Statika dan Mekanika Bahan I

  1 D C B A

  1 = 2 t

  2 S

  3 E S

  L 6 = 6 m G F S

  1 = 3 m

  L 3 = 4 m L 2 = 4 m

  L L 7 = 3 m

L 5 = 4 m

L 4 = 5 m

  1 = 3,2 t/m P

  Tipe II

  2 = 1,5 t/m q

  3 m q

  1 =

  5 m h

  2 =

  h

  • Hitunglah Reaksi Perletakan, Bidang Momen, Bidang Lintang, dan Bidang Normal pada konstruksi tersebut?
Menganalisa Konstruksi Gerber :

1 RVS

1 RVS

  B 1 C A q

  6 = 6 m

  1 = 3 m L

  2 = 4 m L

  3 = 4 m L

  4 = 5 m L

  5 = 4 m L

  7 = 3 m L

  2 L

  3 E S

  2 = 1,5 t/m S

  RHS

  1 M G RHA RHE RHG RVG RVS Batang S 1 – S

  1 q

  2 S

  3 m P 1 = 2 t S

  1 =

  3 D h

  5 m G F S

  2 =

  1 h

  2 RVS

  2 RVS

  3 RVE RVA RVD RHS

  3 RVS

  1 = 3,2 t/m S

2 Reaksi Perletakan

  Σ RVS

  1 M S2 = 0

  P = 2 t

  1 X

  1

  1

  2

  1 X

  2 RVS . 5 – P . 2,5 + RVS . 0 = 0

  . , RHS

  1 RVS = = 1 ton ( )

  1 S

  1 S

  2 RVS

  2 RVS

  1 L 4 = 5 m

  Σ RVS M = 0

  2 S1

  • RVS . 5 + P . 2,5 + RVS . 0 = 0

  2

  1

  1 M

  • + RVS = = 1 ton ( )

  . ,

  2

  2,5 tm 1 t 1 t

  Σ V = 0

  • + Q -
    • 1 t -1 t RVS

  1 + RVS 2 – P 1 = 0 1 + 1 – 2 = 0

  N

  0 = 0 Σ

  H = 0 RHS 1 = 0

  ≤ Bidang Momen

  Daerah S – P ( 0 ≤X 2,5 )

  2

  1

  2 ≤

  Daerah S 1 – P 1 ( 0 ≤X 1 2,5 ) QX 2 = - RVS 2 = - 1 MX = RVS . X = X

  X = 0 QS = - 1 ton

  1

  1

  1

  1

  2

  2 X = 0 MS = 0 tm X = 2,5 QP = - 1 ton

  1

  1

  2

  1 X 1 = 2,5 MP 1 = 2,5 tm Bidang Normal

  ≤ ≤

  Daerah S 2 – P 1 ( 0 ≤X 2 2,5 ) Daerah S 1 – P 1 ( 0 ≤X 1 2,5 ) MX = RVS . X = X

  NX = - RHS = 0

  2

  2

  2

  2

  1

  1 X 2 = 0 MS 2 = 0 tm

  X 1 = 0 NS 1 = 0 ton

  X 2 = 2,5 MP 1 = 2,5 tm

  X 1 = 2,5 NP 1 = 0 ton Bidang Lintang

  ≤ Daerah S – P ( 0 ≤X 2,5 )

  1

  1

  1 QX 1 = RVS 1 = 1 X = 0 QS = 1 ton

  1

  1 X 1 = 2,5 QP 1 = 1 ton

  X

2 Batang A – B – C – D – S

  1 (L ) + (h )²

  AB =

  X

  3 RVS 1 = 1 t q 1 = 3,2 t/m

  AB = (3) + (3)² RHS

  1 = 0 t

  AB = √18

  B C D S

  1 m

  ( q . 4 )

  1

3 AB = 4,24 m

  X

  1 =

  RVD

  1 h

  ( q . X )

  1

  2 α = 45º RHA A α

  RVA sin α

  tan α =

  RVA cos α RVA L = 3 m L 2 = 4 m L 3 = 4 m

  1

  tan α =

  • 29,6 tm
  • 12,68 tm

  tan α = 1

  • - -1

  α = tan 1 = 45º

  M

  Reaksi Perletakan

  13,8 t

  Σ RVA M = 0 +

  1 t D

  • - - 4,23 t
  • 4,
  • RVA . 7 + RVS . 4 + ( q . 4 ) 2 + RVD . 0 = 0

  1

  1

  • 2,99 t

  Q . ( . )

  RVA = = 4,23 ton ( )

  2,99 t

  • 2,99 t

  N 2,99 t

  • – D ( 0 ≤X
    • RVD . 7 + RVS 1 . 11 + ( q

  2

  2 = 4 MD = - 29,6 tm

  MX 2 = - RVS 1 . X 2 – ( q 1 . X 2 ) ½ X 2 = - X 2 – 1,6 X

  2 X

  2 = 0 MS

  1 = 0 tm

  X

  = 18,03 ton ( ) Σ

  V = 0

  1

  . ( . )

  1 . 4 ) 9 + RVA . 0 = 0 RVD =

  M A = 0

  RVD Σ

  Letak Mmax pada Qx = 0 = 0

  2 ≤ 4 )

  • RVA + RVD – ( q

  • 4,23 + 18,03 – ( 3,2 . 4 ) – 1 = 0 0 = 0 Σ
  • RVS 1 – 3,2 X

  1 = - 4,23 cos 45º . X

  3 ≤ 7 )

  X 3 = 7 MC = 0 tm

  3 = 4 MB = - 12,68 tm

  X

  3 = 0 MD = - 29,6 tm

  3 X

  3 MX 3 = - 1 ( 4 + X 3 ) – ( 3,2 . 4 ) ( 2 + X 3 ) + 18,03 . X

  3 ) + RVD . X

  1 . 4 ) ( 2 + X

  3 ) – ( q

  1 ( 4 + X

  3 = - RVS

  MX

  = - 0,3125 m ( Tidak Memenuhi ) Daerah D – B – C ( 0 ≤X

  1 = 0 MA = 0 tm

  X 2 =

  2 = 0

  1 . 4 ) – RVS

  1 = 0

  • – ,

  H = 0 RHA – RHS 1 = 0 RHA = RHS

  1 = 0 ton

  Bidang Momen Daerah A – B ( 0 ≤X

  1 ≤

  4,24 ) MX

  1 = - RVA cos α . X

1 X

  X 1 = 4,24 MB = - 12,68 tm Daerah S

  1 ≤

  4,24 ) NX

  1 = RVA sin α = 4,23 sin 45º

  X 1 = 0 NA = 2,99 ton

  X

  1 = 4,24 NB = 2,99 ton

  • – D ( 0 ≤X

  Daerah S

  • – D ( 0 ≤X

  1

  2 ≤ 4 )

  NX 2 = - RHS 1 = 0

  X 2 = 0 NS 1 = 0 ton

  X

  2 = 4 ND = 0 ton

  Daerah D – B – C ( 0 ≤X

  3 ≤ 7 )

  NX 3 = - RHS 1 = 0

  X

  3 = 0 ND = 0 ton

  X 3 = 4 NB = 0 ton

  Bidang Normal Daerah A – B ( 0 ≤X

  X

  3 = 7 QC = - 4,23 ton

  1

  Bidang Lintang Daerah A – B ( 0 ≤X

  1 ≤

  4,24 ) QX

  1 = - RVA cos α = - 4,23 cos 45º

  X 1 = 0 QA = - 2,99 ton

  X

  1 = 4,24 QB = - 2,99 ton

  Daerah S

  2 ≤ 4 )

  X 3 = 4 QB = - 4,23 ton

  QX 2 = RVS 1 + ( q 1 . X 2 ) = 1 + ( 3,2 X 2 )

  X 2 = 0 QS 1 = 1 ton

  X

  2 = 4 QD = 13,8 ton

  Daerah D – B – C ( 0 ≤X

  3 ≤ 7 )

  QX 3 = RVS 1 + ( q 1 . 4 ) – RVD QX

  3 = 1 + ( 3,2 . 4 ) – 18,03 = - 4,23

  X 3 = 0 QD = - 4,23 ton

  X 3 = 7 NC = 0 ton Batang S 2 – E – S

  3 Reaksi Perletakan

  X

  2

  1 X

  Σ RVE M S3 = 0

  RVS = 1 t

  2 RVE . 6 – RVS . 10 – ( q . 10 ) 5 + RVS . 0 = 0

  2

  2

  3

  q = 1,5 t/m

  2 . ( . )

  RVE = = 14,17 ton ( )

  S

  2 S

  3 E ( q . 10 )

  2 RHE ( q 2 . X 1 ) RVE

  ( q 2 . X 2 ) RVS

  3 L 5 = 4 m L 6 = 6 m

  Σ RVS

  3 M E = 0

  1 m 5 m

  • RVS . 6 + ( q . 10 ) 1 - RVS . 4 + RVE . 0 = 0

  3

  2

  2

  2,44 m

  • 16 tm

  1,22 m . ( . )

  RVS = = 1,83 ton ( )

  3

  • - M
    • + Σ

  1,12 tm V = 0 7,17 t

  • RVS 2 + RVE + RVS

  3 – ( q 2 . 10 ) = 0

  • + - 1 + 14,17 + 1,83 – ( 1,5 . 10 ) = 0
    • - - 1 t
    • - - 1,83 t

  0 = 0

  Q

  • 7 t

  Σ H = 0

  N

  RHE = 0 Bidang Momen Letak Mmax pada Qx = 0

  ≤ Daerah S 2 – E ( 0 ≤X 1 4 )

  = 0 MX = - RVS . X – ( q . X ) ½ X

  1

  2

  1

  2

  1

  1

  2 RVS 3 – 1,5 X 2 = 0 MX = - X – 0,75 X

  1

  1

  1

  ,

  X 1 = 0 MS 2 = 0 tm X = = 1,22 m

  2

  ,

  X = 4 ME = - 16 tm

  1 X = 1,22 M = 1,12 tm 2 max Letak Mmax pada Qx = 0

  Letak Momen Mx = 0

  2 = 0

  1,83 X – 0,75 X = 0

  2

  2

  2

  • 0,75 X 2 + 1,83 X

  2 = 0

  • RVS 2 – 1,5 X

  1 = 0 X = = - 0,667 m ( Tidak Memenuhi )

  1

  • – ,

  ± –

  X 1,2 = ≤

  Daerah S 3 – E ( 0 ≤X 2 6 )

  , ± ( , ) – ( , ) ( )

  MX = RVS . X – ( q . X ) ½ X

  2

  3

  2

  2

  2

  2

2 X 1,2 =

  MX = 1,83 X – 0,75 X

  2

  2

  2

  ( , )

  X 2 = 0 MS 3 = 0 tm

  , ± ,

  X = 1,2

  X = 6 ME = -16 tm

  • – ,

  2

  , ,

  X = = 0 m

  1

  • – , , ,

  X = = 2,44 m

  2

  • – ,

  Bidang Lintang ≤

  Daerah S – E ( 0 ≤X 4 )

  2

1 QX = - RVS – ( q . X ) = - 1 – 1,5 X

  1

  2

  2

  1

  1 X 1 = 0 QS 2 = - 1 ton X = 4 QE = - 7 ton

  1 ≤

  Daerah S – E ( 0 ≤X 6 )

  3

  2 QX 2 = - RVS 3 + ( q 2 . X 2 ) = - 1,83 + 1,5 X

  2 X 2 = 0 QS 3 = - 1,83 ton X = 6 QE = 7,17 ton

  2 X 2 = 1,22 Q max = 0 ton

1 Y

  1 M G M G G M G RHG RVG RVS 3 = 1,83 t h

  1

  X

  3 L 7 = 3 m

  5 m F S

  2 =

  3 L

7 = 3 m

G RHG RVG h

  5 m F S

  2 =

  3 L 7 = 3 m G RHG RVG h

  5 m F S

  2 =

  1 Y

  1 X

  • 5,49 tm
  • 5,
  • 1,
  • -

    -

  N Q M Y

  49 tm

  49 tm

  83 t

  83 t

  1

  X

  3 = 1,83 t

  3 = 1,83 t RVS

  RVS

  Batang S 3 – F – G

  • - 1,83 t - 1,83 t

  • 5,
  • 1,

  MY 1 = RHG . Y 1 – MG = - 5,49 Y

  V = 0

  1 ≤ 5 )

  Reaksi Perletakan Σ

  • RVS
    • RVG = 0

  3

  • 1,83 + RVG = 0 RVG = 1,83 ton ( ) Σ

  Bidang Lintang Daerah S 3 – F ( 0 ≤X

  1 = 5 QF = 0 ton

  Y

  1 = 0 QG = 0 ton

  QY 1 = - RHG = 0 Y

  1 ≤ 5 )

  X 1 = 3 QF = - 1,83 ton Daerah G – F ( 0 ≤Y

  X 1 = 0 QS 3 = - 1,83 ton

  3 = - 1,83

  1 = - RVS

  QX

  1 ≤ 3 )

  Y

  1 = 5 MF = - 5,49 tm

  H = 0 RHG = 0 Σ

  1 = 0 MG = - 5,49 tm

  • RVS 3 . 3 + RVG . 0 + RHG . 0 + MG = 0

  X 1 = 3 MF = - 5,49 tm Daerah G – F ( 0 ≤Y

  3 = 0 tm

  1 = 0 MS

  MX 1 = - RVS 3 . X 1 = - 1,83 X

  1 ≤ 3 )

  Bidang Momen Daerah S 3 – F ( 0 ≤X

  3 . 3 = 1,83 . 3 = 5,49 tm ( )

  MG = RVS

  M = 0

1 X

  Bidang Normal ≤

  Daerah G – F ( 0 ≤Y 1 5 ) NY = - RVG = - 1,83

1 Y = 0 NG = - 1,83 ton

  1 Y 1 = 5 NF = - 1,83 ton Gambar Keseluruhan Bidang Momen (M)

  P 1 = 2 t q 1 = 3,2 t/m q 2 = 1,5 t/m C B

  E S

  3 F m

  3 =

  1 h h

  2 =

  A 5 m

  G L 2 = 4 m L 3 = 4 m L

4 = 5 m L

5 = 4 m L 6 = 6 m L 7 = 3 m

  L 1 = 3 m

  • 29,6 tm

  2,44 m

  • 16 tm

  1,22 m

  • 12,68 tm
  • 5,49 tm
  • 5,

  49 tm 1,12 tm 2,5 tm

  • 5,

  49 tm C B 3 E A

  F S

  7 = 3 m L

  6 = 6 m G

  1 = 3 m L

  2 = 4 m L

  3 = 4 m L

  4 = 5 m L

  5

= 4 m L

  L

  Gambar Keseluruhan Bidang Lintang (Q)

  1 = 3,2 t/m P 1 = 2 t

  3 m q 2 = 1,5 t/m q

  1 =

  5 m h

  2 =

  1,22 m h

  • 1 t -1 t 1 t 1 t
  • >1,83 t 7,17 t
  • 1,8>7 t
  • 2,>2,99 t 13,8 t
  • 4,23 t - 4,23 t
  • Gambar Keseluruhan Bidang Normal (N)

      P 1 = 2 t q 1 = 3,2 t/m q 2 = 1,5 t/m C B

      E S

      3 F m

      3 =

      1 h h

      2 =

      A 5 m

      G L 2 = 4 m L 3 = 4 m L 4 = 5 m L 5 = 4 m L 6 = 6 m L 7 = 3 m

      L 1 = 3 m 2,99 t

    • 1,

      83 t 2,99 t

    • 1,

      83 t

      Penampang Balok Pot. I-I Pot. I-I

      P 1 = 2 t h

      2 =

      5 m h

      1 =

      3 m q

      2 = 1,5 t/m q

      1 = 3,2 t/m

      L L 7 = 3 m

    L 5 = 4 m

    L 4 = 5 m

      L 3 = 4 m L 2 = 4 m

      1 = 3 m

      L 6 = 6 m G F S

      3 E S

      2 S

      1 D C B A Pot. II-II Pot. II-II

      

    10 cm 10 cm

    30 cm 10 cm 50 cm

    • Hitunglah besar Tegangan Lentur, Tegangan Geser, dan Tegangan Normal pada potongan I-I dan II-II dengan penampang balok berbentuk U serta gambarkan?

      3 . y

      2 = 5 cm y

      3 y = . . . y = ( ) . ( ) . ( ) .

      ( ) ( ) ( )

      y = y = 11,67 cm

      x y x 3 = 45 cm x

      2 = 25 cm x

      1 = 5 cm y

      3 = 20 cm y

      2

      1

    = 20 cm

    F

      2 F

      3 F

      1

      2

      3

      1 10 cm

    10 cm 10 cm

    • F
    • F
    • F
    • F
    • F
    • F
    • F
    • F

      2 . y

      Menentukan Garis Netral (GN) Statis momen terhadap serat bawah

      2

      ( F

      1

      2

      3 ) x = F

      1 . x

      1

      2 . x

      3 . x

      1

      3 x = . . . x = ( ) . ( ) . ( ) .

      ( ) ( ) ( )

      x = x = 25 cm ( F

      1

      2

      3 ) y = F

      1 . y

      30 cm

    50 cm

    1 GN GN

      (25, 11,67) x = 25 cm F

      Momen Inersia

      I total

      = I

      20 cm

    50 cm

      10 cm y atas = 18,33 cm y bawah = 11,67 cm

    10 cm 10 cm

      3

      2

      1

      3 F

      3 = 8,33 cm a

    1 = 8,33 cm

    F

      2 a 2 = 6,67 cm a

    • I
    • I
    • F
    • F
    • F

      2 . h

      3

      1

      2

      3 I total = ( 1/12 . b

      1 . h

      1

      3

      1 . a

      1

      2 ) + ( 1/12 . b

      4

      = 6666,67 + 13877,78 + 4166,67 + 22244,45 + 6666,67 + 13877,78 I total = 67500,02 cm

      I total

      2 )

      2 ) + ( 1/12 . 10 . 20

      2

      3

      2 ) + ( 1/12 . 50 . 10

      3

      I total = ( 1/12 . 10 . 20

      2 )

      3

      3

      3

      3 . h

      2 ) + ( 1/12 . b

      2

      2 . a

      3

      3 . a

    • 200 . 8,33
    • 500 . 6,67
    • 200 . 8,33

      

    a a a

    F 1 a F 1 X 1 X 1 I

      I I

      I 18,33 cm

      GN GN

      III

      III

      III

      III 1,67 cm

      X 3 3 X F 3

    c c

    c c

    F 3

      10 cm

    II II

      2 X F 2

    b b

    10 cm 30 cm 10 cm

      ≤ Potongan I – I Daerah a – a s.d. GN – GN ( 0 ≤X 18,33 )

    1 SX = 10 . X ( 18,33 – ½ X ) + 10 . X ( 18,33 – ½ X )

      1

      1

      1

      1

      1

      3

      τ

      X 1 = 0 S a-a = 0 cm a-a = =

      ,

      3 X 1 = 18,33 S GN-GN = 10 . 18,33 ( 18,33 – ½ 18,33 ) + 10 . 18,33 ( 18,33 – ½ 18,33 ) = 3359,889 cm

      , τ

      GN-GN = =

      ,

      ≤ Potongan II – II Daerah b – b s.d. c – c ( 0 ≤X 10 )

      2 SX 2 = 50 . X 2 ( 11,67 – ½ X 2 )

      3

      τ

      X 2 = 0 S b-b = 0 cm b-b = =

      ,

      3 X = 10 S = 50 . 10 ( 11,67 – ½ 10 ) = 3335 cm 2 c-c

      τ

      = = c-c

      ,

      ≤ Potongan III – III Daerah c – c s.d. GN – GN ( 0 ≤X 3 1,67 ) SX = 50 . 10. 6,67 + 10 . X ( 1,67 – ½ X ) + 10 . X ( 1,67 – ½ X )

      3

      3

      3

      3

      3

      3

      τ

      X = 0 S = 3335 cm = = 3 c-c c-c

      ,

      3 X = 1,67 S = 3335 + 10 . 1,67 ( 1,67 – ½ 1,67 ) + 10 . 1,67 ( 1,67 – ½ 1,67 ) = 3362,889 cm

      3 GN-GN

      , τ

      = = GN-GN

      , Momen potongan I-I Tinjau Kiri : M I-I = RVS 1 . 2,5 M

      I-I = 1 . 2,5 = 2,5 tm

      2 ( Tarik + )

      = 67,89 kg/cm

      2 ( Tekan - )

      σ

      bawah = =

      ,

      = 43,22 kg/cm

      L

      atas = =

      4 = 5 m Pot. I-I

      Pot. I-I RHS

      1 RVS

      2 RVS

      1 P 1 = 2 t S

      2 S

      ,

      σ

      M I-I

      σ

      = 250000 kgcm Lintang potongan I-I Tinjau Kiri : Q I-I = RVS

      1 Q I-I

      = 1 = 1 ton Q I-I = 1000 kg

      Normal potongan I-I Tinjau Kiri : N I-I = - RHS

      1 N I-I

      = 0 kg Tegangan Lentur

      = W atas

      3

      = =

      , ,

      = 3682,49 cm

      3 W bawah = =

      , ,

      = 5784,06 cm

      1 Catatan : Jika tampang balok mengalami lenturan positif, maka tegangan tekan terjadi di serat atas dan tegangan tarik di serat bawah. Tegangan Geser ≤

      Potongan I – I Daerah a – a s.d. GN – GN ( 0 ≤X 1 18,33 ) SX = 10 . X ( 18,33 – ½ X ) + 10 . X ( 18,33 – ½ X )

      1

      1

      1

      1

      1

      3

      2

      τ

      X = 0 S = 0 cm = = = 0 kg/cm 1 a-a a-a

      ,

      3 X = 18,33 S = 10 . 18,33 ( 18,33 – ½ 18,33 ) + 10 . 18,33 ( 18,33 – ½ 18,33 ) = 3359,889 cm

      1 GN-GN

      ,

      2

      τ

      = = = 2,49 kg/cm GN-GN

      ,

      ≤ Potongan II – II Daerah b – b s.d. c – c ( 0 ≤X 10 )

    2 SX = 50 . X ( 11,67 – ½ X )

      2

      2

      2

      3

      2

      τ

      X = 0 S = 0 cm = = = 0 kg/cm 2 b-b b-b

      ,

      3 X 2 = 10 S c-c = 50 . 10 ( 11,67 – ½ 10 ) = 3335 cm

      2

      τ

      c-c = = = 0,99 kg/cm

      ,

      ≤ Potongan III – III Daerah c – c s.d. GN – GN ( 0 ≤X 1,67 )

      3 SX 3 = 50 . 10. 6,67 + 10 . X 3 ( 1,67 – ½ X 3 ) + 10 . X 3 ( 1,67 – ½ X 3 )

      3

      2

      τ

      X 3 = 0 S c-c = 3335 cm c-c = = = 2,47 kg/cm

      ,

      3 X = 1,67 S = 3335 + 10 . 1,67 ( 1,67 – ½ 1,67 ) + 10 . 1,67 ( 1,67 – ½ 1,67 ) = 3362,889 cm

      3 GN-GN

      ,

      2

      τ

      = = = 2,49 kg/cm GN-GN

      ,

      Tegangan Normal

      σ

      =

      σ

      =

      σ

      =

      2

      σ

      = 0 kg/cm Momen potongan II-II Tinjau Kiri : M

      II-II = - RVS

      2 ( Tekan - )

      atas = =

      ,

      = - 434,49 kg/cm

      2 ( Tarik + )

      σ

      bawah = =

      ,

      = - 276,62 kg/cm

      L

      3

      5 = 4 m L

      6 = 6 m Pot. II-II

      Pot. II-II RHE RVS

      3 RVE RVS

      2 q

      2 = 1,5 t/m S

      3 E S

      2 ( q 2 . 4 )

      σ

      = 5784,06 cm

      2 . 4 – ( q

      Normal potongan II-II Tinjau Kiri : N

      2 . 4 ) 2

      M

      II-II = - 1 . 4 – ( 1,5 . 4 ) 2 = - 16 tm M

      II-II = - 1600000 kgcm

      Lintang potongan II-II Tinjau Kiri : Q

      II-II = - RVS 1 – ( q 2 . 4 ) Q

      II-II = - 1 – ( 1,5 . 4 )= - 7 ton Q

      II-II = - 7000 kg

      II-II = - RHE N

      , ,

      II-II = 0 kg

      Tegangan Lentur

      σ

      = W atas

      = =

      , ,

      = 3682,49 cm

      3 W bawah = =

      Catatan : Jika tampang balok mengalami lenturan negatif, maka tegangan tarik terjadi di serat atas dan tegangan tekan di serat bawah. Tegangan Geser ≤

      Potongan I – I Daerah a – a s.d. GN – GN ( 0 ≤X 1 18,33 ) SX = 10 . X ( 18,33 – ½ X ) + 10 . X ( 18,33 – ½ X )

      1

      1

      1

      1

      1

      3

      2

      τ

      X = 0 S = 0 cm = = = 0 kg/cm 1 a-a a-a

      ,

      3 X = 18,33 S = 10 . 18,33 ( 18,33 – ½ 18,33 ) + 10 . 18,33 ( 18,33 – ½ 18,33 ) = 3359,889 cm

      1 GN-GN

      

    ,

      2

      τ

      = = = - 17,42 kg/cm GN-GN

      

    ,

      ≤ Potongan II – II Daerah b – b s.d. c – c ( 0 ≤X 10 )

    2 SX = 50 . X ( 11,67 – ½ X )

      2

      2

      2

      3

      2

      τ

      X = 0 S = 0 cm = = = 0 kg/cm 2 b-b b-b

      ,

      3 X 2 = 10 S c-c = 50 . 10 ( 11,67 – ½ 10 ) = 3335 cm

      2

      τ

      c-c = = = - 6,92 kg/cm

      ,

      ≤ Potongan III – III Daerah c – c s.d. GN – GN ( 0 ≤X 1,67 )

      3 SX 3 = 50 . 10. 6,67 + 10 . X 3 ( 1,67 – ½ X 3 ) + 10 . X 3 ( 1,67 – ½ X 3 )

      3

      2

      τ

      X 3 = 0 S c-c = 3335 cm c-c = = = - 17,29 kg/cm

      ,

      3 X = 1,67 S = 3335 + 10 . 1,67 ( 1,67 – ½ 1,67 ) + 10 . 1,67 ( 1,67 – ½ 1,67 ) = 3362,889 cm

      3 GN-GN

      

    ,

      2

      τ

      = = = - 17,42 kg/cm GN-GN

      

    ,

      Tegangan Normal

      σ

      =

      σ

      =

      σ

      =

      2

      σ

      = 0 kg/cm Gambar Tegangan Lentur, Tegangan Geser, dan Tegangan Normal Tegangan Normal (σ)

      τ GN-GN

      = 2,49 kg/cm 2 τ c-c = 2,47 kg/cm 2 τ c-c

      = 0,99 kg/cm 2 τ b-b = 0 kg/cm 2 τ a-a

      = 0 kg/cm 2 σ = 43,22 kg/cm

    2

    σ

      = 67,89 kg/cm 2 c c c c b b a a a a

      GN GN 1,67 cm 18,33 cm

      10 cm 10 cm 10 cm 30 cm

      Tegangan Lentur (σ) Tegangan Geser (τ) Tegangan Normal (σ)

      τ GN-GN = - 17,42 kg/cm 2

      τ c-c = - 17,29 kg/cm 2 τ c-c = - 6,92 kg/cm 2 τ b-b = 0 kg/cm 2 τ a-a = 0 kg/cm 2

      σ = - 276,62 kg/cm 2 σ = - 434,49 kg/cm 2 c c c c b b a a a a

      GN GN 1,67 cm 18,33 cm

      10 cm 10 cm 10 cm 30 cm

      Tegangan Lentur (σ) Tegangan Geser (τ)

Dokumen yang terkait

Seaweed Diversity and Conservation on the Warambadi Seashore of Sumba Island: Substrata and Seasonal Phenomenon Keragaman Jenis dan Konservasi Rumput Laut di Pantai Warambadi Pulau Sumba: Fenomena Substrat dan Musim

0 0 10

Laju Produksi dan Karakterisasi Polutan Organik Lindi dari TPA Kaliwlingi, Kabupaten Brebes Production Rate and Organic Pollutant Characterization Leachate from Kaliwlingi Landfill, Brebes Region

0 0 8

Reduksi Logam Berat Cd(II) dan Cr(IV) Pada Sistem Kontinyu Menggunakan Phanerochaete chrysosporium Yang Diradiasi Sinar Gamma Heavy Metal Reduction of Cd (II) and Cr (IV) In Continuous System Using Gamma Rays Irradiated Phanerochaete chrysosporium

0 0 10

View of Perancangan Aplikasi Prediksi Kelulusan Mahasiswa Tepat Waktu Pada Universitas Buddhi Dharma Menggunakan Perbandingan Algoritma C4.5 dan K-NN

0 4 8

View of Perancangan Aplikasi Prediksi Kelulusan Mahasiswa Tepat Waktu Pada Universitas Buddhi Dharma Menggunakan Perbandingan Algoritma C4.5 dan K-NN

0 2 8

KAJIAN PENGARUH NILAI CBR SUBGRADE TERHADAP TEBAL PERKERASAN JALAN (Studi Komparasi CBR Kecamatan Nisam Antara, Kecamatan Sawang dan Kecamatan Kuta Makmur)

0 1 10

EVALUASI KINERJA SIMPANG TIGA TAK BERSINYAL (Studi Kasus Simpang Polantas Cunda dan Simpang Selat Malaka Kota Lhokseumawe)

2 11 10

ANALISA KOORDINASI SINYAL ANTAR SIMPANG DENGAN MENGGUNAKAN SOFTWARE TRANSYT 14 (Studi Kasus Simpang Empat dan Simpang BPD Kota Lhokseumawe)

0 4 10

BAB I PENDAHULUAN - Bangunan Pantai (Pelabuhan)

0 0 26

BAB I PENDAHULUAN - PTM/Alat-Alat Berat

0 1 62