Pengenalan Gerakan Tangan Manusia Untuk Interaksi Manusia-Komputer

99

DAFTAR PUSTAKA

Alex, D.S. & Wahi, A. 2014. BSFD : Background subtraction frame difference
algorithm for moving object detection and extraction. Journal of Theoretical &
Applied Information Technology 60(3) : 623-628.
Annadurai, S. & Shanmugalakshmi, R. 2007. Fundamental of Digital Image
Processing. New Delhi : Pearson Education.
Bhatt, R., Fernandes, N. & Dhage, A. 2013. Vision based hand gesture recognition for
human computer interaction. International Journal of Engineering Science and
Innovative Technology (IJESIT) 2(3) : 110-115.
Bradski, G. & Kaehler, A. 2008. Learning OpenCV. O’Relly Media, Inc : Sebastopol.
Chitra, S. & Balakrishnan, G. 2012. Comparative study for two color spaces HSCbCr
and YCbCr in skin color detection. Applied Mathematical Sciences 6(85) : 42294238.
Dhawan, A. & Honrao, V. 2013. Implementation of hand detection based techniques
for human computer interaction. International Journal of Computer
Applications 72(17) : 6-13.
Du, E.Y. & Chang, C.I. 2002. Thresholding video images for text detection.
Proceedings of 16th International Conference on Pattern Recognition, pp 919922.
Ennehar, B.C., Brahim, O. & Hicham, T. 2010. An appropriate color space to improve

human skin detection. INFOCOMP Journal of Computer Science, 9(4), 1-10.
Febriani, A. 2014. Identifikasi Diabetic Retinopathy melalui citra retina menggunakan
Modified K-Nearest Neighbor. Skripsi. Universitas Sumatera Utara.

100

Goswami, S., Goswami, J. & Kumar, N. 2015. Unusual event detection in low
resolution video for enhancing ATM security. IEEE 2nd International
Conference on Signal Processing and Integrated Networks (SPIN), pp 848 –
853.
Intachak, T. & Kaewapichai, W. 2011. Real-time illumination feedback system for
adaptive background subtraction working in traffic video monitoring. IEEE
International Symposium on Intelligent Signal Processing and Communication
Systems (ISPACS), pp 1-5.
Jalab, H. A. 2012. Static hand gesture recognition for human computer interaction.
Information Technology Journal 11(9) : 1265-1271.
Kang, J. & Hayes, M. H. 2015. Face recognition for vehicle personalization with nearIR frame differencing and pose clustering. IEEE International Conference on
Consumer Electronics (ICCE), pp 455 – 456.
Kawulok, M., Kawulok, J., & Nalepa, J. 2014. Spatial-based skin detection using
discriminative skin-presence features. Pattern Recognition Letters 41 (2014): 313.

Kawulok, M., Kawulok, J., & Nalepa, J., Knyc, M.: Database for hand gesture
recognition. http://sun.aei.polsl.pl/~mkawulok/gestures/ (diakses 23 Agustus
2015).
Li, Q., Chen, X., Zhang, H., Yin, L., Chen, S., Wang, T., Lin, S., Liu, X., Zhang, X., &
Zhang, R. 2012. Automatic human spermatozoa detection in microscopic video
streams based on OpenCV. IEEE 5th International Conference on Biomedical
Engineering and Informatics (BMEI), pp 224-227.
Liao, P.S., Chen, T.S. & Chung, P.C. 2001. A fast algorithm for multilevel
thresholding. Journal of Information Science and Engineering 17(5): 713-727.
Ling, Y., Xue, Y., Xing, J., Jiang, T. & Guo, C. 2013. Experimental studies on static
postural balance using the body center of gravity test system. First International
Symposium on Future Information and Communication Technologies for
Ubiquitous HealthCare (Ubi-HealthTech), pp 1-5.

101

Moeslund, T.B. 2012. Introduction to Video and Image Processing. New York :
Springer.
Mritunjayrai, VijendraBhootna & Yadav, R.K. 2015. Performance based algorithm for
the detection and extraction of human skin. First International Conference on

Futuristic Trend in Computational Analysis and Knowledge Management
(ABLAZE), pp 127-131.
Nagarajan, S. & Subashini, T.S. 2013. Static hand gesture recognition for sign language
alphabets using Edge Oriented Histogram and Multi Class SVM. International
Journal of Computer Applications 82(4) : 28-35.
Nayakwadi, V. & Pokale, N. B. 2014. Dynamic hand gesture recognition system with
natural hand. International Journal of Advanced Research in Computer Science
and Software Engineering (IJARCSSE) 4(4) : 1239-1243.
Nayana, P.B. & Kubakaddi, S. 2014. Implementation of hand gesture recognition
technique for HCI using OpenCV. International Journal of Recent Development
in Engineering and Technology 2(5) : 17-21.
OpenCV

Documentation

:

Introduction

to


Support

Vector

Machines.

http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_s
vm.html/. (diakses 18 Maret 2015).
Phung, S. L., Bouzerdoum, A., & Chai, D. 2005. Skin segmentation using color pixel
classification : analysis and comparison. IEEE Transactions on Pattern Analysis
and Machine Intelligence 27(1) : 148-154.
Pratt, W.K. 2007. Digital Image Processing. New York : Wiley.
Premal, C.E. & Vinsley, S.S. 2014. Image processing based forest fire detection using
YCbCr colour model. IEEE International Conference on Circuit, Power and
Computing Technologies (ICCPCT), pp 1229-1237.
Ramjan, M. R., Sandip, R. M., Uttam, P. S. & Srimant, W. S. 2014. Dynamic hand
gesture recognition and detection for real time using human computer
interaction. International Journal of Advance Research in Computer Science
and Management Studies (IJARCSMS) 2(3) : 425-430.


102

Shapiro, L.G. & Stockman G.C. 2001. Computer Vision. Prentice-Hall : Upper Saddle
River.
Tan, W. R., Chan, C. S., Yogarajah, P., & Condell, J. 2012. A fusion approach for
efficient

human

skin

detection.

IEEE

Transactions

on


Industrial

Informatics 8(1) : 138-147.
Williamson, A. 2014. Vision based cursor control using hand gesture. Skripsi.
University of The West Indies.
Wu, Y. 2009. Research on bank intelligent video image processing and monitoring
control system based on OpenCV. IEEE 3rd International Conference on Anticounterfeiting, Security, and Identification in Communication, pp 211-214.
Yesugade, K.D., Salunke, S., Shinde, K., Gaikwad, S. & Shingare, M. 2014. Hand
motion recognition. International Journal of Technology and Exploring
Engineering (IJITEE) 3(11) : 55-61.
Yi, Z. & Liangzhong, F. 2010. Moving object detection based on running average
background and temporal difference. International Conference on Intelligent
Systems and Knowledge Engineering (ISKE), pp 270-272.
Youssef, M.M., Asari, K.V., Tompkins, R.C. & Foytik, J. 2010. Hull convexity defects
features for human activity recognition. IEEE Applied Imagery Pattern
Recognition Workshop (AIPR), pp.1-7.
Zarit, B. D., Super, B. J. & Quek, F. K. H. 1999. Comparison of five color models in
skin pixel classification. Proceedings of the International Workshop on
Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time
Systems, pp. 58-63.

Zhaoxue, C., Shengdong, N., Lijun, Q., Zeng’ai, C. & Jianrong, X. 2008. Automatic
liver segmentation method based on a gaussian blurring technique for CT
images. IEEE The 2nd International Conference on Bioinformatics and
Biomedical Engineering (ICBBE), pp 2516-2518.