Memprediksi Kenaikan Golongan Pegawai Demgan Metode Learning Vector Quantization Dab Backropagation (Studi Kasus : PDAM Tirtanadi)
i
MEMPREDIKSI KENAIKAN GOLONGAN PEGAWAI DENGAN METODE
LEARNING VECTOR QUANTIZATION DAN BACKPROPAGATION (STUDI KASUS : PDAM TIRTANADI)
SKRIPSI FRANSISCA ANGELIA SEBAYANG 091401080 PROGRAM STUDI S1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN 2013
MEMPREDIKSI KENAIKAN GOLONGAN PEGAWAI DENGAN METODE LEARNING VECTOR QUANTIZATION DAN
BACKPROPAGATION (STUDI KASUS : PDAM TIRTANADI) SKRIPSI
Diajukan untuk melengkapi tugas dan memenuhi syarat memperoleh ijasah Sarjana Ilmu Komputer
FRANSISCA ANGELIA SEBAYANG 091401080 PROGRAM STUDI S1 ILMU KOMPUTER FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS SUMATERA UTARA MEDAN 2013
ii PERSETUJUAN
Judul : MEMPREDIKSI KENAIKAN GOLONGAN PEGAWAI DENGAN METODE LEARNING VECTOR
QUANTIZATION DAN BACKPROPAGATION
(STUDI KASUS : PDAM TIRTANADI) Kategori : SKRIPSI Nama : FRANSISCA ANGELIA SEBAYANG Nomor Induk Mahasiswa : 091401080 Program Studi : SARJANA(S1) ILMU KOMPUTER Departemen : ILMU KOMPUTER Fakultas : FAKULTAS ILMU KOMPUTER DAN
TEKNOLOGI INFORMASI (FASILKOM-TI) UNIVERSITAS SUMATERA UTARA Diluluskan di Medan, 22 Agustus 2013
Komisi Pembimbing : Pembimbing 2 Pembimbing 1 Amer Sharif, S.Si,M.Kom Dian Rachmawati,S.Si,M.Kom NIP. - NIP.198307232009122004 Diketahui/Disetujui oleh Program Studi S1 Ilmu Komputer Ketua, Dr. Poltak Sihombing, M.Kom NIP. 196203171991031001
PERNYATAAN
MEMPREDIKSI KENAIKAN GOLONGAN PEGAWAI DENGAN METODE LEARNING VECTOR QUANTIZATION DAN
BACKPROPAGATION (STUDI KASUS : PDAM TIRTANADI)
SKRIPSI Saya menyatakan bahwa skripsi ini adalah hasil kerja saya sendiri, kecuali beberapa kutipan dan ringkasan yang masing-masing disebutkan sumbernya.
Medan, 22 Agustus 2013 FRANSISCA ANGELIA SEBAYANG NIM 091401080
PENGHARGAAN
Puji syukur dipanjatkan kepada Tuhan Yang Maha Esa atas segala hikmat dan pertolongan-Nya sehingga penulisan Tugas Akhir ini dapat diselesaikan dengan baik.
Ucapan terima kasih saya sampaikan kepada semua pihak yang telah membantu saya dalam menyelesaikan skripsi ini baik secara langsung maupun tidak langsung. Pada kesempatan ini saya ingin mengucapkan terima kasih yang sebesar-besarnya kepada :
1. Bapak Prof. Dr. dr. Syahril Pasaribu, DTM&H, Msc(CTM), Sp.A(K) selaku Rektor Universitas Sumatera Utara.
2. Bapak Prof. Dr. Muhammad Zarlis selaku Dekan Fakultas Ilmu Komputer dan Teknologi Informasi Universitas Sumatera Utara.
3. Bapak Dr. Poltak Sihombing, M, selaku Ketua Program Studi S1 Ilmu Komputer Universitas Sumatera Utara dan Dosen Penguji I yang telah memberikan bimbingan, saran dan masukan kepada saya dalam pengerjaan skripsi ini.
4. Ibu Maya Silvi Lydia, B.Sc, M.Sc selaku Sekretaris Program Studi Ilmu Komputer.
5. Ibu Dian Rachmawati, S.Si,M.Kom selaku Dosen Pembimbing I yang telah memberikan bimbingan, saran dan masukan kepada saya dalam pengerjaan skripsi ini.
6. Bapak Amer Sharif, S.Si, M.Kom selaku Dosen Pembimbing II yang telah memberikan kritik dan saran dalam penyempurnaan skripsi ini.
7. Bapak M. Andri Budiman, ST, M.Comp.Sc, MEM selaku Dosen Pembanding II yang telah memberikan kritik dan saran dalam penyempurnaan skripsi ini.
8. Semua dosen Program Studi S1 Ilmu Komputer FASILKOM-TI USU, dan pegawai di Ilmu Komputer FASILKOM-TI USU.
9. Ayahanda Ukurmuli Sebayang,SH dan Ibunda Dra. Riana Barus tercinta yang telah memberikan doa, motivasi, perhatian , nasehat, kasih sayang yang tulus serta pengorbanan materi yang tidak ternilai harganya.
10. Abang dan Adik yang tersayang Meno Bastiano Argentino Sebayang,SE dan Eliezer Maha Rani Sebayang serta kepada seluruh keluarga besar yang telah memberikan doa, dukungan dan perhatiannya kepada saya.
11. Sadifa Asrofa, S.Kom, Rosalina V. Situmorang, S.Kom dan Eliezer S.Kom, serta Putra Antoni Sinamo, S.Pd yang telah memberikan semangat, dukungan, saran dan perhatiannya kepada saya.
12. Teman-teman seperjuangan mahasiswa S1-Ilmu Komputer stambuk 2009 secara khusus Desi Manurung, Nurul Khairina, Suri Syahfitri, Sylvia Dinata, Hanna Marlina, Marti Nelly Sembiring, dan Efrienni Tampubolon yang telah memberikan semangat dan menjadi teman diskusi penulis dalam menyelesaikan skripsi ini.
13. KA-KR Remaja GBKP SETIA BUDi yang telah memberikan semangat, dukungan dan doa kepada saya.
14. Semua pihak yang terlibat langsung ataupun tidak langsung yang tidak dapat penulis ucapkan satu per satu yang telah membantu penyelesaian skripsi ini.
Saya harapkan kritik dan saran dari pembaca untuk kelengkapan skripsi ini, agar dapat bermanfaat bagi saya dan peneliti selanjutnya.
Medan, 22 Agustus 2013 Penulis
Fransiska AngeliaSebayang
ABSTRAK
Perusahaan Air Minum PDAM TIRTANADI merupakan Badan Usaha Milik Daerah Provinsi Sumatera Utara yang mengelola air sungai menjadi air bersih. Golongan adalah kedudukan yang menunjukkan tingkat seorang Pemda (pegawai daerah) berdasarkan golongan dalam rangkaian susunan kepegawaian yang digunakan sebagai dasar penggajian. Skripsi ini membuat sebuah sistem memprediksi kenaikan golongan pada pegawai dengan perbandingan metode Learning Vector Quantization dengan metode Backpropagation di bidang kecepatan komputasi pengujian data dengan menggunakan Software R2007b. Learning Vector Quantization merupakan pelatihan terhadap lapisan-lapisan kompetetif yang terawasi yang memiliki target sedangkan
Backpropagation merupakan algoritma pembelajaran yang terawasi yang mengubah
bobot-bobot yang terhubung dengan neuron-neuron yang ada pada lapisan tersembunyi. Hasil yang diperoleh dalam bentuk angka dan grafik. Nilai Learning rate yang digunakan 0.5, maksimal epoh =100, dan goal yang diharapkan 0,01. Hasil dari penelitian ini diperoleh bahwa terdapat kelebihan dan kekurangan dari setiap metode. Kecepatan komputasi pengujian lebih cepat diolah dengan menggunakan metode LVQ dibandingkan dengan menggunakan metode Backpropagation. Namun kelemahan dari LVQ adalah output yang dihasilkan berupa kelas sehingga data-data tidak dapat diamati secara langsung sedangkan dengan menggunakan backpropagation, Output yang dihasilkan dapat diamati secara langsung. Kata kunci : JST, Learning Vector Quantization, Backpropagation, Kenaikan Golongan, PDAM Tirtanadi
Predicting the Increase in the Employee Class with a Learning Vector
Quantization and Backpropagation Method
(Case study: PDAM TIRTANADI)
Abstract
Water supply company PDAM TIRTANADI is a Regional-Owned Enterprise of the Government of North Sumatra which manages the river water into clean water. Grade is a position of the employees which indicate the basis for his salary. This study developed a system to predict the suitability for grade raise by comparing the LVQ and Backpropagation. Method of artificial neural network implemeted with matlab R2007b. The comparison was done on the computing speed. LVQ used a supervised training on competitive layers which has a target, while Backpropagation is a supervised learning algorithm which changes the weights that connect with existing neurons in the hidden layer. The results obtained in the form of numbers and graphics.
Learning rate value that used is 0.5, the maximum epoch = 100, and goals expected is
0.01. The results of this research showed that there are advantages and disadvantages of each method. the computing of speed tests were faster processed by using LVQ method than using backpropagation method. but the weakness of LVQ is The resulting output is in the form of class, that means the data can not be observed directly while by using backpropagation, the resulting output can be observed directly.
Keywords: JST, Learning Vector Quantization, Backpropagation, great position,
PDAM Tirtanadi.DAFTAR ISI
25
17
2.4 Backpropagation
17
2.4.1 Algoritma Backpropagation
19
2.4.2 Inisialisasi Bobot Awal
21
2.4.3 Fungsi Aktifasi
23
2.5 Kenaikan Golongan Pegawai
24 Bab 3 Analisis Dan Perancangan Sistem
3.1 Analisis Per masalahan
3.2 Analisis Kebutuhan Sistem
16
26
3.2.1 Kebutuhan Fungsional Sistem
26
3.2.2 Kebutuhan Non Fungsional Sistem
26
3.3 Permodelan
27
3.3.1 Use Case Diagram
27
3.3.2 Use Case LVQ
29
3.3.3 Use Case Backpropagation
32
2.3.2 Algoritma Simulasi (Pengujian)
Halaman Persetujuan ii
Pernyataan iii
1.4 Tujuan Penelitian
Penghargaan iv
Abstrak vi
Abstract vii
Daftar Isi viii
Daftar Tabel xi
Daftar Gambar xii
Bab 1 Pendahuluan
1.1 Latar Belakang
1
1.2 Rumusan Masalah
3
1.3 Batasan Masalah
3
3
14
1.5 Manfaat Penelitian
4
1.6 Metode Penelitian
4
1.7 Sistematika Penulisan
5 Bab 2 Tinjauan Pustaka
2.1 Jaringan Syaraf Biologi
7
2.2 Jaringan Syaraf Tiruan
8
2.2.1 Arsitektur Jaringan
10
2.3 Learning Vector Quantization
2.3.1 Algoritma Pelatihan LVQ
3.3.4 Analisis Proses Sistem
35
3.3.4.1 Proses LVQ
35
3.3.4.2 Proses Backpropagation
37
3.4 Flowchart System
40
3.4.1 Flowchart Algoritma Pelatihan LVQ
40
3.4.2 Flowchart Algoritma Simulasi LVQ
42
3.4.3 Flowchart Algoritma Pelatihan Backpropagation
43
3.4.4 Flowchart Algoritma Pengujian Backpropagation
44
3.5 Perancangan Antarmuka
3.5.1 Antarmuka Awal
45
3.5.2 Antarmuka LVQ
46
3.5.3 Antarmuka Backpropagation
48 Bab 4 Implementasi Dan Pengujian Sistem
4.1 Implementasi Sistem
50
4.1.1 Tampilan Antarmuka Sistem
50
4.1.1.1 Antarmuka Menu Utama
50
4.1.1.2 Antarmuka LVQ
52
4.1.1.3 Pelatihan Sistem LVQ
55
4.1.1.4 Pengujian Sistem LVQ
55
4.1.1.5 Antarmuka Backpropagation
56
4.1.1.6 Pelatihan Sistem Backpropagation
59
4.1.1.7 Pengujian Sistem Backpropagation
61 Bab 5 Kesimpulan Dan Saran
5.1 Kesimpulan
64
5.2 Saran
65 Daftar Pustaka
84 Lampiran Listing Program A-1 Curriculum Vitae B-1
DAFTAR TABEL
Hal.3.1 Dokumentasi Naratif Use Case LVQ
3.2 Dokumentasi Naratif Use Case Backpropagation
4.1 Pengujian Bobot Dengan Menggunakan Parameter LVQ
4.2 Data Pelatihan Backpropagation
4.3 Data Pengujian Backpropagation
4.4 Perbandingan Metode LVQ Dengan Backpropagation
4.5 Persamaan Metode LVQ Dengan Backpropagation
29
32
55
59
62
63
63
DAFTAR GAMBAR
4.1 Tampilan Antarmuka Menu Utama
41
3.8 Algoritma Proses Simulasi Pada Metode LVQ
43
3.9 Algoritma Proses Pelatihan Pada Metode Backpropagation
44
3.10 Algoritma Proses Pengujian Pada Metode Backpropagation
45
3.11 Tampilan Rancangan Antarmuka Awal
46
3.12 Tampilan Rancangan Antarmuka Metode LVQ
47
3.13 Tampilan Rancangan Antarmuka Metode Backpropagation
49
52
39
4.2 Tampilan Antarmuka LVQ
53
4.3 Tampilan Grafik Training Antara Epoh dan Learning Goal
54
4.4 Tampilan Antarmuka LVQ Setelah Data Dilatih Dan Diuji
54
4.5 Tampilan Antarmuka Backpropagation
57
4.6 Tampilan Antarmuka Backpropagation Pelatihan Data
58
4.7 Tampilan Antarmuka Backpropagation Pengujian Data
59
4.8 Tampilan Antarmuka Backpropagation Pengujian Data
3.7 Algoritma Proses Pelatihan Pada Metode LVQ
3.6 Sequence Diagram Proses Backpropagation
Halaman
19
2.1 Susunan Syaraf Manusia
8
2.2 Model Neuron
10
2.3 Jaringan Saraf Tiruan dengan Lapis Tunggal (Single Layer)
12
2.4 Jaringan Saraf Tiruan dengan Lapis Banyak (MultiLayer)
13
2.5 Jaringan Saraf Tiruan dengan Competitive Layer
14
2.6 Arsitektur LVQ
16
2.7 Arsitektur Backpropagation
2.8 Fungsi Aktivasi Linier
37
23
2.9 Fungsi Aktivasi Biner
24
2.10 Fungsi Aktivasi Bipolar
25
3.1 Diagram Ishikawa Analisis Permasalahan
26
3.2 Use Case Diagram Sistem Memprediksi Kenaikan Golongan Pegawai 29
3.3 Activity Diagram LVQ
32
3.4 Activity Diagram Backpropagation
35
3.5 Sequence Diagram Proses LVQ
62