Lecture Packet 9.Numerical Modeling of Groundwater Flow

  1.72, Groundwat er Hydrology Prof. Charles Harvey

  

Le ct u r e Pa ck e t # 9 : N u m e r ica l M ode lin g of Gr oun dw a t e r Flow

  Sim ulat ion: The predict ion of quant it ies of int erest ( dependent variables) based upon an equat ion or series of equat ions t hat describe syst em behavior under a set of assum ed sim plificat ions.

  Gr ou n dw a t e r Flow Sim u la t ion

  • Predict hydraulic heads ( 1D, 2D, 3D)
  • For particular conditions – confined, unconfined, isotropic, anisotropic, hom ogeneous, het erogeneous, infinit e, finit e, st eady, t ransient .
  • Varying levels of com plexity: Analyst ic solut ions – Theim , Theis, et c.

  Advant ages: exact , sim ple, cheap, can provide sufficient insight Analog sim ulat ion Physical m odels – scale m odels of aquifers Num erical Sim ulat ion

  N u m e r ica l Sim u la t ion

  • Given a PDE and appropriate I Cs and BCs
  • Discretize the system
  • Approxim ate the PDE corresponding to the discretization
  • Solve the approxim ated PDE on a com puter
  • Com m only finite differences or finite elem ents for GW flow
  • Advantages: can handle com plex geom etries, I Cs, and C conditions; can be used for nonlinear syst em s.

  Be w a r e of t h e t e r m “M ode l” a n d h ow it is u se d

  • “ A m odel should be used as sim ple as possible, but not sim pler”
  • Mathem atical “ m odel” – a PDE
  • Num erical “ m odel” – a particular technique is applied
  • Com puter or sim ulation “ m odel” – a code

  Fin it e D iffe r e n ce s

  A num erical m et hod t hat approxim at es t he governing PDE by replacing t he derivat ives in t he equat ion w it h t heir respect ive difference represent at ions. Procedure involves: Grid ( or Mesh) and Equat ion Grid – a represent at ion of t he physical dom ain t hat enables one t o account for t he boundaries and int ernal feat ures

  Equ a t ion – D iffe r e n ce Appr ox im a t ion of D e r iva t ive s

  2

  2 ∂ h h S h

  • =

  2D flow equat ion

  2

2 T

  ∂ x y t

  Approxim at ing t he Tim e Derivat ive:

  Back w ar d Differ en ce: hh

  ⎛ ∂ h ⎞ ∆ h i , j i , j ,n i , j ,n − 1

  ≈ ≈ ⎜⎜ ⎟⎟ ∆ t t ⎝ ∂ t n t

  ∆ n

  h head h n- 1 ∆ h t n- 1 n ∆ t im e End of t t w here, t im e st ep n = t he current t im e st ep index

  ∆ t = tim e step i,j = x and y coordinat e indices Approxim at ing t he Space Derivat ives: Consider a 2D discret izat ion, if w e assum e t hat t he grid spacing in t he x- direct ion and y- direct ion are t he sam e, our discret ized grid for an int ernal node w ill be: h i,j + 1 h i,j h h i+ 1,j i- 1,j

i- 1/ 2 i+ 1/ 2

  y

  h i,j - 1 ∆ y

  x

  ∆ x

  I n t h e x - dir ect ion

  : Approxim at e derivat ive at locat ion h : i,j 2

  ⎛ ∂ h2 ⎜⎜ ⎟⎟ x

  ∂ ⎝ ⎠

  Approxim at e t he se con d spat ial derivat ive at i,j as follow s:

  h h ∂ ∂

i 1 / ,

  2 j i 1 / , 2 j ⎞ − + −

  2 ⎜⎜ ⎟⎟ ∂ x x

  ⎛ hh ∂ ∂ ∂ ⎛ ⎞ ⎝ ⎠

  = ≈ ⎜ ⎟

  2 ⎜⎜ ⎟⎟ xx xx

  ∂ ⎝ ⎠ ⎝ ⎠

  We can approxim at e t he fir st spat ial derivat ive at i- 1/ 2,j and i+ 1/ 2,j as follows:

  ∂ h hhh hhi / , j ⎞ ⎛ 1 2 i, j i , 1 j ⎞ ⎛ i 1 / , 2 j ⎞ ⎛ i , 1 j i, j − − + + and

  ≈ ≈ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟ ∂ x x x x ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  Subst it ut e t he above equat ions t o obt ain:

  hh hh ⎛ ⎞ i , 1 j i , j i , j i ,1 j

  • 2

  − ⎜⎜ ⎟⎟ ⎛ ⎞ ∂ hx x i , j ⎝ ⎠

  ⎜ ⎟

  or 2 ≈ ⎜ ⎟

  ∂ xx ⎝ ⎠ 2 ⎛ ⎞

  2 ∂ + h hh h i , j i , 1 j i , j i 1 j

  − + , ⎜ ⎟ 22 ⎜ ⎟

  ∂ xx ⎝ ⎠

  I n t he y- direct ion: 2

  ⎛ ⎞

  2 ∂ + h hh h i, j i , j 1 i , j i , j 1

  ⎜ ⎟

  • 2

  ≈ 2 ⎜ ⎟ ∂ y y ⎝ ⎠

  Com bining Flow Equat ion Term s:

  2

  2 ∂ h h h ⎛ ⎞

  • i j , i j , S i j ,

  =

  2

  2 ⎜⎜ ⎟⎟ x y T t

  ∂ ∂ ∂ ⎝ ⎠ η t

  For t he backwards difference t im e derivat ive ( not e: all left hand side values of h are for t im e = n- 1) Linear diff. eq’n. This eq’n is

  − 2 h + h − 2 h + h

  h h h i − , 1 j i j , i + , 1 j i j , − 1 i j , i j , +1 S h i j , , n i j , , n

1

  = + 2 2 not explicit for h at any ∆ x y T t

  part icular t im e I f ∆ x and ∆ y are equal – this is the finite difference groundwater flow equation

  i 1 j i 1 j i , j i , j i , j i , j , n i , j , n + + + h h h h − 4 hh − , + , − 1 + 1 S h − 1 2 = ∆ x T t

  What does t he finit e- difference equat ion indicat e for st eady st at e condit ions?

  hh ⎛ ⎞ ∂ h i , j , n i , j , n − 1

  SS ⎜⎜ ⎟⎟ = 0 ∂ t t ⎝ ⎠ i 1 j i 1 j i , j i , j i , j + + + h h h h − 4 h

  − , + , − 1 + 1 2 = 0 ∆ x h + h + h + h − 4 h = 0 i − , 1 j i + , 1 j i , j − 1 i , j + 1 i , j i 1 j i 1 j i , j i , j + + + h h h h

  − , + , − 1 + 1 = h i , j

  4

  h i,j + 1

  10

  65 100 h i,j h i+ 1,j h i- 1,j

  11

  10

  9 h i,j - 1

  10 Flow Value of head at node is t he average of t he surrounding nodes ( for SS isot ropic hom ogeneous case) Consider t he 1D st eady- st at e flow equat ion w it h a sink is: 2

  d H '

  Tw = 0 or 2 2 dx ' d H w 2 = dx T ∆ x

  h 1 h 2 h 3 H= 9 H= 10

  N ode

  0 1 2 3 4 The nodal finit e difference equat ion is:

  − 2 ' −1 +1 2 =

  • h h h i , j i , j i , j w

  Tx

  Or 2

  ' x w

  ( ) ∆ h − 2h + h = i , j i , j i , j

  −1 +1 T

  Node 1:

  1H + - 2h 1 + 1h 2 = 0 1( 10) + - 2h 1 + 1h 2 = 0

  • 2h + 1h = - 10
  • 1 2 Node 2: 1h 1 + - 2h 2 + 1h 3 = 0

      Node 3: Node 3 has a forcing t erm due t o t he pum ping of t he w ell. This t ranslat es int o an init ial r ight hand side of t he equat ion: 2 2 ' ( 1 0 ) .

      1 ( ) ∆ x w

      ∆x = 0.1, Given = = 1 .

    01 T

      1h 2 + - 2h 3 + 1H 4 = 1 1h + - 2h + 1( 9) = 1 2 3

      1h 2 + - 2h 3 = 1- 9 = - 8 The syst em of finit e- difference equat ions consist s of 3 equat ions and 3 unknow ns

      1 − 2 h h = −10 1 2

      1 h − 2 h h = 1 2 3

      1 h − 2 h = − 8 2 3 Un k n ow n s

      Kn ow n s

      Or in coeffiecient m at rix form

      1 ⎛− 2 ⎞⎛ h ⎞ ⎛−10⎞ 1 ⎜ ⎟⎜ ⎟ ⎜ ⎟ 1 ⎜ 1 − 2 ⎟⎜h 2 ⎟ = ⎜ 0 ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

      1 3 − 2⎠⎝h ⎝ ⎠ ⎝ − 8 ⎠

      FD Coeff. Unknow n RHS cont aining boundary Mat rix Heads condit ions and know n pum ping Or in m at rix not at ion it can be w rit t en as Ah = b’ A is t he m at rix of difference coefficient s H is t he vect or of unknow n heads b’ is t he RHS vect or of know n quant it ies A com put at ional linear solve yields t he vect or h :

      10 9 .

      5 h

      ⎛ ⎞ ⎛ ⎞ 1 ⎜ ⎟ ⎜ ⎟

      9.5

      9 h =

      ⎜ 2 ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 8 .

      5 h 3

      9.0 ⎝ ⎠ ⎝ ⎠

      8.5 1 2 3 4 Tr a n sie n t Sim u la t ion Usin g Fin it e D iffe r e n ce s

      Procedure: March Through Tim e

    • St art w it h init ial condit ions ( t hese are known)

      ∆t; this give the spatial distribution of • Solve for heads at end of first t im e st ep head ( a m ap) aft er a sm all t im e increm ent .

    • Given known heads at end of first t im e st ep solve for heads at t he end of t he second t im e st ep.
    • Wit h known value at t he end of t im e st ep solve for next t im e st ep – t his is called m arching t hrough t im e

      Ah n = b* w here b* = b’ + h n- 1 The right - hand side alw ays cont ains know ns. The m at rix A is t he m at rix of finit e difference coefficient s reflect ing t he syst em param et ers and discret izat ion.

      So if you can solve spat ial equat ions for one t im e st ep. Then you can solve it for as m any t im e st eps as you like. The t im e st ep m ust be sm all w hen changes in heads are rapid – such as, w hen you st art t o pum p a w ell, ∆t m ust be seconds or m inutes. I t can be increased as changes in head becom e sm aller.

      FD Sim u la t ion M ode ls: codes t hat solve t he above syst em of linear algebraic equat ions – fairly robust .

      Tim e St e ppin g

    S h h

    i , n i , n

      − 1 − 2 h + hh i 1 i i 1

      − =

    • 2 ⎬

      T x t ⎩ ⎭

      n? n- 1? Som et hing

      Cr a n k -

      else?

      I m plicit N ich olson n Ex plicit

      h head ∆ h n- 1 h n- 1 n ∆ t t t

      T t

      ( h − 2 h + h ) = h h i i i i , n i , n 2 − 1 + 1 − 1 s x

      Ex plicit : h i,n = ch i- 1,n- 1 + ( 1- 2C) h i,n- 1 + ch i+ 1,n- 1 T t

      Where: c

      = 2 s x Easy t o calculat e – no linear algebra, but unst able if t im e- st eps are t oo large.

      I m plicit : ch i- 1,n - ( 1+ 2C) h i,n + ch i+ 1,n = - h i,n- 1

      Result s in syst em of linear equat ions t hat m ust be solved sim ult aneously. St able, but issues of accuracy.

      c c c Cr a n k N ich olson : ) h − (1+ h c h = ( c − 1)h + − h + h i 1 n i , n i 1 n i 1 n ( i 1 n i 1 n )

      − , + , − , − , − 1 − , − 1

      2

      2

      2 Not m uch m ore num erical expense t han fully im plicit , but m ore accurat e Bou n da r y Con dit ion s:

      Const ant Head – Don’t w rit e equat ion for const ant head node. Use value of const ant head in equat ions for neighboring nodes. Flux Boundary – replace first derivat ive t erm w it h const ant

      h h hh ⎛ ⎞ i − , 1 j i , j i , j i + , 1 j 2 − ⎜⎜ ⎟⎟

      ⎛ ∂ ⎞ hxx i , j

      ⎝ ⎠ ⎜ ⎟ 2 ⎟ ≈ ∆ x ⎝ ⎜ ∂ x h h i , j i 1 j Q

    • ,

      = ∆ x T