Measurement of the Top Pair Production Cross-Section in the Lepton+Hadronic Tau Channel

  Measurement of Top Pair Production Cross-Section in Lepton+Hadronic Tau Channel Haryo Sumowidagdo on behalf of DØ Collaboration

  Motivation A pure third generation decay

  • proton

  which has not been observed t with 3σ significance. g q t → τ ν b

  τ

  q Search for new physics in top

  • antiproton quark decay mechanisms.

  l, q In many top quark analyses,

  • +

  W it is assumed that top quark

  ν , q’ decays predominantly via weak

t interaction into a W boson and a b quark. b t → W b New physics in top quark decay mechanism Charged Higgs exist in non-minimal Higgs model (e.g. 2HDM) or beyond standard model physics (e.g. MSSM). l, q Top quark can decay to charged Higgs.

  ±

  • + H , W

  ± ν

  , q’ t → H b → τ ν b

  τ

  t

  1

  0.9 b

  0.8 + H cs →

  0.7

  • Branching Ratio

  H

  0.6 → τ ν

  At large tan β, the charged Higgs

0.5 H t b

  → decay predominantly into taus.

  0.4

  • H WA →
  • 0.2

  0.3 Figure made with

  H Wh →

0.1 CPsuperH, CPC 156 (2004), 283.

  1

  10 β tan( ) Experimental Apparatus: Fermilab Tevatron Accelerator Proton-antiproton collider with center-of-mass energy 1.96 TeV.

  Analysis uses 1.0 fb

  −

  1

  of recorded data from April 2002 to February 2006. Experimental Apparatus: DØ Detector

  Event Preselection One isolated electron (muon),

  • T p > 15(20) GeV, |η| < 1.1(2.0).

  q Veto second isolated lepton.

  ¯b One isolated tau with E

  • T

  > 10 ν

  ¯ GeV, appears as narrow jet .

  ¯t

  W At least two jets, p T > 20 GeV, −

  ℓ T |η| < 2.5, leading jet p > 30 GeV.

  • T

  τ E / > 15 GeV, from the presence of

  W t three neutrinos.

  ν Lepton tau

  • and are expected to have opposite charge sign.

  q b

  Identify b−quark jet to increase

  • signal to background ratio.

  It is a lepton + three jets event ! Tau reconstruction and identification: Basics − − − Tau lifetime ∼ 0.29 ps, ct = 87µm. e τ µ τ

  BR ≈ 35% : τ → e ν ¯ ν , µ ν ¯ ν Decay products of a highly-boosted

  − − τ

  BR ≈ 10% : τ → π ν tau are almost collinear with the tau.

  − − τ

  BR ≈ 35% : τ → π N π ν

  • − − −

  _ τ

  BR ≈ 15% : τ → π π π N π ν π

  • ν

  Reconstruction cone Leptons from tau decays will be

  π τ

  R = 0.5 π swamped by leptons from W/Z

  _ decays.

  π Isolation cone

  Hadronic decay products will R = 0.3 appears as narrow, isolated jets , with charged tracks and hadronic energy deposition .

  Neutral pions will appear as electromagnetic energy

  τ deposition . Tau reconstruction and identification: DØ Algorithm ν ν

  ν τ τ

  HAD τ

  − −

  − π

  π π

  π π π

  EM π

  − − − τ τ τ

  Type 1 Type 2 Type 3

  • -1 DØ Run II Preliminary L = 994 pb DATA 700 700 Multijet
    • + - W → µ + jets Z + jets

      → τ τ + - 600 600 Z → µ µ + jets Type 1: one track, w/o EM cluster. WW, WZ t t lepton + jets

      → 500 500 t t dilepton non- µ τ t t → µ τ

      Type 2: one track, w/ EM clusters.

      Number of events 400 400 Type 3: two or more tracks. 300 300 Neural networks algorithm is used to

      200 200 identify taus. 100 100

      0.5

      0.5

      0.55

      0.55

      0.6

      0.6

      0.65

      0.65

      0.7

      0.7

      0.75

      0.75

      0.8

      0.8

      0.85

      0.85

      0.9

      0.9

      0.95

      0.95

      1

      1 Tau neural network output (all type, 0.5 NN_ τ ≤ 1.0))

      Background Processes and Their Estimation q' q

    • jets, use shapes from MC and normalized to data.

      W b g b g l

      ν Fake τ

      W

      proton antiproton q q

    • , τ
    • , µ− , τ −
    • + e
      • , µ

    • + W + c g W – c q' q

      Z e

      Z +jets, estimated from MC. q q g

      ν l

      b b Fake τ

      Multijet, estimated using MC and data events with same charge sign (SS).

      N

      Multijet = N SS data

      − N

      SS W+jets like Other small backgrounds (e.g. diboson) are estimated using MC. Preselected sample 2 jets

      ≥ (GeV), T Lepton p

      50

      50

      40

      30

      20

      10

      60 80 100 120 140 160

      40

      20

      70

      60

      40

      70 DATA

      30

      20

      10

      Number of events

      60 80 100 120 140 160

      40

      20

      T Leading jet E

      DØ Run II Preliminary L = 1 fb -1 2 jets (GeV),

      → lepton + jets t t τ dilepton non-lt t τ l+t t

      60

      Multijet W

    • - e + or e -

      Multijet W

    • - e + or e -

      10

      τ dilepton non-lt t τ l+t t DØ Run II Preliminary L = 1 fb -1 Hint of tops in the sample (S:B 1 : 8), now add b−tagging.

      WW, WZ lepton + jetst t

      µ + µ → Z - τ

    • + τ → Z

      Multijet W

    • - e + or e -

      70 DATA

      60

      50

      40

      30

      20

      70 100 200 300 400 500 600 700 800

      µ + µ → Z - τ

    • + τ → Z

      60

      50

      40

      30

      20

      10

      

    Number of events

      100 200 300 400 500 600 700 800

      ≥ 2 jets +MET), τ HT(lepton+jets+

      τ dilepton non-lt t τ l+t t DØ Run II Preliminary L = 1 fb -1

      WW, WZ lepton + jetst t

      µ + µ → Z - τ

    • + τ → Z

      50 DATA

    WW, WZ

    WW, WZ

      40

      µ + µ → Z - τ

    • + τ → Z

      Multijet W

    • - e + or e -

      70 DATA

      60

      50

      40

      30

      20

      10

      60 80 100 120 140 160

      20

      DØ Run II Preliminary L = 1 fb -1 2 jets

      70

      60

      50

      40

      30

      20

      10

      Number of events

      60 80 100 120 140 160

      40

      → lepton + jets t t τ dilepton non-lt t τ l+t t

      20

      45

      50

      40

      35

      30

      25

      20

      15

      10

      5

      60 80 100 120 140 160

      40

      20

      45

      20

      40

      35

      30

      25

      20

      15

      10

      5

      

    Number of events

      60 80 100 120 140 160

      40 Neural network b−tagging Combine information from displaced tracks and secondary vertices into one neural network output.

      ≥ (GeV), T Tau E

      Average efficiency to tag b-quark in this analysis is 54 %, with fake rate of 1 %.

    WW, WZ

    WW, WZ

      4

      16

      6

      8

      10

      12

      14

      20 DATA

      18

      2

      Multijet W

    • - e + or e -

      µ + µ → Z - τ

    • + τ → Z

    WW, WZ

    WW, WZ

      → lepton + jets t t τ dilepton non-lt t τ l+

      40

      60 80 100 120 140 160

       2 jets

      20

      20

      18

      16

      14

      12

      10

      8

      6

      4

      2

      → t t DØ Run II Preliminary L = 1 fb -1

      τ HT(lepton+jets+

       1 tags,

      4

      → t t DØ Run II Preliminary L = 1 fb -1

      → lepton + jets t t τ dilepton non-lt t τ l+

      µ + µ → Z - τ

    • + τ → Z

      Multijet W

    • - e + or e -

      20 DATA

      18

      16

      14

      12

      10

      8

      6

      2

      60 80 100 120 140 160

      20 100 200 300 400 500 600 700 800

      18

      16

      14

      12

      10

      8

      6

      4

      2

      Number of events

      100 200 300 400 500 600 700 800

      Number of events

      40

      b− tagged sample 2 jets

      60 80 100 120 140 160

      ≥ (GeV), T Tau E

      ≥ 1 tags,

      DØ Run II Preliminary L = 1 fb -1 2 jets

      → lepton + jets t t τ dilepton non-lt t τ l+t t

      µ + µ → Z - τ

    • + τ → Z

      Multijet W

    • - e + or e -

      30 DATA

      25

      20

      15

      10

      5

      40

      40

      20

      30

      25

      20

      15

      10

      5

      Number of events

      60 80 100 120 140 160

      40

      20

      ≥ (GeV), T Lepton p

      ≥ 1 tags,

      20

      60 80 100 120 140 160

      20

      4

      T Leading jet E

      DØ Run II Preliminary L = 1 fb -1 2 jets 1 tags, (GeV),

      → lepton + jets t t τ dilepton non-lt t τ l+t t

      µ + µ → Z - τ

    • + τ → Z

      Multijet W

    • - e + or e -

      20 DATA

      18

      16

      14

      12

      10

      8

      6

      2

      Number of events

      60 80 100 120 140 160

      40

      20

      20

      18

      16

      14

      12

      10

      8

      6

      4

      2

    • +MET),
    Elimination of multijet background Assume that multijet events contribute equally to opposite-charge sign (OS) and same-charge sign (SS) sample.

    OS OS OS

      N = N + N

      data Multijet t¯ t,W,Z,diboson

    SS SS SS

      N = N + N

      data Multijet t¯ t,W,Z,diboson

      Then

    OS SS OS SS

      N − N − N = N

      data data t¯ t,W,Z,diboson t¯ t,W,Z,diboson

      Cross-section extraction In the individual eτ and µτ channel, the cross-section is extracted using:

    OS SS OS SS OS OS

      

    N − N − N − N − N − N

      data data W W Z diboson

      σ =

      t¯ t

    OS SS

      × L

    ǫ − ǫ

      t¯ t t¯ t

      In the combined measurement over more than one channels, we minimize a negative log-likelihood function based on the Poisson probability to observe

      obs a number of events (N ) in each individual channel j. j

      We measure:

    • 2 +1

      .0 .4

      σ = 8.3 (stat) (syst) ± 0.5 (lumi) pb

      − − t¯ t 1 .8 1 .2

    • –1

      5.1

      pb ±0.50 l+jets (b-tagged and topological, PRL)

      pb ±0.3 l+track (b-tagged)*

      1050 pb

      5.1

      pb ±0.3 l+jets (from B(tWb)/B(tWq), PRL)

      910 pb

      8.18

      910 pb

    • 0.90

    • –1
    • –0.84

    • 1.2
    • 0.9

    • –1
    • –1.1
    • –0.8
      • 1.6
      • 0.9

    • –1
    • –1.4
    • –0.8
      • 2.0
      • 1.4

    • –1
    • –1.8
    • –1.2

    • 4.3
    • 0.7
      • –0.7

    • –1
    • –3.5
      • 2.0
      • 1.4

      350 pb

    • –1
    • –1.9
    • –1.1
    Measurement of σ × BR(t¯t → ℓ + τ + b¯b) A simple measure of top quark decay rate to tau lepton.

      = 175 GeV ±0.4

      pb ±0.5 tau+jets (b-tagged)*

      8.3

      1050 pb

      ±0.3 (stat) (syst) (lumi) tau+lepton (b-tagged)*

      March 2008 Cacciari et al., JHEP 0404, 068 (2004) Kidonakis and Vogt, PRD 68, 114014 (2003) m top

      σ (pp tt) [pb]

      pb 0 2 4 6 8 10 12 D Run II preliminary*

      4.5

      pb 410 pb

      6.8

      dilepton (topological)* alljets (b-tagged, PRD) 1050 pb

      7.42 ±0.53 pb ±0.45 ±0.46

      Assume standard model cross-section for expected top events which are coming from lepton+jets and non-tau dilepton decay modes.

    OS OS

      N − N − N

      Multijet data non−tau t¯ t,W,Z,diboson

      × BR σ t → ℓ (t¯ + τ + b¯b) =

      t¯ t OS

      ǫ

      t¯ t→ℓ+τ +b¯ b

      At m = 175 GeV / σ = 6.8 pb, we measure:

      top t¯ t

    • 0 .08 +0 .07

      × BR σ t → ℓ (t¯ + τ + b¯b) = 0.19 (stat) (syst) ± 0.01 (lumi) pb.

      − − t¯ t .08 .07 The standard model expectation is 0.126.

      Less statistically significant than the cross-section: low purity of real taus in the selected sample .

      The cross-section extraction uses additional acceptance from l+jets and non-tau dilepton .

      Conclusions from Tevatron analysis We measured both the top quark pair production cross-section using

    • t → ℓτ ννb¯ b lepton+hadronic tau events, and the σ × BF(t¯ )
      • 2 .0 +1 .4

      σ = 8.3 (stat) (syst) ± 0.5 (lumi) pb

      − − t¯ t 1 .8 1 .2

    • 0 .08 +0 .07

      × BR σ t → ℓτ ννb¯ b (t¯ ) = 0.19 − (stat) − (syst) ± 0.01 (lumi) pb.

      t¯ t .08 .07

      Very exciting and challenging analysis which uses all object

    • identification: electron, muon, tau, tracks, jets, b−tagging, MET. Will be used in a global search for charged Higgs boson in combination
    • with dilepton and lepton+jets channels: Add sensitivity to tauonic

      charged Higgs model . Require orthogonality between pure dilepton, lepton+tau, and lepton+jets channels .

      Will be published as part of cross-section measurement in the dilepton

    • channel.

      Outlook for LHC Current efficiency at the Tevatron is about 5 % for pure lepton+tau

      1 events, equivalent to about 10 lepton+tau events per 1 fb .

      

    With 80 million top quark pairs produced per year at the LHC, even at

    • reconstruction efficiency of 1000 times smaller than at the Tevatron,

      we can expect to have about 15 lepton+tau events per year. The real challenge is the task to develop the algorithm for, and
    • suppress the background to tau reconstruction at the LHC ! Tevatron has the advantage of being a well-understood environment,
    • and can expect to have at least four times as much data used in this analysis. On the path to evidence/discovery .

      The race is on: Who will see the pure third generation decay first ?

      We hope that we will hear the answer at Pheno 2009 Thank you !

      Back-up Slides Table 1: Input variabls to the neural-network b−tagging algorithm.

      Variable Description

      SL SV T DLS Decay length significance of the secondary vertex CSIP Comb Weighted combination of the tracks’ impact parameter significance

      JLIP Prob Probability that the jet originates from the primary vertex

    2 SL

      SV T χ Chi square per degree of freedom of the secondary vertex d.o.f. tracks L

      SV T N Number of tracks used to reconstruct the secondary vertex SL

      SV T Mass Mass of the secondary vertex SL

      SV T Num Number of secondary vertices found in the jet

      τ 4.59 ± 0.07

      → π −

      − π ν

      π

      → π −

      9.33 ± 0.08 τ −

      − ν τ

      − π

      − → π

      1.04 ± 0.08 Type 3 Hadronic three-prong decays τ

      3π ν τ

      → π −

      9.47 ± 0.12 τ −

      2π ν τ

      25.50 ± 0.10 τ −

      Table 2: Branching ratios (in unit of %) for dominant leptonic and hadronic decay modes of tau, sorted by expected tau type, as stated in Particle Data Book 2006 edition.

      − π ν τ

      − → π

      10.90 ± 0.07 Type 2 Hadronic single-prong decay with π τ

      ν τ

      → π −

      τ −

      ¯ ν µ ν τ 17.36 ± 0.05 Type 1 Hadronic single-prong decay without π

      → µ −

      17.84 ± 0.05 τ −

      ν τ

      − ¯ ν e

      − → e

      Decay modes Branching ratio (%) Leptonic decay τ

    • π
    • π
    Table 3: Data and predicted numbers of events before and after b-tagging is applied. Standard model cross section and branching ratios are assumed t for t¯ production. Uncertainties are statistical only.

      before b-tagging after b-tagging µτ eτ µτ eτ

      W 38.0 ± 1.7 34.1 ± 3.5 2.31 ± 0.22 2.13 ± 0.27

      ∗

      → Z/γ ee or µµ 20.7 ± 1.1 5.8 ± 0.6 1.09 ± 0.11 0.38 ± 0.05

      ∗

      → Z/γ τ τ 19.6 ± 1.2 7.5 ± 0.6 1.02 ± 0.10 0.54 ± 0.06 Diboson 2.8 ± 0.1 5.1 ± 0.6 0.21 ± 0.01 0.34 ± 0.07 Multijet 10.6 ± 6.3 12.7 ± 6.6 4.52 ± 3.01 -1.27 ± 1.77 t¯ t → ℓ + τ + 2b + 2ν 7.8 ± 0.1 6.67 ± 0.1 5.64 ± 0.04 4.70 ± 0.05 t¯ t → other dileptons 4.3 ± 0.1 0.73 ± 0.1 3.14 ± 0.03 0.47 ± 0.07 t¯ t → ℓ + jets 12.7 ± 0.1 12.41 ± 0.2 8.40 ± 0.11 7.88 ± 0.12 Total Expected 116.6 ± 6.8 85.0 ± 7.7 26.33 ± 3.02 15.17 ± 1.97 Data 104

      69

      29

      18 Table 4: Systematics for the measurement of σ

      t¯ t . µτ eτ combined ∆ σ ∆ σ ∆ σ

      Jet energy calibration +0.30 −0.50 +0.33 −0.36 +0.43 −0.35 PV identification +0.36 −0.34 +0.23 −0.37 +0.38 −0.21 Muon identification +0.21 −0.20 – +0.12 −0.12 Electron identification – +0.59 −0.53 +0.25 −0.24 Tau identification +0.16 −0.15 +0.15 −0.15 +0.16 −0.16 Trigger +0.00 −0.00 +0.12 −0.07 +0.14 −0.13 Fakes +0.45 −0.42 +0.59 −0.53 +0.50 −0.49 b-tagging +0.31 −0.34 +0.44 −0.41 +0.45 −0.37 MC normalization +0.18 −0.18 +0.15 −0.15 +0.13 −0.13 Background/MC statistics +1.46 −1.46 +1.19 −1.19 +1.00 −0.91 Other +0.08 −0.08 +0.09 −0.10 +0.19 −0.18 Subtotal +1.76 −1.67 +1.64 −1.59 +1.40 −1.24 Luminosity

      ± .49

      ± .52

      ± .51

      Total +1.83 −1.95 +1.72 −1.67 +1.49 −1.34

    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0
    • 0

      .027 −0.026

      .075 −0.072

      .094 −0.090

      Total

      ± .011

      ± .012

      ± .011

      .010 −0.008 Subtotal +0 .093 −0.089 +0 .074 −0.071 +0 .072 −0.066 Luminosity

      .007 −0.007

      .004 −0.004

      .041 −0.037 Other

      .045 −0.045

      .066 −0.066

      .025 −0.024 MC normalization +0 .009 −0.009 +0 .006 −0.005 +0 .007 −0.007 Background/MC statistics

      .023 −0.022

      .032 −0.033 b-tagging +0 .025 −0.019 +0 .022 −0.020 +0 .023 −0.020 NLO t¯ t cross-section

      Table 5: Systematics for the measurement of σ

      .030 −0.030

      .034 −0.036

      .006 −0.006 Fakes

      .005 −0.003

      .014 −0.013

      .015 −0.014 Tau identification +0 .006 −0.006 +0 .006 −0.006 +0 .007 −0.006 Trigger

      .027 −0.025

      .019 −0.011 Muon identification +0 .004 −0.004 – +0 .005 −0.005 Electron identification –

      .019 −0.010

      .020 −0.011

      Jet energy calibration +0 .030 −0.023 +0 .017 −0.019 +0 .022 −0.020 PV identification

      µτ eτ combined ∆ σ × BR ∆ σ × BR ∆ σ × BR

      × BR .

      t¯ t

      .073 −0.067

Dokumen yang terkait

Kendali Genetik Toleransi Kekeringan pada Padi Sawah (Oryza sativa L.) Genetic Control of Drought Tolerance in Rice (Oryza sativa L.)

0 0 7

Toleransi Galur Harapan Padi Sawah (Oryza sativa L.) pada Persaingan dengan Gulma Echinochloa crus-galli Tolerance of Rice Promising Lines (Oryza sativa L.) in Competitivenes with Echinochloa crus-galli

0 0 8

Regenerasi Tanaman dari Kalus Tebu yang Diiradiasi Sinar Gamma pada Medium dengan PEG 6000 Plant Regeneration of Gamma Ray Irradiated Callus of Sugarcane on the Medium with PEG 6000

0 0 7

Perbanyakan In Vitro Dendrobium Indonesia Raya ‘Ina’ melalui Embriogenesis Somatik Berbasis Sistem Bioreaktor In Vitro Propagation of Dendrobium Indonesia Raya ‘Ina’ via Somatic Embryogenesis Based on Bioreactor System

0 0 9

Produksi Benih Kentang Sistem Aeroponik dan Root Zone Cooling dengan Pembedaan Tekanan Pompa di Dataran Rendah Potato Seed Production in Aeroponics System and Root Zone Cooling at Different Pump Pressures in the Lowlands

0 0 7

Aplikasi Bakteri Probiotik Pseudomonas Kelompok Fluorescens untuk Meningkatkan Produksi dan Mutu Benih Cabai Application of Fluorescent Probiotic Bacteria Pseudomonas to Increase Production and Quality of Chili Seed

0 0 7

Pewarisan Karakter Kualitatif Cabai Hias Hasil Persilangan Cabai Besar dan Cabai Rawit Inheritance of Qualitative Characters of Ornamental Chili Pepper from Hybridization of Chili Pepper and Bird Pepper

0 1 6

Keragaan Karakter Morfologi dan Agronomi Galur-Galur Sorgum pada Dua Lingkungan Berbeda Variability of Morphological and Agronomic Traits of Sorghum Breeding Lines in Two Different Environments

0 0 8

Induksi dan Proliferasi Embriogenesis Somatik In Vitro pada Lima Genotipe Kedelai Induction and Proliferation of In Vitro Somatic Embryogenesis on Five Soybean Genotypes

0 1 10

Spin correlation and W helicity in top events with CMS

0 0 20