪B( m, n‬‬
‫‪) (1 −‬‬
‫)‬
‫‪(1 + t ) 2‬‬
‫‪1+ t‬‬
‫‪1+ t‬‬
‫‪0‬‬
‫∞‬

‫‪t m−1‬‬
‫‪dt‬‬
‫∫ = )‪B ( m, n‬‬
‫‪(1 + t ) m+n‬‬
‫‪0‬‬

‫)‪(12‬‬
‫ﺗﻤﺮﯾﻦ ‪:‬‬

‫‪; 0 < P