Uji Eksperimental Pada Turbin kaplan Dan Analisa Perbandingan Sudu Pengarah 150, 200, Dan 250 Terhadap 8 Sudu Gerak dan Jarak Vertikal 25 CmUJI

UJI EKSPERIMENTAL PADA TURBIN KAPLAN
DAN ANALISA PERBANDINGAN VARIASI SUDU
PENGARAH 15O, 20O, DAN 25O TERHADAP 8 SUDU GERAK
DAN JARAK VERTIKAL 25 CM

SKRIPSI
Diajukan Untuk Melengkapi
Syarat Memperoleh Gelar Sarjana Teknik

RAFAEL SANJAYA GINTING
NIM 100401020

DEPARTEMEN TEKNIK MESIN
FAKULTAS TEKNIK
UNIVERSITAS SUMATERA UTARA
MEDAN
2017

Universitas Sumatera Utara

Universitas Sumatera Utara


Universitas Sumatera Utara

63

Universitas Sumatera Utara

ABSTRAK

Tenaga air (hydropower) adalah energi yang diperoleh dari air yang
mengalir. Energi yang dimiliki air dapat dimanfaatkan dan digunakan dalam
wujud energi mekanis maupun energi listrik. Di dalam air tersimpan energi
potensial (pada air jatuh) dan eneri kinetik (pada air mengalir). Pemanfaatan
energi air banyak dilakukan dengan menggunakan kincir air atau turbin air yang
memanfaatkan adaanya sesuatu air terjun atau aliran air di sungai. Apalagi di
daerah pedesaan, dimana terdapat banyak sekali sumber-sumber air terjun dan
sungai-sungai yang belum termanfaatkan secara optimal.
Pemanfaatan sumber energi air pada umumnya membutuhkan investasi
tinggi. Namun untuk skala kecil dengan menggunakan teknologi terbarukan hal
ini tersebut bisa terlaksana. Salah satu bentuk pemanfaatannya adalah dengan

penggunaan

Pembangkit

Listrik

Tenaga

Mikro-Mini

Hidro

(PLTMH).

Berdasarkan pemikiran tersebut, maka dilakukan pengujian pada turbin kaplan
skala mikro hidro dengan memanfaatkan sumber energi yang terbarukan. Tujuan
pengujian ini untuk mengetahui kapasitas daya listrik yang dihasilkan oleh turbin
kaplan dengan memanfaatkan aliran air dari reservoir dengan kapasitas air (Q)
sebesar 0,006 m3/menit dan head instalasi (H) sebesar 2 meter. Diameter luar
runner blade yang akan digunakan dalam pengujian ini sebesar 160 mm. Pada

pengujian ini variasi sudut guide vane yang akan diuji adalah sudut 150, 200, dan
250 . Dari pengujian turbin kaplan ini diperoleh daya listrik yang dihasilkan oleh
alternator tanpa beban pada sudut 150 sebesar 3,024 Watt, pada sudu 200
sebesar 4,532 Watt, dan pada sudu 250 sebesar 4,3068 Watt.

Kata Kunci : Kapasitar Air, Head, Runner Blade, Guide Vane, Daya

i
Universitas Sumatera Utara

ABSTRACK

Hydropower is the energy obtained from running water. Water energy can
be utilized and used in the form of mechanical energy and electrical energy. In the
water stored potential energy (in falling water) and kinetic enery (in running
water). Utilization of water energy is mostly done by using waterwheel or water
turbine that utilize the existence of something waterfall or stream in the river.
Especially in rural areas, where there are many sources of waterfalls and rivers
that have not been utilized optimally.
Utilization of water energy sources generally require high investment.

However, for small scale using renewable technology this can be done. One form
of utilization is with the use of Micro-Mini Hydro Power Plant (PLTMH). Based
on these thoughts, then tested on micro-scale kaplan turbine by utilizing
renewable energy sources. The purpose of this test is to know the capacity of
electric power generated by Kaplan turbine by utilizing water flow from reservoir
with water capacity (Q) of 0.006 m3 / min and installation head (H) of 2 meters.
The outer diameter of the runner blade to be used in this test is 160 mm. In this
test the variations in the guide vane angle to be tested are angles 150, 200, and
250. From this test Kaplan turbine obtained electric power generated by the noload alternator at an angle of 150 for 3,024 Watt, on the blade 200 of 4.532 Watt,
and at 250 blades of 4.3068 Watt.

Keywords: Water Capacity, Head, Runner Blade, Guide Vane, Power

ii
Universitas Sumatera Utara

KATA PENGANTAR

Puji dan syukur saya ucapkan kepada Tuhan Yang Maha Kuasa atas
berkat, kasih, kekuatan dan kesehatan yang diberikan selama pengerjaan skripsi

ini, sehingga skripsi ini dapat saya selesaikan dengan baik.
Skripsi ini merupakan salah satu syarat untuk menyelesaikan pendidikan
untuk mencapai gelar sarjana di Departemen Teknik Mesin Fakultas Teknik
Universitas Sumatera Utara. Adapun yang menjadi judul skripsi ini yaitu “UJI
EKSPERIMENTAL

PADA

TURBIN

KAPLAN

DAN

ANALISA

PERBANDINGAN SUDUT SUDU PENGARAH 15O, 20O, DAN 25O
TERHADAP 8 SUDU GERAK DAN JARAK VERTIKAL 25 CM”.
Selama penulisan skripsi ini, penulis juga banyak mendapat bantuan dari
berbagai pihak. Oleh karena itu penulis juga mengucapkan terima kasih kepada :

1. Orang tua saya T. Ginting dan R. Br. Tarigan yang selalu menjadi
inspirasi buat penulis dari awal masuk kuliah sampai penyelesaian
Skripsi ini.
2. Bapak Ir. Tekad Sitepu, M.T. selaku dosen pembimbing, yang
bersedia meluangkan waktu dalam memberikan bimbingan serta
memberi masukan untuk penyelesaian skripsi ini.
3.

Bapak Tulus B.Sitorus, S.T.,M.T dan Bapak Terang UHSG Manik,
S.T.,M.T sebagai dosen pembanding yang telah bersedia memberikan
saran dan kritik yang sangat membangun demi kebaikan skripsi ini.

4. Bapak Dr. Ir. M. Sabri, M.T. selaku Ketua Departemen Teknik Mesin
Universitas Sumatera Utara yang memberikan kesempatan kepada
penulis dalam menyelesaikan tugas sarjana ini.
5. Seluruh staf pengajar dan pegawai administrasi Departemen Teknik
Mesin di Universitas Sumatera Utara, yang telah banyak membantu
penulis dan memberikan bimbingan selama perkuliahan.
6. Rekan skripsi saya, Tuhu Ginting dan Andita Hasugian yang saling menerima
kekurangan dan kelebihan satu sama lain, serta selalu menyemangati.


iii
Universitas Sumatera Utara

7. Abang-abang dan adik-adik di Departemen Teknik Mesin Universitas
Sumatera Utara yang banyak memberikan bantuan serta semangat
bagi penulis.
8. Sahabat - sahabat saya stambuk 2010 yang tidak dapat saya sebutkan
satu per satu, yang telah banyak memberikan bantuan serta semangat
bagi penulis.
9. Adik saya, Fidelia Oktarini Br. Ginting dan Meygina Br. Ginting dan
kakak saya Mahalenni Br. Ginting yang selalu memberi semangat dan
dukungan.
10. Rekan-rekan di IMKA PANDE KALIAGA USU, kawan – kawan
seperjuangan, Yosia Tarigan, Esta Tarigan, Jenson Perangin-angin,
Uki Ginting dan kawan-kawan yang tidak dapat saya sebutkan satu
per satu yang telah banyak memberikan doa serta semangat bagi
penulis dalam menyelesaikan tugas sarjana ini.
11. Terspesial buat Tsuruoka Eda Reformanda Br Bangun yang banyak
memberikan motivasi, perhatian, serta semangat bagi penulis dalam

menyelesaikan tugas sarjana ini.

Penulis menyadari bahwa masih banyak kekurang sempurnaan

dan

kekeliruan dalam penulisan skripsi ini. Oleh karena itu penulis akan sangat
berterima kasih dan dengan senang hati menerima saran dan kritik yang
membangun demi tercapainya tulisan yang lebih baik.
Akhir kata penulis berharap semoga tulisan ini dapat memberi manfaat
kepada pembaca. Terima kasih.

Medan, 22 Mei 2017
Penulis

Rafael Sanjaya Ginting
NIM 100401020

iv
Universitas Sumatera Utara


DAFTAR ISI

ABSTRAK ··················································································· i
KATA PENGANTAR ···································································· iii
DAFTAR ISI ················································································ v
DAFTAR GAMBAR ······································································· x
DAFTAR TABEL ······································································· xiii
DAFTAR NOTASI ······································································ xiv
BAB I PENDAHULUAN ································································· 1
1.1

Latar Belakang ············································································· 1

1.2

Tujuan Penelitian·········································································· 2

1.3


Manfaat Penelitian ········································································ 3

1.4

Batasan Masalah ·········································································· 3

1.5

Sistematika Penulisan ···································································· 3

BAB II TINJAUAN PUSTAKA ························································· 5
2.1

Sejarah Turbin ············································································· 5

2.2

Turbin Air··················································································· 7

2.3


Klasifikasi Turbin Air ···································································· 8
2.3.1

Turbin Impuls ································································ 8

2.3.1.1 Turbin Pelton ······························································ 9
2.3.1.2 Turbin Turgo ···························································· 10
2.3.1.3 Turbin Ossberger Atau Turbin Crossflow ·························· 11
2.3.2

Turbin Reaksi ······························································ 12

2.3.2.1 Turbin Francis. ·························································· 12
2.3.2.2 Turbin Kaplan ··························································· 13
2.3.2.2.1 Prinsip Kerja Turbin Kaplan ····································· 14
2.3.2.2.2 Komponen Utama Turbin Kaplan ······························· 15
2.3.2.2.3 Dimensi Dasar Turbin Kaplan ··································· 16
2.3.2.2.4 Dimensi Dasar Runner Blade ···································· 17
v
Universitas Sumatera Utara

2.4

Karakteristik Turbin ····································································· 19

2.5

Seleksi Awal Jenis Turbin ····························································· 20

2.6

Alternator ·················································································· 22

2.7

Sabuk Datar dan Puli ···································································· 22

2.8

2.7.1

Jenis Gerakan Pada Sabuk ··············································· 22

2.7.2

Perbandingan Kecepatan Puli ··········································· 24

2.7.3

Efisiensi Puli ······························································· 25

Daya Listrik ··············································································· 25

BAB III METODOLOGI PENELITIAN ··········································· 26
3.1

Umum ······················································································ 26

3.2

Spesifikasi Turbin Kaplan······························································ 27

3.3

Tempat Dan Waktu Penelitian ························································ 28

3.4

3.3.1

Tempat Penelitian ························································· 28

3.3.2

Waktu Penelitian ·························································· 28

Peralatan Pengujian ······································································ 28
3.4.1

Altenator ···································································· 28

3.4.2

Pompa ······································································· 29

3.4.3

Hand Tachometer ························································· 29

3.4.4

Clamp Meter ······························································· 30

3.4.5

Multimeter·································································· 31

3.4.6

Instalasi Rangkaian Lampu ·············································· 32

3.5

Spesifikasi Dan Perlengkapan Turbin Kaplan ····································· 32

3.6

Rancang Bangun Instalasi ······························································ 36

3.7

Pelaksanaan Pengujian ·································································· 38

BAB IV ANALISA DATA DAN HASIL PENGUJIAN ·························· 41
4.1

Perhitungan Dimensi Dasar Turbin Kaplan ········································ 41

vi
Universitas Sumatera Utara

4.2

4.1.1

Kapasitas Aktual Dan Head Efektif Instalasi ························· 41

4.1.2

Dimensi Dasar Turbin Kaplan ··········································· 41

Data Hasil Pengujian Turbin Kaplan Dengan 8 Runner blade pada Sudut

Sudu Penggarah / Guide Vane 150 ··························································· 45

4.3

4.2.1

Arus, Tegangan dan Putaran ············································· 45

4.2.2

Analisa Daya dan Putaran Altenator Pemberian Beban ············· 46

4.2.3

Pengujian Torsi - Putaran Berbeban ···································· 49

4.2.4

Efisiensi Daya Turbin dan Efisiensi Daya Altenator ················· 50

4.2.5

Efisiensi Puli ······························································· 51

Data Hasil Pengujian Turbin Kaplan Dengan 8 Runner blade pada Sudut

Sudu Penggarah / Guide Vane 200 ··························································· 51

4.4

4.3.1

Arus, Tegangan dan Putaran ············································· 51

4.3.2

Analisa Daya dan Putaran Altenator Pemberian Beban ············· 52

4.3.3

Pengujian Torsi - Putaran Berbeban ···································· 55

4.3.4

Efisiensi Daya Turbin dan Efisiensi Daya Altenator ················· 57

4.3.5

Efisiensi Puli ······························································· 58

Data Hasil Pengujian Turbin Kaplan Dengan 8 Runner blade pada Sudut

Sudu Pengarah / Guide Vane 250 ····························································· 58
4.4.1

Arus, Tegangan dan Putaran ············································· 58

4.4.2

Analisa daya dan putaran altenator pemberian beban ················ 59

4.4.3

Pengujian Torsi - Putaran Berbeban ···································· 61

4.4.4

Efisiensi Daya Turbin dan Efisiensi Daya Altenator ················· 62

4.4.5

Efisiensi Puli ······························································· 63

4.5

Data Hasil Perbandingan Jumlah Sudu terhadap Efisiensi ······················ 64

4.6

Hasil Perbandingan Pemberian Beban Lampu Terhadap Daya Alternator ·· 65

4.7

Hasil Perbandingan Beban Lampu Terhadap Putaran Alternator ············· 66

BAB V KESIMPULAN DAN SARAN ··············································· 67

vii
Universitas Sumatera Utara

5.1

Kesimpulan ················································································ 67

5.2

Saran ························································································ 67

DAFTAR PUSTAKA ···································································· 68

viii
Universitas Sumatera Utara

ix
Universitas Sumatera Utara

DAFTAR GAMBAR

Gambar 2.1 Skema Turbin Implus ........................................................................ 11
Gambar 2.2 Turbin Pelton ..................................................................................... 12
Gambar 2.3 Turbin Turgo ..................................................................................... 13
Gambar 2.4 Turbin Crossflow ............................................................................... 13
Gambar 2.5 Turbin Francis .................................................................................. 15
Gambar 2.6 Turbin Kaplan.................................................................................... 16
Gambar 2.7 Elemen Dasar Turbin Kaplan ............................................................ 19
Gambar 2.8 Segitiga Kecepatan ............................................................................ 20
Gambar 2.9 Grafik Perbandingan Karakteristik Turbin ........................................ 22
Gambar 2.10 Altenator .......................................................................................... 26
Gambar 2.11 Sabuk terbuka .................................................................................. 27
Gambar 2.12 Gerakan Membelit atau Melingkar pada Sabuk .............................. 27
Gambar 2.13 Gerakan dengan Puli Pengarah ....................................................... 28
Gambar 3.1 Alternator .......................................................................................... 33
Gambar 3.2 Pompa ................................................................................................ 33
Gambar 3.3 Hand Tachometer. ............................................................................. 34
Gambar 3.4 Clamp Meter ...................................................................................... 35
Gambar 3.5 Multi Meter ........................................................................................ 36
Gambar 3.6 Instalasi Rangkaian Lampu ............................................................... 37
Gambar 3.7 Sudu Gerak / Runner Blade............................................................... 38

x
Universitas Sumatera Utara

Gambar 3.8 Sudu Pengarah / Guide Vane ............................................................. 39
Gambar 3.9 Poros .................................................................................................. 39
Gambar 3.10 Rumah Turbin Spiral Chasing ........................................................ 41
Gambar 3.11 Draft Tube ....................................................................................... 41
Gambar 3.12 Puli / Pulley ..................................................................................... 41
Gambar 3.13 Sabuk / Belt ..................................................................................... 42
Gambar 3.14 Tangki Air ....................................................................................... 42
Gambar 3.15 Instalasi Turbin Kaplan ................................................................... 43
Gambar 4.1Segitiga Kecepatan ............................................................................. 51
Gambar 4.2 Grafik Perubahan Daya pada Alternator Terhadap Penambahan
Beban Lampu pada Sudut Sudu Pengarah / Guide Vane 150 ............. 55
Gambar 4.3 Grafik Perubahan Putaran Altenator Terhadap Penambahan Beban
Lampu pada Sudut Sudu Pengarah / Guide Vane 150 ........................ 56
Gambar 4.4 Grafik Torsi vs Tegangan .................................................................. 57
Gambar 4.5 Grafik Perubahan Daya pada Alternator Terhadap Penambahan
Beban Lampu pada Sudut Sudu Pengarah / Guide Vane 20o ............. 63
Gambar 4.6 Grafik Perubahan Putaran Altenator Terhadap Penambahan Beban
Lampu pada Sudut Sudu Pengarah 20o ............................................. 64
Gambar 4.7 Grafik Torsi vs Tegangan .................................................................. 65
Gambar 4.8 Grafik Perubahan Daya pada Alternator Terhadap Penambahan Beban
Lampu pada Sudut Sudu Pengarah 25o ............................................. 71
Gambar 4.9 Grafik Perubahan Putaran Altenator Terhadap Penambahan Beban
Lampu pada Sudut Sudu Pengarah 25o ............................................. 72
Gambar 4.10 Grafik Torsi vs Tegangan ................................................................ 73

xi
Universitas Sumatera Utara

Gambar 4.11 Grafik Sudut Sudu Pengarah vs Efisiensi ....................................... 76
Gambar 4.12 Grafik Perbandingan Pemberian Beban Lampu terhadap Daya
Alternator ........................................................................................... 77
Gambar 4.13 Grafik Perbandingan Beban Lampu Terhadap Putaran Alternator . 78

xii
Universitas Sumatera Utara

DAFTAR TABEL

Tabel 2.1 Jenis-jenis Turbin Air dan Kisaran Kecepatan Spesifiknya (Ns) ....... 24
Tabel 3.1 Jangkauan dan Akurasi Clamp Meter ................................................ 35
Tabel 4.1. Hasil Pengukuran Kapasitas Aktual Instalasi .................................... 46
Tabel 4.2 Hasil Percobaan dan Daya Alternator pada Sudut Sudu Pengarah /
Guide Vane 150................................................................................... 54
Tabel 4.3 Hasil Pengujian Torsi dan Putaran Berbeban Sudut Sudu Pengarah /
Guide Vane 150................................................................................... 57
Tabel 4.4 Hasil Percobaan dan Daya Alternator pada Sudut Sudu Pengarah /
Guide Vane 200 .................................................................................. 62
Tabel 4.5 Hasil Pengujian Torsi dan Putaran Berbeban Sudut Sudu Pengarah /
Guide Vane 200................................................................................... 65
Tabel 4.6 Hasil Percobaan dan Daya Alternator pada Sudut Sudu Pengarah /
Guide Vane 250 .................................................................................. 70
Tabel 4.7 Hasil Pengujian Torsi dan Putaran Berbeban Sudut Sudu Pengarah /
Guide Vane 250................................................................................... 73
Tabel 4.8 Grafik Sudut Sudu Pengarah vs Efisiensi .......................................... 76
Tabel 4.9

Hasil Perbandingan Pemberian Beban Lampu terhadap Daya
Alternator ........................................................................................... 76

Tabel 4.10 Hasil Perbandingan Beban Lampu terhadap Putaran Alternator ....... 77

xiii
Universitas Sumatera Utara

DAFTAR NOTASI

SIMBOL

KETERANGAN

SATUAN

m

massa

kg

g

percepatan gravitasi

m/s2

h

head

m

P

daya

Watt

ρ

densitas air

kg/m3

Q

kapasitas aliran

m3/s

Ek

energi kinetik

Joule

v

kecepatan aliran air

m/s

Ns

putaran spesifik

rpm

N

putaran turbin

rpm

V

tegangan

Volt

I

arus listrik

Ampere

τ

torsi

Nm

ω

kecepatan sudut

rad/s

xiv
Universitas Sumatera Utara

Dokumen yang terkait

Uji Eksperimental Pada Turbin Kaplan dan Analisa Performansi Dengan Variasi Jumlah Sudu Gerak Terhadap Sudut Sudu Pengarah 20o dan Jarak Vertikal 20 Cm

0 0 15

Uji Eksperimental Pada Turbin Kaplan dan Analisa Performansi Dengan Variasi Jumlah Sudu Gerak Terhadap Sudut Sudu Pengarah 20o dan Jarak Vertikal 20 Cm

0 0 2

Uji Eksperimental Pada Turbin Kaplan dan Analisa Performansi Dengan Variasi Jumlah Sudu Gerak Terhadap Sudut Sudu Pengarah 20o dan Jarak Vertikal 20 Cm

0 0 4

Uji Eksperimental Pada Turbin Kaplan dan Analisa Performansi Dengan Variasi Jumlah Sudu Gerak Terhadap Sudut Sudu Pengarah 20o dan Jarak Vertikal 20 Cm

0 0 21

Uji Eksperimental Pada Turbin Kaplan dan Analisa Performansi Dengan Variasi Jumlah Sudu Gerak Terhadap Sudut Sudu Pengarah 20o dan Jarak Vertikal 20 Cm

0 0 1

Uji Eksperimental Pada Turbin kaplan Dan Analisa Perbandingan Sudu Pengarah 150, 200, Dan 250 Terhadap 8 Sudu Gerak dan Jarak Vertikal 25 CmUJI

0 0 8

Uji Eksperimental Pada Turbin kaplan Dan Analisa Perbandingan Sudu Pengarah 150, 200, Dan 250 Terhadap 8 Sudu Gerak dan Jarak Vertikal 25 CmUJI

0 0 1

Uji Eksperimental Pada Turbin kaplan Dan Analisa Perbandingan Sudu Pengarah 150, 200, Dan 250 Terhadap 8 Sudu Gerak dan Jarak Vertikal 25 CmUJI

0 0 21

Uji Eksperimental Pada Turbin kaplan Dan Analisa Perbandingan Sudu Pengarah 150, 200, Dan 250 Terhadap 8 Sudu Gerak dan Jarak Vertikal 25 CmUJI

0 0 4

Uji Eksperimental Pada Turbin kaplan Dan Analisa Perbandingan Sudu Pengarah 150, 200, Dan 250 Terhadap 8 Sudu Gerak dan Jarak Vertikal 25 CmUJI

0 0 2