PENGARUH RELATIVE ROUGHNESS PITCH TERHADAP KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PLAT PENYERAP DENGAN KEKASARAN BUATAN TRANSVERSE CONTINUOUS RIBS DALAM SALURAN PEMANAS UDARA SURYA.

perpustakaan.uns.ac.id

digilib.uns.ac.id

PENGARUH RELATIVE ROUGHNESS PITCH TERHADAP
KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN
PADA PLAT PENYERAP DENGAN KEKASARAN BUATAN
TRANSVERSE CONTINUOUS RIBS DALAM SALURAN PEMANAS
UDARA SURYA

SKRIPSI
Diajukan sebagai salah satu syarat
untuk memperoleh gelar
Sarjana Teknik

Oleh:
BAYU ANGKASAWAN
NIM. I1409009

JURUSAN TEKNIK MESIN FAKULTAS TEKNIK
UNIVERSITAS SEBELAS MARET

SURAKARTA
2015
i

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

ii

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

iii


commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

MOTTO
And whatever you do in word or deed,
do it all in the name of the Lord Jesus,
giving thanks to God the Father through him.
(Colossians 3: 17)
So then, do not worry about tomorrow,
for tomorrow will worry about itself.
Today has enough trouble of its own.
(Matthew 6: 34)
Aku tidak selalu memperoleh apa yang aku minta,
tetapi doaku selalu dijawab-Nya.
(Pdt. Eka Darmaputra)
Bakat yang akan membawa seseorang ke puncak,
tetapi karakternya yang membuat bertahan disana.

(Ps. Jeffrey Rachmad)
Don’t expect your friend to be a perfect person,
but help your friend to become a perfect person,
that’s true friendship.
(Mother Theresa)
Limitations live only in our minds.
But if we use our imaginations, our possibilities become
limitless
(Jamie Paolinetti)
If i'd had some set idea of a finish line,
don't you think i would have crossed it years ago?
(Bill Gates)
Believe and trust in faith.
(Bayu Angkasawan)

iv

commit to user

perpustakaan.uns.ac.id


digilib.uns.ac.id

PERSEMBAHAN
Dengan segala kerendahan hati seraya mengucapkan syukur kehadirat
Tuhan Yang Maha Esa, kupersembahkan tulisan ini kepada :
1. Jesus my savior.
2. Bapak Immanuel Suwarman, S.Pd., dan Ibu Sri Hatnyonowati, S.Pd., atas kasih
sayangnya yang tak pernah terbatas.
3. Kakakku Agni Dian Satriawan dan istrinya Mbak Devi.
4. Tessalonika Natalia Djie, i believe and trust in faith that you would be my wife.
5. Pak Tri Istanto dan Pak D. Danardono yang dengan sabar dan tak kenal lelah
selalu siap setiap waktu dalam membimbing skripsi saya.
6. Arif Rochman Hakim dan Abdul Azis Hidayat Taufik, selamanya tak akan
terlupakan perjuangan kita dalam mengerjakan skripsi.
7. Dandun Mahesa, Sigit Nugroho, Hari Setiawan, Erwan Setya Putra, Hafidz
Anwar, Tyas Ariwobowo, Himawan Rosyiyadi, Bernadus Nanang, Faiz
Kusuma dan Sutiyono.
8. Seluruh Pemuda dan Remaja Kizzmo.


v

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

EFFECT OF RELATIVE ROUGHNESS PITCH ON HEAT TRANSFER AND
FRICTION FACTOR CHARACTERISTICS ON ABSORBER PLATE WITH
TRANSVERSE CONTINUOUS RIBS ARTIFICIAL ROUGHNESS IN SOLAR
AIR HEATER DUCT
Bayu Angkasawan
Mechanical Engineering Department
Engineering Faculty Sebelas Maret University
Surakarta, Indonesia
E-mail: bayu.angkasawan@yahoo.com
Abstract
This study was conducted to examine the effect of relative roughness pitch (p/e)
on the characteristics of heat transfer and friction factor on absorber plate with transverse

continuous ribs artificial roughness in solar air heater duct. In this study, relative
roughness pitch with transverse continuous ribs (p/e) was varied at 8, 9, 10 and 11. Solar
air heater duct having the duct aspect ratio (W/H) was 12, and constant relative roughness
height (e/Dh) value at 0.033. To simulate the indoor testing of solar air heater, the
absorber plate was heated by an electric heater that provided constant heat flux of 1000
W/m2. While the others sides of duct were insolated. Tests were performed on the air
flow Reynolds number (Re) of 3440 – 9990. The results of heat transfer and friction
factor have been compared with smooth plate under similar flow and thermal boundary
condition to determine the enhancement in heat transfer and friction factor. The results
showed that the Nusselt number and friction factor of the absorber plate with transverse
continuous ribs artificial roughness increases with the increase in the value of p/e until it
reaches a maximum at p/e = 10, after that experienced a decline. Nusselt number of the
absorber plate with transverse continuous ribs artificial roughness increase in the range of
32% - 47%, 44% - 64%, 57% - 92% and 35% - 55% compared to smooth plate for the
values of p/e = 8, 9, 10 and 11, respectively. Maximum enhancement of friction factor of
the absorber plate with transverse continuous ribs artificial roughness was obtained of
1.58, 1.74, 1.87 and 1.66 times friction factor of smooth plate for the values of p/e = 8, 9,
10 and 11, respectively. Maximum enhancement of Nusselt number and friction factor of
the absorber plate with transverse continuous ribs artificial roughness was obtained
respectively of 1.92 and 1.87 times compared to smooth plate at p/e = 10 and at Re =

9880 and Re = 3460, respectively. Thermo-hydraulic performance values of the absorber
plate with transverse continuous ribs artificial roughness in the range of 1.00 – 1.18, 1.02
– 1.21, 1.04 – 1.22 and 1.05 – 1.24 for the values of p/e = 8, 9, 10 and 11, respectively.
Using experimental data correlations for Nusselt number and friction factor have also
been developed for such solar air heater, which gives a good agreement between
predicted values and experimental values of Nusselt number and friction factor.
Keywords:

absorber plate, artificial roughness, relative roughness pitch, solar air
heater, transverse continuous ribs.

vi

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

PENGARUH RELATIVE ROUGHNESS PITCH TERHADAP KARAKTERISTIK

PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PLAT PENYERAP
DENGAN KEKASARAN BUATAN TRANSVERSE CONTINUOUS RIBS DALAM
SALURAN PEMANAS UDARA SURYA
Bayu Angkasawan
Jurusan Teknik Mesin
Fakultas Teknik Universitas Sebelas Maret
Surakarta, Indonesia
E-mail: bayu.angkasawan@yahoo.com
Abstrak
Penelitian ini dilakukan untuk menguji pengaruh relative roughness pitch (p/e)
terhadap karakteristik perpindahan panas dan faktor gesekan pada plat penyerap dengan
kekasaran buatan transverse continuous ribs dalam saluran pemanas udara surya. Pada
penelitian ini, p/e divariasi sebesar 8, 9, 10 dan 11. Saluran pemanas udara surya
mempunyai duct aspect ratio (W/H) sebesar 12, dan relative roughness height (e/Dh)
konstan sebesar 0,033. Untuk mensimulasikan pengujian pemanas udara surya di dalam
ruangan, plat penyerap dipanaskan dengan pemanas listrik yang memberikan fluks kalor
konstan sebesar 1000 W/m2 dan sisi saluran lainnya diisolasi. Pengujian dilakukan pada
bilangan Reynolds aliran udara (Re) sebesar 3440 – 9990. Hasil perpindahan panas dan
faktor gesekan dibandingkan dengan plat penyerap halus (smooth plate) dibawah kondisi
aliran udara dan kondisi batas termal yang sama untuk menentukan peningkatan

perpindahan panas dan faktor gesekan. Hasil penelitian menunjukkan bahwa bilangan
Nusselt dan faktor gesekan dari plat penyerap dengan kekasaran buatan transverse
continuous ribs meningkat dengan kenaikan p/e hingga mencapai maksimum pada p/e
=10, setelah itu mengalami penurunan. Bilangan Nusselt plat penyerap dengan kekasaran
buatan transverse continuous ribs meningkat dalam kisaran 32% - 47%, 44% - 64%, 57%
- 92% dan 35% - 55% dibandingkan dengan smooth plate berturut-turut untuk nilai p/e=8,
9, 10 dan 11. Peningkatan faktor gesekan plat penyerap dengan kekasaran buatan
transverse continuous ribs maksimum didapatkan sebesar 1,58; 1,74; 1,87 dan 1,66 kali
faktor gesekan smooth plate berturut-turut untuk nilai p/e =8, 9, 10 dan 11. Peningkatan
bilangan Nusselt dan faktor gesekan maksimum dari plat penyerap dengan kekasaran
buatan transverse continuous ribs didapatkan berturut-turut 1,92 dan 1,87 kali
dibandingkan smooth plate pada p/e = 10 dan berturut-turut pada Re = 9880 dan Re =
3460. Nilai unjuk kerja termohidrolik plat penyerap dengan kekasaran buatan transverse
continuous ribs dalam kisaran1,00 – 1,18; 1,02 – 1,21; 1,04 - 1,22 dan 1,05 – 1,24
berturut-turut untuk nilai p/e =8, 9, 10 dan 11. Menggunakan data eksperimen, korelasikorelasi untuk bilangan Nusselt dan faktor gesekan juga dikembangkan untuk pemanas
udara surya dan memberikan kesesuaian yang baik antara nilai-nilai prediksi dan nilainilai eksperimen dari bilangan Nusselt dan faktor gesekan.
Kata kunci:

kekasaran buatan, pemanas udara surya, plat penyerap, relative roughness
pitch, transverse continuous ribs.


vii

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

KATA PENGANTAR
Segala puji syukur penulis hadapkan kepada Tuhan Yang Maha Esa, atas
segala kebesaran dan anugerah-Nya sehingga penulis dapat melaksanakan dan
menyelesaikan skripsi ini.
Skripsi ini membahas Pengaruh Relative Roughness Pitch Terhadap
Karakteristik Perpindahan Panas Dan Faktor Gesekan Pada Plat Penyerap Dengan
Kekasaran Buatan Transverse Continuous Ribs Dalam Saluran Pemanas Udara
Surya. Skripsi ini di susun guna memenuhi persyaratan untuk memperoleh gelar
Sarjana Teknik di Fakultas Teknik Jurusan Teknik Mesin Universitas Sebelas
Maret Surakarta.
Dalam Mengerjakan Skripsi ini penulis banyak mendapat bantuan dari

berbagai pihak baik secara lansung dan tidak langsung yang sangat berarti dan
bermanfat hingga selesai. Oleh karena itu pada kesempatan ini penulis ingin
menyampaikan rasa terima kasih yang sebesar besarnya kepada semua pihak yang
telah membantu dalam menyelesaikan Skripsi ini, terutama kepada:
1. Bapak Prof. Dr. Kuncoro Diharjo, ST., MT, selaku Dekan Teknik Universitas
Sebelas Maret Surakarta.
2. Bapak Didik Djoko Susilo, ST., MT, selaku Ketua Jurusan Teknik Mesin
Universitas Sebelas Maret Surakarta.
3. Bapak Tri Istanto, ST, MT, selaku Dosen Pembimbing Skripsi I dan
Pembimbing Akademik yang telah memberikan petunjuk dan bimbingannya
hingga penulis dapat menyelesaikan Skripsi ini.
4. Bapak D. Danardono, ST., MT., PhD, selaku Pembimbing Skripsi II yang
telah turut serta memberikan bimbingan yang berharga bagi penulis.
5. Bapak Dr Eng. Syamsul Hadi, ST., MT, dan Bapak Dr. Budi Santoso, ST., MT,
selaku Dosen Penguji Tugas Akhir yang telah memberi saran dan masukan
yang membangun.
6. Seluruh Dosen, Asisten dan Staf Laboratorium Teknik Mesin Universitas
Sebelas Maret Surakarta yang telah memberikan bantuan pikiran dan
tenaganya dalam proses kuliah penulis hingga menyelesaikan studi S1.

viii

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

7. Arif Rochman Hakim dan Abdul Azis Hidayat Taufik yang telah menjadi
teman

seperjuangan dalam pembuatan alat,

pengambilan data

dan

penyelesaian penulisan Skripsi.
8. Teman-teman Jurusan Teknik Mesin Non Reguler Angkatan 2009 Universitas
Sebelas Maret Surakarta.
9. Rekan-rekan Mahasiswa Jurusan Teknik Mesin Universitas Sebelas Maret
Surakarta.
10. Dan semua pihak yang telah memberikan sumbangan pikiran kepada penulis
yang tidak dapat disebutkan satu persatu.
Penulis menyadari bahwa dalam penyusunan Skripsi ini masih banyak
kekurangan dan masih jauh dari harapan, mengingat terbatasnya waktu untuk
analisa dan dan keterbatasan kemampuan yang dimiliki penulis. Oleh karena itu
penulis mengharapkan adanya kritik dan saran yang bersifat membangun dari
semua pihak untuk memperbaiki dan menyempurnakan penulisan Skripsi ini.
Demikianlah semoga Skripsi ini dapat bermanfaat bagi adik-adik Angkatan
Teknik Mesin Universitas Sebelas Maret Surakarta dan para pembaca. Terima
kasih.
Surakarta, April 2015
Penulis

ix

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR ISI

Halaman
Halaman Judul .......................................................................................

i

Halaman Surat Penugasan ......................................................................

ii

HalamanPengesahan ..............................................................................

iii

Halaman Motto ......................................................................................

iv

Halaman Persembahan ...........................................................................

v

Abstrak ..................................................................................................

vi

Kata Pengantar .......................................................................................

viii

Daftar Isi ..............................................................................................

x

Daftar Tabel...........................................................................................

xiii

Daftar Gambar .......................................................................................

xiv

Daftar Persamaan ...................................................................................

xvi

Daftar Notasi .........................................................................................

xix

Daftar Lampiran.....................................................................................

xx

BAB I

PENDAHULUAN
1.1. Latar Belakang Masalah ...................................................

1

1.2. Perumusan Masalah ..........................................................

3

1.3. Batasan Masalah ...............................................................

3

1.4. Tujuan Dan Manfaat .........................................................

3

1.5. Sistematika Penulisan .......................................................

4

BAB II LANDASAN TEORI
2.1. Tinjauan Pustaka ..............................................................

5

2.2. Dasar Teori .......................................................................

7

2.2.1. Dasar perpindahan panas .........................................

7

2.2.2. Parameter Tanpa Dimensi .......................................

8

2.2.3. Keseimbangan Energi dan Efisiensi Pemanas Udara
Surya Konvensional ...............................................

9

2.2.4. Konsep Kekasaran Buatan (Artifical Roughness) .....

11

2.2.5. Metodologi Kekasaran Buatan ................................

12

2.2.6. Perpindahan Panas Dengan Pemisahan Aliran (Flow

x

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

Separation) dan Penggabungan
Kembali (Reattachment) ......................................
2.2.7.

14

Geometri Kekasaran Yang Digunakan Dalam Saluran
Pemanas Udara Surya ...........................................

16

2.2.8. Perhitungan Perpindahan Panas Dan Faktor Gesekan
Pada Saluran Pemanas Udara Surya Segi Empat
Dengan Kekasaran Buatan ...................................

18

BAB III METODOLOGI PENELITIAN
3.1. Tempat Penelitian .............................................................

24

3.2. Alat Penelitian ..................................................................

24

3.2.1. Susunan Alat Penelitian...........................................

24

3.2.2. Instrumentasi...........................................................

29

3.3. Geometri Kekasaran Buatan dan Parameter Penelitian ......

31

3.4. Diagram Alir Penelitian ....................................................

34

3.5. Prosedur Penelitian ...........................................................

36

3.5.1. Persiapan Pengambilan Data ...................................

36

3.5.2. Pengujian Pemanas Udara Surya Dengan Smooth
Absorber Plate ........................................................

36

3.5.3. Pengujian Pemanas Udara Surya Dengan Roughness
Absorber Plate ........................................................

37

3.6. Metode Analisis Data........................................................

38

BAB IV DATA DAN ANALISIS
4.1. Data Hasil Pengujian ........................................................

39

4.2. Perhitungan Data ..............................................................

40

4.2.1. Contoh perhitungan data untuk kecepatan udara
rata-rata di pipa keluar 11,28 m/s untuk plat
penyerap

dengan transverse continuous ribs

(p/e=10) .................................................................

40

4.3. Analisa Data ....................................................................

45

xi

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

4.3.1. Pengaruh Relative Roughness Pitch Terhadap
Karakteristik Perpindahan Panas .................................

45

4.3.2. Pengaruh Relative Roughness Pitch Terhadap
Karakteristik Faktor Gesekan ......................................

48

4.3.3. Pengaruh Relative Roughness Pitch Terhadap
Karakteristik Unjuk Kerja Termohidrolik ...................

51

BAB V PENUTUP
5.1. Kesimpulan......................................................................

55

5.2. Saran ...............................................................................

56

DAFTAR PUSTAKA ............................................................................

57

LAMPIRAN ..........................................................................................

60

xii

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR TABEL

Halaman
Tabel3.1. Parameter Penelitian ............................................................

33

Tabel 4.1. Hasil perhitungan karakteristik perpindahan panas dan
factor gesekan pada smooth plate dan plat penyerap dengan
transverse continuous ribs ...................................................

xiii

commit to user

43

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR GAMBAR
Halaman
Gambar 2.1. Ilustrasi jenis-jenis perpindahan panas .............................

7

Gambar 2.2. Sketsa keseimbangan energi dari pemanas udara surya ....

9

Gambar 2.3. Pengaruh elemen kekasaran terhadap medan aliran .........

13

Gambar 2.4. Pola aliran tergantung pada relative roughness height .....

14

Gambar 2.5. Aliran dengan tranverse square ribs ................................

14

Gambar 2.6. Ribs dengan pemisahan aliran dan penggabungan
kembali ...........................................................................

15

Gambar 2.7. Pola aliran tergantung pada relative roughness pitch .......

15

Gambar 2.8. Plat penyerap kasar dengan transverse continous wire.....

17

Gambar 2.9. Plat penyerap kasar dengan tranverse broken ribs ...........

17

Gambar 2.10. Plat penyerap kasar dengan inclined ribs .........................

17

Gambar 2.11. Plat penyerap kasar dengan tranverse, inclined dan V
shape ribs........................................................................

18

Gambar 2.12. Gambar susunan alat penelitian .......................................

18

Gambar 3.1. Susunan alat penelitian ....................................................

24

Gambar 3.2. Skema alat penelitian ......................................................

25

Gambar 3.3. Alat penelitian .................................................................

25

Gambar 3.4. Potongan melintang seksi uji ...........................................

26

Gambar 3.5. Pemanas listrik ................................................................

27

Gambar 3.6

Skema Pemanas listrik.....................................................

27

Gambar 3.7. Voltage regulator ............................................................

27

Gambar 3.8. Thermocouple reader ......................................................

28

Gambar 3.9. Lokasi termokopel pengukur temperatur permukaan plat
penyerap, temperatur udara masuk seksi uji dan
temperatur udara keluar seksi uji .....................................

29

Gambar 3.10. Lokasi termokopel pengukur temperatur udara keluar
seksi uji ...........................................................................

29

Gambar 3.11 Pipa pitot (Extech HD 350) .............................................

30

Gambar 3.12 Blower hisap ...................................................................

30

Gambar 3.13 Mikromanometer (FLUKE922). ......................................

31

xiv

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

Gambar 3.14 Lokasi tap tekanan udara .................................................

31

Gambar 3.15 Nomenklatur relative roughness pitch (p/e) pada
transverse continuous ribs ...............................................

32

Gambar 3.16 Foto Smooth absorber plate ............................................

33

Gambar 3.17 Foto Plat penyerap dengan transverse continuous ribs
(p/e) = 8 ..........................................................................

33

Gambar 3.18 Foto Plat penyerap dengan transverse continuous ribs
(p/e) = 9 ..........................................................................

33

Gambar 3.19 Foto Plat penyerap dengan transverse continuous ribs
(p/e) = 10 ........................................................................

34

Gambar 3.20 Foto Plat penyerap dengan transverse continuous ribs
(p/e) = 11 ........................................................................

34

Gambar 4.1. Grafik hubungan antara Nu dengan Re ............................

45

Gambar 4.2. Pola aliran melalui kekasaran buatan Transverse
Continuous Ribs ..............................................................

46

Gambar 4.3. Grafik hubungan Nu dengan (p/e)....................................

48

Gambar 4.4. Grafik hubungan f dengan Re ..........................................

49

Gambar 4.5. Grafik hubungan f dengan (p/e) .......................................

51

Gambar 4.6. Perbandingan antara bilangan Nusselt hasil eksperimen
dengan prediksi hasil korelasi ..........................................

53

Gambar 4.7. Perbandingan antara faktor gesekan hasil eksperimen
dengan prediksi hasil korelasi ..........................................

53

Gambar 4.8. Grafik hubungan dengan Re .........................................

54

xv

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR PERSAMAAN

Halaman
Persamaan (2.1)

Bilangan Reynolds ...................................................

8

Persamaan (2.2)

Bilangan Prandtl .......................................................

9

Persamaan (2.3)

Bilangan Nusselt ......................................................

9

Persamaan (2.4)

Persamaan keseimbangan energi...............................

9

Persamaan (2.5)

Perolehan energi berguna ........................................

10

Persamaan (2.6)

Faktor pelepasan panas kolektor ...............................

10

Persamaan (2.7)

Faktor efisiensi kolektor ...........................................

10

Persamaan (2.8)

Efisiensi termal dari kolektor ....................................

10

Persamaan (2.9)

Laju aliran massa udara (

u) ....................................

19

Persamaan (2.10) Laju perpindahan panas ke udara ..............................

19

Persamaan (2.11) Laju perpindahan panas ke udara ..............................

19

Persamaan (2.12) Laju perpindahan panas ke udara ..............................

19

Persamaan (2.13) Laju perpindahan panas ke udara ..............................

20

Persamaan (2.14) Laju perpindahan panas ke udara ..............................

20

Persamaan (2.15) Laju perpindahan panas ke udara ..............................

20

Persamaan (2.16) Koefisien perpindahan panas konveksi (h) ................

20

Persamaan (2.17) BilanganNusselt rata-rata (Nu) .................................

21

Persamaan (2.18) Faktor Gesekan di Saluran Udara Persegi Empat (f)..

21

Persamaan (2.19) BilanganReynolds (Re).............................................

22

Persamaan (2.20) Laju massa udara ( ) ...............................................

22

Persamaan (2.21) Laju massa udara ( ) di saluran udara seksi uji ........

22

Persamaan (2.22) Kecepatan udara (V ) di saluran udara seksi uji.. .......

22

Persamaan (2.23) Bilangan Reynolds Kekasaran (Roughness Reynolds
number) ....................................................................
Persamaan (2.24) Parameter Unjuk KerjaTermohidrolik (

22

.................

23

Persamaan (4.1)

Hidraulically smooth flow regine..............................

49

Persamaan (4.2)

Transitionally rough flowregine ..............................

49

Persamaan (4.3)

Completelly rough flowregine..................................

49

xvi

commit to user

perpustakaan.uns.ac.id

Persamaan (4.4)

digilib.uns.ac.id

Pengaruh

relative

roughness

pitch

terhadap

karakteristik unjuk kerja termohidrolik .....................
Persamaan (4.5)

Korelasi empirik untuk bilangan Nusselt untuk
smooth plate .............................................................

Persamaan (4.6)

dengan kekasaran buatan transverse

continuous ribs .........................................................

52

Korelasi empirik untuk faktor gesekan untuk plat
penyerap

dengan kekasaran buatan transverse

continuous ribs .........................................................
Persamaan (4.9)

52

Korelasi empirik untuk bilangan Nusselt untuk plat
penyerap

Persamaan (4.8)

52

Korelasi empirik untuk faktor gesekan untuk smooth
plate .........................................................................

Persamaan (4.7)

51

52

Bilangan Reynolds untuk smooth plate (Res) sebagai
fungsi bilangan Reynolds plat penyerap dengan
kekasaran

buatan

menggunakan

transverse

continuous ribs (Rer) ................................................

52

Persamaan (4.10) Korelasi empirik unjuk kerja termohidrolik sebagai
fungsi Rer dan (p/e)...................................................

xvii

commit to user

53

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR NOTASI

A

= Luas penampang saluran persegi empat (m2) = W.H

e

= Ketinggian elemen kekasaran (mm)

f

= Faktor gesekan

H

= Koefisien perpindahan panas konveksi (W/m2.oC)

H

= Tinggi saluran persegi empat (m)

I

= Arus listrik (A)

I

= Intensitas insolation (W/m2)

L

= Panjang jarak pengukuran penurunan tekanan di seksi uji (m)

P

= Keliling saluran persegi empat (m) = 2(W + H)

p

= Pitch (mm)

R

= Faktor konversi

V

= Diffusifitas momentum

V

= Kecepatan udara(m/s)

V

= Tegangan listrik (Volt)

V

= Viskositas kinematik udara di seksi uji (m2/s)

W

= Lebar saluran persegi empat (m)

Ap

= Luas penampang pipa keluar (m2)

Ap

= Luas plat penyerap(absorber plate) (m2)

Cp

= Panas jenis udara pada tekanan konstan (kJ/kg.oC)

Dh

= Diameter hidrolik saluran persegi empat (m)

e+

= Bilangan Reynolds kekasaran (roughness reynolds number)

F'

= Faktor efisiensi kolektor

Fi

= Gaya Inersia (N)

fr

= Faktor gesekan pada saluran dengan kekasaran buatan

Fr

= Faktor pelepasan panas kolektor

fs

= Faktor gesekan pada saluran halus (smooth duct)

Fs

= Gaya Kekentalan

he

= Koefisien perpindahan panas efektif antara plat penyerap dan udara
yang mengalir

xviii

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

= Konduktivitas termal udara di seksi uji (W/m.oC)

kf
u

= Laju aliran massa udara (kg/s)

Nu

= Bilangan Nusselt

Nur

= Bilangan Nusselt pada saluran dengan kekasaran buatan

Nus

= Bilangan Nusselt pada saluran halus (smooth duct)

Pr

= Bilangan Prandtl

Q1

= Kehilangan energi dari kolektor

Qa

= Energi yang di serap oleh plat penyerap

Q elect

= Input panas listrik (Watt)

Qloss

= Heat loss (Watt)

Qrad

= Heat loss radiasi (Watt)

Qu

= Laju perpindahan panas ke udara (watt)

Qu

= Perolehan energi berguna (Watt)

Re

= Bilangan Reynolds

Ta

= Temperatur lingkungan (oC)

Tfm

= Temperatur udara rata-rata bulk (oC)

Ti

= Temperatur udara masuk saluran (oC)

To

= Temperatur udara keluar saluran (oC)

Tpm

= Temperatur plat rata-rata (oC)

U1

= Koefisien kehilangan overall(W/m2.oC)

Vp

= Kecepatan rata-rata aliran udara di pipa keluar (m/s)

Vs

= Kecepatan rata-rata udara di seksi uji (m/s)
= Diffusifitas termal(m2/s)
= Sudut serang (angle of attack) ( ° )
= Penurunan tekanan (pressure drop) melalui seksi uji (Pa)

p

= Massa jenis udara di pipa keluar (kg/m3)

s

= Densitas udara di seksi uji (kg/m3)

(e/D)

= Relative roughness height

(p/e)

= Relative roughness pitch
= Perkalian absorptansi transmitansi efektif dari kombinasi plat
penyerap penutup kaca (glass cover)
= Viskositas dinamik (kg/m.s)

xix

commit to user

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR LAMPIRAN

Halaman
Lampiran 1. Data penelitian ......................................................................

60

Lampiran 2. Kesesuaian korelasi empirik bilangan Nusselt dan faktor
gesekan untuk smooth plate ..................................................

65

Lampiran 3a. Kesesuaian korelasi empirik bilangan Nusselt untuk plat
penyerap dengan kekasaran buatan transverse continuous
ribs… ...................................................................................

66

Lampiran 3b. Kesesuaian korelasi empirik faktor gesekan untuk plat
penyerap dengan kekasaran buatan transverse continuous
ribs ........................................................................................

67

Lampiran 4. Penurunan Korelasi empirik unjuk kerja termohidrolik ...........

68

Lampiran 5. Nilai unjuk kerja termohidrolik ..............................................

70

Lampiran 6. Properties udara………………………………………………

71

xx

commit to user

Dokumen yang terkait

PENGARUH TWIST RATIO TERHADAP KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PENUKAR KALOR PIPA KONSENTRIK SALURAN ANNULAR DENGAN TWISTED TAPE INSERT

0 5 130

PENGUJIAN KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PENUKAR KALOR PIPA KONSENTRIK SALURAN ANNULAR DENGAN HALF LENGTH DAN FULL LENGTH TWISTED TAPE INSERT

0 7 137

Pengaruh Jarak Pitch Longitudinal Pengganggu Aliran Tersusun Staggered Terhadap Performa Kolektor Surya Pemanas Udara.

0 0 11

STUDI EKSPERIMENTAL PENGARUH PANJANG TWISTED TAPE INSERT TERHADAP KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PENUKAR KALOR PIPA KONSENTRIK.

0 0 16

Pengaruh Wing Pitch Ratio dan Wing Width Ratio Terhadap Karakteristik Perpindahan Panas dan Faktor Gesekan Pada Penukar Kalor Kalor Pipa Konsentrik Dengan Double Sided Delta Wing Tape Insert Susunan Forward Wing.

0 0 22

PENGUJIAN KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PENUKAR KALOR PIPA KONSENTRIK DENGAN PERFORATED TWISTED TAPE INSERT.

0 0 20

PENGARUH SUDUT SERANG TERHADAP KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PLAT PENYERAP DENGAN KEKASARAN BUATAN V-DOWN CONTINUOUS RIBS DALAM SALURAN PEMANAS UDARA SURYA.

0 0 25

PENGUJIAN KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PENUKAR KALOR PIPA KONSENTRIK SALURAN ANNULAR DENGAN PERFORATED TWISTED TAPE INSERT WITH PARALLEL WINGS.

0 0 1

PENGUJIAN KARAKTERISTIK PERPINDAHAN PANAS DAN FAKTOR GESEKAN PADA PENUKAR KALOR PIPA KONSENTRIK SALURAN ANNULAR DENGAN TWISTED TAPE INSERT WITH CENTRE WINGS.

0 0 21

STUDI NUMERIK DARI PENAMBAHAN OBSTACLE TERHADAP KINERJA KOLEKTOR SURYA PEMANAS UDARA DENGAN PLAT PENYERAP JENIS V-CORRUGATED

0 0 8