Mapping of Drought Vulnerability in Bali and Nusa Tenggara Using Remote Sensing Data.

1st Unud/YU Collaboration Seminar

Mapping of Drought Vulnerability in Bali and
Nusa Tenggara Using Remote Sensing Data

I Wayan Nuarsa

Universitas Udayana, 25 May 2015

Outline
 Introduction

 Questions and Objectives
 Research Location
 Data Used

 Statistic Analysis

 Result and Discussion
 Conclusions


Introduction
 To study drought vulnerability, we need rainfall
data.
 Conventionally, rain gauge is the main source
of rainfall data.
 Limitation of rain gauge data: not spread
evenly, no data in no people area, no data in
ocean area, and point data source.

 Alternatively, we can use the rainfall data from
remote sensing data  TRMM data.

 The rainfall data from TRMM is needed to
evaluate its accuracy, compared with rain
gauge data before used to estimated drought
disaster.

Types of Drought
 Meteorological drought is a prolonged period with
less than average precipitation. Meteorological

drought usually precedes the other kinds of
drought.
 Agricultural drought is droughts that affect crop
production or the ecology of the range.

 Hydrological drought is brought about when the
water reserves available in sources such as
aquifers, lakes and reservoirs fall below the
statistical average.

 Socioeconomic drought is when some supply of
some goods and services such as energy, food
and drinking water are reduced by changes in
meteorological and hydrological conditions.

Questions and Objectives
Questions

 Does the TRMM data have enough accuracy to be
used as a source of rainfall data, especially in areas

with limited rainfall data

 How to apply Standardized Precipitation Index (SPI)
as a drought indicator in Bali and Nusa Tenggara

Objectives

 To evaluate the accuracy of the rainfall data from the
TRMM data compared with rain gauge data.
 To Apply Standardized Precipitation Index (SPI) to
map a drought vulnerability in Bali and Nusa
Tenggara Using Remote Sensing Data

Mean Indonesia Annual Rainfall (1998-2010)

Topography

Research Location
 Rainfall data from 4 rain gauges data over Bali-Nusa Tenggara islands
(Denpasar (Bali), Montong Gamang, Bima (West Nusa Tenggara), and

Kupang (East Nusa Tenggara)) observed by the Indonesian Meteorology,
Climatology, and Geophysics Agency (BMKG) during 13 years (from January
1998 to December 2010).

 Satellite data TRMM 3B43 V6 during 13 years (from January 1998 to
December 2010).

TRMM Sensor
PR

 The TRMM is a joint mission between NASA and
the Japan Aerospace Exploration Agency (JAXA)
designed to study the Earth's lands, oceans, air,
ice, and life as a total system.
 Sensors:

– Precipitation Radar (PR)
– TRMM Microwave Imager (TMI)
– Visible and Infrared Scanner (VISR)
TMI


– Lightning Imaging Sensor (LIS)
– Cloud and Earth Radiant Energy Sensor
(CERES)

 Data: December 1997 – now

 PR measures the echo backscattered from rain
and produces very accurate estimates of rain
profiles (vertical distribution). In addition, TMI
measures the microwave radiation emitted by
Earth's surface and by cloud and rain drops.

SPI Calculation
1
g(x)  α
xα-1e -x/β
β Γ(α )






x


 ln( x)  


4 ln x  

1

n 

1 1



ln(

)

x
3



4 ln( x ) 


n 



( )   x  -1e  x dx


0

Where:

g(x) = Gamma distribution function
x = Rainfall (mm/month)
Γ(α) = Gamma function
e = Exponential

1
α-1 -x/β
x
e dx
G ( x)   g(x) dx  α

β Γ(α ) 0
0
x

x

α = Shape parameter (α > 0)
β = Scale parameter (β > 0)
n = Number of rainfall data observation

� = Average of rainfall

(Edwards and McKee, 1997)

SPI Characteristics
 The SPI is an index based on the probability of
precipitation for any time scale.

 Precipitation is normalized using a probability distribution
so that values of SPI are actually seen as standard
deviations from the median.

 The SPI calculation for any location is based on the longterm precipitation record for a desired period. This longterm record is fitted to a probability distribution, which is
then transformed into a normal distribution so that the
mean SPI for the location and desired period is zero.
 Positive SPI values indicate greater than median
precipitation, and negative values indicate less than
median precipitation

SPI Classification

SPI Value
–2.00

Drought Classification
Extreme drought

–1.99 - –1.50

Severe drought

–1.49 - –1.00

Moderate drought

–0.99 – 0.99

Normal

1.00 – 1.49


Moderately wet

1.50 – 1.99

Very wet

2.00

Extremely wet

Statistic Analysis

 (S
n

r

i 1

i

- S ) (G i - G )

(n - 1) σ S σ G

1 n
MBE   ( Si - Gi )
n i 1

1 n
2
RMSE    ( Si - MBE - Gi ) 

 n i 1
Where:

r

= Coefficient of correlation

MBE

= Mean Bias Error

RMSE

= Root Mean Square Error

Si

= Data from the Satellite (TRMM)

Gi

= Data from rain gauge

σS and σG = Standard deviations of S and G, respectively
n

= Number of data pairs.

Rainfall (mm month-1)

Jul-00
Jan-01
Jul-01
Jan-02
Jul-02
Jan-03

Jul-03

Jul-03

Jan-04

Jan-04
Jul-04

Jul-05

Jul-05

Jan-06

Jan-06

Jul-06

Jul-06

Jan-07

Jan-07

Jul-07

Jul-07

Jan-08
Jul-08

Jan-08
Jul-08

Jan-09

Jan-09

Jul-09

Jul-09
Jan-10
Jul-10

TRMM

Jul-10

TRMM

Jan-10

Rain Gauge

Jan-05

Rain Gauge

Jan-05

Result and Discussion

Month

Month

Jan-03

Jul-04

Rain Gauge of Denpasar

Jan-00

800

Jul-02

Jul-99

600

Jan-02

Jan-99

400

Jul-01

Jul-98

200

Jan-01

0

Jul-00

Jan-98

Rain Gauge of Montong Gamang

Jan-00

800

Jul-99

600

Jan-99

400

Jul-98

200

0

Jan-98

Rainfall (mm month-1)

Rainfall (mm month-1)

Rainfall (mm month-1)

Jul-00
Jan-01

Jul-99
Jan-00
Jul-00
Jan-01

Jul-01

Jul-01

Jul-02

Jul-02

Jan-03

Jan-03

Jan-03

Jul-03

Jul-03

Jul-03

Jan-04

Jan-04

Jan-04

Jul-04

Month

Jan-02

Month

Month

Jan-02

Jul-02

Jul-04

Jul-04

Jan-05

Jan-05

Jul-05

Jul-05

Jul-05

Jan-06

Jan-06

Jan-06

Jul-06

Jul-06

Jul-06

Jan-07

Jan-07

Jan-07

Jul-07

Jul-07

Jul-07

Jul-08

Jan-08
Jul-08

Jul-09

Jul-09

Jul-09

Jan-10

Jan-10

Jan-10

Jul-10

Jul-10

Jul-10

TRMM

Jan-09

TRMM

Jan-09

TRMM

Jan-09

Rain Gauge

Rain Gauge

Jul-08

Jan-08

Rain Gauge

Jan-05

Jan-08

Rain Gauge of Bima

Jan-00

Jan-99

800

Jul-99

Jul-98

600

Jan-99

Jan-98

400

0

Jul-98

Rain Gauge of Kupang

Jan-98

200

800

600

Jan-02

400

Jul-01

200

Jan-01

0

Jul-00

Average of Fourth Rain Gauge

Jan-00

800

Jul-99

600

Jan-99

400

Jul-98

200

0
Jan-98

Rainfall (mm month-1)

Relationship Between Rain Gauge and TRMM
Rain Gauge of Denpasar

Rain Gauge of Montong Gamang

400

200
y = 1.2883x - 9.5628
R² = 0.84
0

400

400

200
y = 0.9613x + 19.373
R² = 0.50

0
200

400

600

0

800

TRMM (mm month-1)

200

400

y = 0.9715x + 5.5101
R² = 0.78

200

0

600

0

TRMM (mm month-1)

Rain Gauge of Kupang

200

TRMM (mm month-1)

Average of Fourth Rain Gauge
600

800

600

400

200

y = 1.3363x + 0.3782
R² = 0.8

0

Rain Gauge (mm month-1)

0

Rain Gauge (mm month-1)

Rain Gauge (mm month-1)

600

Rain Gauge (mm month-1)

Rain Gauge (mm month-1)

Rain Gauge of Bima

600

800

400

200
y = 1.489x - 1.5135
R² = 0.89
0

0

200

400

600

TRMM (mm month-1)

800

0

200

400

TRMM (mm month-1)

600

400

Accuracy and Error of TRMM Data

r

R2

MBE

RMSE

Denpasar

0.92

0.84

-17.44

46.37

Montong Gamang

0.71

0.50

-9.85

70.02

Bima

0.89

0.78

-3.58

48.99

Kupang

0.92

0.80

-25.37

60.10

Average

0.94

0.89

-32.06

43.56

Location

SPI-1

Jul-99

Jan-00

Jan-00

Jul-00

Jul-00

Jan-01

Jan-01

Jul-01

Jul-01

Jan-02

Jan-02

Jul-02

Jul-02

Jul-03
Jan-04

Jan-04
Jul-04
Jan-05

TRMM SPI-3

Jul-05
Jan-06

Jul-06

Jul-06

Jan-07

Jan-07

Jul-07

Jul-07

Jan-08

Jan-08

Jul-08

Jul-08

Jan-09

Jan-09

Jul-09

Jul-09

Jan-10

Jan-10

Jul-10

Jul-10

TRMM SPI-1

Jan-05

Jan-06

Jul-03
Month

Month

Jul-04

Jul-05

Jan-03

Rain Gauge

Jan-03

3

Jul-99

2

Jan-99

1

Jan-99

0

Jul-98

-1

Jul-98

Rain Gauge SPI-3

Jan-98

-2

-3

3

2

1

0

-1

-2

-3

Jan-98

Variability of SPI in Scale of 1 and 3 Months

SPI-3

SPI-6

Jan-00

Jan-00

Jul-00

Jul-00

Jan-01

Jan-01

Jul-01

Jul-01

Jan-02

Jan-02

Jul-02

Jul-02

Jan-03
Jul-03
Jan-04

Jan-05

Jul-04

Jul-05
Jan-06
Jul-06

Jan-07

Jan-07

Jul-07

Jul-07

Jan-08

Jan-08

Jul-08

Jul-08

Jan-09

Jan-09

Jul-09

Jul-09

Jan-10

Jan-10

Jul-10

Jul-10

TRMM SPI-6

Jul-06

Jan-04

Jan-05
TRMM SPI-9

Jan-06

Jul-03
Month

Month

Jul-04

Jul-05

Jan-03

Rain Gauge SPI-6

Jul-99

3

Jul-99

2

Jan-99

1

Jan-99

0

Jul-98

-1

Jul-98

Rain Gauge SPI-9

Jan-98

-2

-3

3

2

1

0

-1

-2

-3

Jan-98

Variability of SPI in Scale of 6 and 9 Months

SPI-9

SPI-12
3

2

1

0

-1

-2

-3

Jan-98
Jul-98
Jan-99

Jan-00
Jul-00
Jan-01

Jul-01
Jan-02

Jan-03
Jul-03
Jan-04

Rain Gauge SPI-12

Jul-02

Month

Jul-04
Jan-05

Jan-06
Jul-06
Jan-07
Jul-07
Jan-08
Jul-08
Jan-09
Jul-09
Jan-10
Jul-10

TRMM SPI-12

Jul-05

Variability of SPI in Scale of 12 Months

Jul-99

Relationship SPI from Rain Gauge dan TRMM
3

3
y = 0.7589x + 0.0456
R² = 0.62

2

-1
-2

Rain Gauge SPI-6

0

0

-1
-2

-3
-1

0

1

2

3

-3

-2

-1

TRMM SPI-1

0

0
-1
-2

1

2

3

-3

-2

-1

TRMM SPI-3

y = 0.8746x + 8E-06
R² = 0.76

2

0
-1
-2
-3
-3

-2

-1

0

1

TRMM SPI-9

y = 0.8686x + 0.0003
R² = 0.75

2

1

2

3

0

1

TRMM SPI-6

3

3

Rain Gauge SPI-12

-2

1

-3

-3
-3

y = 0.8871x + 0.0005
R² = 0.79

2

1

Rain Gauge SPI-3

1

Rain Gauge SPI-9

Rain Gauge SPI-1

2

3
y = 0.8604x - 0.0019
R² = 0.74

1
0

-1
-2
-3
-3

-2

-1

0

1

TRMM SPI-12

2

3

2

3

Accuracy and Error of TRMM SPI
SPI Scale

r

R2

MBE

RMSE

SPI-1

0.79

0.62

-1.57

20.93

SPI-3

0.86

0.74

0.03

17.64

SPI-6

0.89

0.79

-0.03

15.88

SPI-9

0.87

0.76

-0.002

16.71

SPI-12

0.87

0.76

-0.01

17.08

40

2

MBE (%)

RMSE (%)

0
30

-2
-4

-6

20

-8
-10

10
SPI-1

SPI-3

SPI-6
SPI scale

SPI-9

SPI-12

SPI-1

SPI-3

SPI-6
SPI scale

SPI-9

SPI-12

SPI-6
3

2

1

0

-1

-2

-3

Jun-98

Jun-00

Jun-01

Jun-02

Month

Jun-04

Jun-05

Jun-06

Jun-07

Jun-08

Jun-09

Jun-10

TRMM SPI-6

Jun-03

Drought and Wet Pattern of SPI-6 During 1998 and 2010

Jun-99

Spatial Pattern of SP1-6 in Bali and Nusa Tenggara

Conclusions
1. Rainfall data from TRMM produces high relationship
with rain gauge for both monthly rainfall and SPI.

2. SPI in scale of 6 months give the highest r and R2 and
most lowest error compared with other SPI scale.
3. In 2001-2005, study area indicate drought, 1998 2000, and 2010 tends wet, and other year is normal.
4. TRMM 3B43 are potentially used as source of rainfall
data especially in data-sparse regions.

Finish

Thank You