MOLECULAR ANALYSIS OF INDONESIAN LCA PATIENTS AND IN VITRO SPLICE CORRECTION FOR CEP290-ASSOCIATED LCA - Diponegoro University | Institutional Repository (UNDIP-IR)
MOLECULAR ANALYSIS OF INDONESIAN LCA
PATIENTS AND IN VITRO SPLICE CORRECTION
FOR CEP290 -ASSOCIATED LCA
ANALISIS MOLEKULER PADA PASIEN LCA INDONESIA DAN
KOREKSI PROSES SPLICING SECARA IN VITRO PADA LCA
TERKAIT CEP290
THESIS
Submitted to fulfill the assignment and fit-out requisite in passing
Post Graduate Program
Master of Biomedical Science
Widya Eka Nugraha
22010112420049
Supervisors:
Prof. Sultana MH Faradz, MD, Ph.D
Kentar A Sulakso, MD, MSi.Med, Sp.M (K)
FACULTY OF MEDICINE
DIPONEGORO UNIVERSITY SEMARANG
2015
THESIS
MOLECULAR ANALYSIS OF INDONESIAN LCA PATIENTS AND
IN VITRO SPLICE CORRECTION FOR CEP290-ASSOCIATED LCA
Arranged by
Widya Eka Nugraha, MD
22010112420049
Has been defended in front of the defense committee on May, 19th 2015
And has been approved by:
The Netherlands,
Principal Supervisor,
Dr. Rob WJ Collin
Supervisor,
Dr. Alex Garanto Iglesias
Indonesia,
Principal Supervisor,
Prof. Sultana MH Faradz, MD, PhD
NIP: 1952 0202 1979 012 001
Supervisor,
Kentar A Sulakso, MD, MSi.Med, Sp.M(K)
NIP: 1968 1128 1998 03 1 001
Approved by,
Head of Master Degree Program in Biomedical Science
Faculty of Medicine Diponegoro University
Dr. Achmad Zulfa Juniarto, M.Si.Med, Sp.And, Ph.D
NIP: 19700608 1997021 001
DECLARATION
I hereby declare that this submission is my own work and that, to the best of my knowledge
and belief, it contains no material previously published or written by another person nor
material which to a substantial extent has been accepted for the award of any other degree or
diploma of the university or other institute of higher learning, except where due
acknowledgement is made in the text.
Semarang, March 2015
Widya Eka Nugraha
iii
ACKNOWLEDGEMENT
It is an honor for me to express my gratitude to everyone who have helped and
supported me to finish this thesis. First of all, I would like to thank to Prof. Dr. Sultana MH
Faradz, Ph.D for her advice, guidance, and support in my master program from the beginning
till the end despite her own tight schedule. Thank you to dr. Kentar A Sulakso, Sp.M,
MSi.Med for his support, clinical advice, and supervision in writing this thesis.
I would also like to express my gratitude to Prof. Rob WJ Collin, head of Blindness
Genetic
Therapy research group in the Department of Human Genetics of Radboud
University Medical Centre, The Netherlands, for his kind supervision during my internship
there. I am so thankful to Alex Garanto, Ph.D for his superb teaching and explanation to all
that matters in my research.
It was a great experience to do research in the blindness genetic therapy lab with the
help from Lonneke Duijkers as a technician, Galuh Astuti, Julio CC Serrano, Muriel
Messchaert, as a Ph.D student, Manon Oud as a MSc student, and Arjen Henkes as
bioinformatician.
I would also like to thank all the people from Center for Biomedical Research
(CEBIOR), Semarang, Indonesia, Rita Indriati, Inthus Apriasa, Evi Nurwulan, Lusi Suwarsi,
Wiwik Lestari, and Dwi Kustiani for their assistance during my master study.
I will always be grateful to be a part of Batch 7 of Masters in Biomedical Science
Majoring in Genetic Counseling together with my beloved wife, Iffa Mutmainah, Mitayani,
Catharina Endah W, Nura Eky V, Cinta C Rudianto, and Rendy R Pohan. Your warm
companion supports me to complete my study.
My utmost gratitude and sincere thanks goes to my beloved parents, Eko Bambang
Setyawan, S.E, and Dyah Adiati Warsitosiwi for all the genuine love and limitless support
throughout the study. I will never be able to redeem everything you have done for me.
The opportunity to be a part of Master Student in CEBIOR and to have my research
done In The Netherlands would not have been possible without the scholarship from Biro
Perencanaan Kerja Sama Luar Negeri (BPKLN), Ministry of Education, Indonesia, especially
DR. AB Susanto, MSc. as the coordinator of Beasiswa Unggulan. Finally, I would like to
iv
thank all of the Master’s degree and Fellowship coordinators, especially Prof. Dr. Sultana MH
Faradz, Ph.D, dr. Tri Indah Winarni MSi.Med, Ph.D, and Ms. Ardina Apriliani S.E.
v
CURRICULUM VITAE
Name
: Widya Eka Nugraha
Sex
: Male
Place & Date of birth
: Bekasi, November 2nd, 1988
Latest Degree
: Medical Doctor
Address
: Poncol Jaya Block C3 No.2 RT/RW 003/019, Jaka Sampurna,
Bekasi Barat P.O.BOX 17145
Phone
: +62856 8042 164
E-mail
: [email protected]
Educational Background
2006-2010
: Diponegoro University, Medical Faculty (Bachelor degree)
2010-2012
: Diponegoro University, Medical Faculty (Medical Doctor)
2013-Present : Post Graduate Program Diponegoro University, Master in Biomedical Science
Majoring in Genetic Counseling (Twinning Program with Radboud
University Medical Centre Nijmegen, The Netherlands
Experience
2013-2014
: Department of Human Genetics, Radboud University Medical Centre,
Nijmegen, The Netherlands: Internship Master Student
Trainings and Courses
2013
: 11th Medical Genetic Course: From Basic to Clinic, Semarang
2013
: Cardiogenetics and Its Clinical Management, Semarang
2013
: Workshop on Writing International Research Grants and Publication,
Semarang
2013
: Molecular Biology: A Recent Update, Semarang
2013
: Gene Therapy Seminar, Semarang
2013
: 3rd International Seminar on Autism and Fragile-X Syndrome, Semarang
vi
2014
: Novel Therapies for Inherited Retinal Dystrophies, Nijmegen The
Netherlands
2014
: Clinical Master Class for Inherited Retinal Dystrophies, Nijmegen
2014
: Technical Master Class for Inherited Retinal Dystrophies, Nijmegen
2015
: Hands-on workshop on cytogenetic and molecular genetics. Semarang
Scientific Paper
2010
: Correlation Between Intracranial Pressure Based On CT-Scan Imaging and
Blood Glucosae Level in Head Injury Patient. Undergraduate thesis. Medical
Faculty of Diponegoro University, Semarang.
Scholarship
2013
: Excellent Scholarship Program of The Bureau of Planning and International
Cooperation, Ministry of National Education, Government of Indonesia.
TOEFL score
2010
: 550
vii
CONTENTS
TITLE .....................................................................................................................................
i
APPROVAL SHEET ............................................................................................................
ii
DECLARATION ...................................................................................................................
iii
ACKNOWLEDGEMENT ....................................................................................................
iv
CURRICULUM VITAE .......................................................................................................
vi
CONTENTS ...........................................................................................................................
viii
ABBREVIATIONS ...............................................................................................................
xii
LIST OF TABLES ................................................................................................................
xvi
LIST OF FIGURES ..............................................................................................................
xvii
GLOSSARY ...........................................................................................................................
xviii
ABSTRACT ...........................................................................................................................
xix
CHAPTER 1 INTRODUCTION .........................................................................................
1
1.1
Background…………………………………………………………………………..
1
1.2
Research Question…………………………………………………………………...
2
1.3
Research Purposes…………………………………………………………………..
2
1.3.1 General Research Purposes…………………………………………………....
2
1.3.2 Specific Research Purpose…………………………………………………….
2
1.4
Research Benefits……………………………………………………………………
2
1.5
Research Originality…………………………………………………………………
2
CHAPTER 2 LITERATURE REVIEW .............................................................................
3
2.1
Leber Congenital Amaurosis………………………………………………………..
4
2.1.1 Clinical Characteristics………………………………………………………..
4
2.1.2 Genetic Causes and Heritability of Leber Congenital Amaurosis…………….
6
2.1.3 CEP290………………………………………………………………………..
8
Therapeutic Strategies……………………………………………………………….
10
2.2.1 Gene Augmentation Therapy………………………………………………….
10
2.2
viii
2.2.1.1 Lentiviral Vector……………………………………………………...
10
2.2.1.2 Adeno-associated Viral Vector…………………………………….....
10
2.2.1.3 Nanoparticles…………………………………………………………
12
2.2.2 Antisense Oligonucleotide Based Therapy………………..............................
12
2.2.2.1 AON sequences……………………………………………………….
13
2.2.2.2 Chemical Structure of AON…………………………………………..
13
CHAPTER 3 RESEARCH METHODS ..............................................................................
14
3.1
Research Field………………………………………………………………………..
14
3.2
Research Location……………………………………………………………………
14
3.3
Research Period………………………………………………………………………
14
3.4
Research Design………………………………………………………………………
14
3.5
Population and sample………………………………………………………………..
14
3.5.1 Population…………………………………………..........................................
14
3.5.2 Sample…………………………………............................................................
14
3.5.2.1 Inclusion Criteria…………………………..........................................
15
3.5.2.2 Exclusion Criteria……………………………………………………...
15
Research Variable…………………………………………………………………….
15
3.6.1 Diagnostic Study………………………………................................................
15
3.6.2 Functional Study………………………………................................................
15
Diagnostic Study: Mutational Analysis of Indonesian LCA Patients………………..
15
3.7.1 DNA Isolation………………………………………………............................
15
3.7.2 Primer Design…………………………………………………........................
16
3.7.3 Polymerase Chain Reaction (PCR)…………………………............................
16
3.7.3.1 ARMS-PCR……………………..........................................................
16
3.7.3.2 Regular PCR…………………………………………………………..
16
3.7.4 Sanger Sequencing……………………………………………………………..
17
3.7.5 Restriction Fragment Length Polymorphism (RFLP)………………………….
17
3.6
3.7
ix
3.8
Functional Studies: Optimization of Antisense Oligonucleotide (AON) Therapeutic
Approach for LCA……………………………………………………………………
17
3.8.1 Cell Culture…………………………………………………………………….
17
3.8.2 Transfection…………………………………………………………………….
17
3.8.3 RNA Isolation and Reverse Transcription PCR……........................................
18
3.8.4 Western Blot……………………………………………………………………
18
3.8.5 Immunocytochemistry………………………………………………………….
18
3.8.6 Statistical Analysis……………………………………………………………..
19
Research Flow………………………………………………………………………..
19
3.9.1 Diagnostic Study Workflow……………………………………………………
20
3.9.2 Functional Study Workflow……………………………………………………
21
3.10
Data Analysis…………………………………………………………………………
22
3.11
Research Ethics……………………………………………………………………….
22
3.9
CHAPTER 4 RESULTS .......................................................................................................
23
Molecular Genetic Analysis of Indonesian LCA Patients……………………………
23
4.1.1 Clinical Findings…………………………………………...............................
24
4.1.2 Molecular Findings……………………………...............................................
24
AON Optimization of CEP290-associated LCA Treatment…………………………
26
4.2.1 Transcriptional Analysis…………………………………………………….....
26
4.2.2 Western Blot and Protein Quantification………………………………………
28
4.2.3 Immunocytochemistry………………………………………………………….
29
CHAPTER 5 DISCUSSION .................................................................................................
31
5.1
Molecular Genetic Analysis of Indonesian LCA Patients……..................................
32
5.2
AON Optimization for CEP290-associated LCA Patients……………………………
32
5.3
Progress of Gene Therapy in Retinal Dystrophies…………………………………...
33
5.3.1 RPE65-associated LCA………………………………………………………...
34
5.3.2 Choroideremia………………………………………………………………… .
34
4.1
4.2
x
Therapeutic Possibilities for CEP290-associated LCA…………………………….. .
34
CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS .........................................
36
6.1
Conclusion……………………………………………………………………………
36
6.2
Future Directions………………………………........................................................
36
5.4
CHAPTER 7 SUMMARY ....................................................................................................
37
REFERENCES ......................................................................................................................
39
APPENDICES .......................................................................................................................
44
xi
ABBREVIATIONS
2’-MOE
2’Methoxy-Ethoxy
2’-OMe
2’-O-Methyl
AAV/rAAV
Adeno-Associated Virus / Recombinant AAV
ABCA4
Adenosine Triphosphate-Binding Cassette, Sub-Family A, Member 4
ACTB
Actin Beta
ACHM
Achromatopsia
AIPL1
Aryl Hydrocarbon Receptor Interacting Protein-like 1
AON
Antisense Oligonucleotide
ARMS-PCR
Amplification Refractory Mutation System - PCR
BBS4
Bardet-Biedl Syndrome 4
BCA
Bicinchonic Acid
BSA
Bovine Serum Albumin
CABP4
Calcium Binding Protein 4
Cap
Capsid
CB
Chicken Beta actin
CEP290
Centrosomal Protein 290 kDa
CD
Cone Dystrophy
CEBIOR
Centre for Biomedical Research
cGMP
Cyclic Guanosine Monophosphate
CHM
Choroderemia
CK30PEG-NP
CK30 Polyethylene Glycol-Nano Particles
CORS
Cerebello-Oculo-Renal Syndrome
CRB1
Crumbs Family Member 1
CRD
Cone-Rod Dystrophy
xii
CRX
Cone-Rod Homeobox
DAPI
4’, 6-diaminidino-2-phenylindole
DMEM
Dulbecco’s Modified Eagle Medium
DNA/cDNA
Deoxyribo Nucleic Acid / Complementary DNA
DTHD1
Death Domain Containing 1
EDTA
Ethylendiaminetetraacetic acid
EIAV
Equine Infectious Anemia Virus
ERG
Electroretinogram
ESE-Finder
Exonic Splicing Enhancer-Finder
GDF6
Growth Differentiation Factor 6
GT
Gene Therapy
GUCY2D
Guanylate Cyclase 2D
hRPE65
Human RPE65
IBD
Identity by Descent
IMPDH1
Inosine 5’-Monophosphate Dehydrogenase 1
iPSCs
Induced Pluripotent Stem Cells
IRD
Inherited Retinal Dystrophies
ITRs
Inverted Terminal Repeats
IQCB1
IQ Motif Containing B1
JSRD
Joubert Syndrome and Related Disorders
kDa
Kilodalton
KCNJI13
Potassium Inwardly-Rectifying Channel, Subfamily J, Member 13
LCA
Leber Congenital Amaurosis
LCA5
Leber Congenital Amaurosis 5
LINE
Long Interspersed Nuclear Elements
LP
Light Perception
LRAT
Lecithin Retinol Acyltransferase
xiii
LV
Lentivirus
MEM
Minimum Essential Media
MERTK
c-mer Proto-Oncogen Tyrosine Kinase
MIPs
Molecular Inversion Probes
MKS
Meckel-Gruber Syndrome
MYO7A
Myosin VIIA
NaCl
Natrium Chloride
NMNAT1
Nicotinamide Nucleotide Adenylyltransferase 1
NP
Nano Particles
NUB1
NEDD8 Ultimate Buster 1
OMIM
Online Mendelian Inheritance in Man
OTX2
Orthodenticle Homeobox 2
PBS
Phosphate-Buffered Saline
POD
Peptide Ocular Delivery
PPRPE
Preserved Para-arteriolar Retinal Pigment Epithelium
PVDF
Polyvinylidine Difluorida
RD3
Retinal Degeneration 3
RDH12
Retinol Dehydrogenase 12
Rep
Replication
REP1
Rab Escort Protein 1
RFLP
Restriction Fragment Length Polymorphism
RIPA
Radio Immunoprecipitation Assay
RNA/mRNA
Ribo Nucleic Acid / Messenger RNA
RP
Retiniti Pigmentosa
RPE
Retinal Pigment Epithelium
RPE65
Retinal Pigment Epithelium-Specific Protein 65 kDa
RPGRIP1
Retinitis Pigmentosa GTPaseRegulator Interacting Protein 1
xiv
RT-PCR
Reverse Transcription - PCR
sFLT01
Soluble Fms-Like Tyrosine Kinase 1 Receptor
siRNA
Small Interference RNA
SLS
Senior-Loken Syndrome
SNc
Substantia Nigra pars Compacta
SPATA7
Spermatogenesis Associated 7
SRp55
Serine-Arginine rich Protein 55 kDa
SRp40
Serine-Arginine rich Protein 40 kDa
STGD
Stargardt’s Disease
TPR
Tetratricopeptide Repeat
TULP1
Tubby-like Protein 1
VMD2
Vitelliform Macular Dystrophy 2
WT
Wild Type
xv
LIST OF TABLES
Table 1. Fundus photography results of LCA patients with known mutations in causative
genes ............................................................................................................................ 5
Table 2. Mutation identification strategy. ................................................................................. 6
Table 3. Prevalence of LCA causative genes. ........................................................................... 7
Table 4. Vectors used in clinical trial for various retinal diseases. ........................................... 11
Table 5. AAV serotype and target tissue. .................................................................................. 12
Table 6. Molecular findings of Indonesian LCA patients. ........................................................ 24
Table 7. Efficacy of AONs in serial dilutions. .......................................................................... 27
xvi
LIST OF FIGURES
Figure 1. Anatomy of the eye and retinal structure. .................................................................. 3
Figure 2. Classification of IRDs according to age progression and cell involvement. ............. 4
Figure 3. Mutation spectrum in CEP290................................................................................... 9
Figure 4. Chemical structure of AON. ...................................................................................... 13
Figure 5. Schematic representation of diagnostic study workflow. .......................................... 20
Figure 6. Workflow for functional studies to optimize the potential of AON-based approach. 21
Figure 7. Pedigrees of the families analyzed in this study. ....................................................... 23
Figure 8. Splicing prediction for c.33G>C variant in AIPL1. ................................................... 25
Figure 9. Splicing prediction for c.970C>A variant in AIPL1. ................................................. 25
Figure 10. Schematic representation of AONs. ......................................................................... 26
Figure 11. Transcriptional Analysis. ......................................................................................... 28
Figure 12. Immunodetection and protein quantification of GT2, GT4, and GT22. .................. 29
Figure 13. Immunocytochemistry and statistical analysis of GT2, GT4, GT22. ...................... 30
Figure 14. AIPL1 protein domain structures. ............................................................................ 31
xvii
GLOSSARY
PCR
Polymerase Chain Reaction. Molecular technique to amplify a
single or multiple copies of a piece of DNA over several orders of
magnitude.
RFLP
Restriction Fragment Length Polymorphism. A variation in the
length of restriction fragments formed from a certain restriction
enzyme in a sample of DNA
AON
Antisense Oligonucleotide. A synthetic polymers which are created
from 15-20 chemically-modified deoxynucleotides or
ribonucleotides in an antisense sequence (3′ → 5′), complementary
to the sense sequence of an mRNA.
Centrosome
An organelle close to the nucleus of a cell that consist of the
centrioles and from which the spindle fibers develop in cell
division.
LCA
Leber Congenital Amaurosis. A genetic disorder that mainly affects
the retina and cause severe visual impairment to blindness.
xviii
ABSTRACT
Background: Leber congenital amaurosis (LCA) is an autosomal recessive retinal disorder,
characterized by an early-onset visual loss, amaurotic pupils, and retinal degeneration. Only a
few studies have been described about Indonesian LCA patients. Pre-clinical studies have
shown that antisense oligonucleotide (AON) restored the aberrant splicing caused by a
recurrent intronic mutation in the CEP290 gene. This study combined diagnostic study in
Indonesian LCA patients and in-vitro AON-based therapy for LCA.
Methods: CEP290, CRB1, GUCY2D, and AIPL1 genes were screened in 4 LCA patients from
3 unrelated families by amplification refractory mutation system (ARMS) PCR or Sanger
sequencing. Meanwhile, 29 different AONs (GT1 to GT29) with two chemistries were
designed and tested by RT-PCR, Western blot, and immunocytochemistry.
Results: Three variants were found in AIPL1 gene: p.E318G, p.R324R, and p.G11G.
Interestingly, p.E318G was predicted as a disease causing mutation by MutationTaster
program while p.R324R and p.G11G were predicted to cause a splicing alteration by ESEfinder splicing prediction. On the other hand, from 29 AON tested in this study, 4 AONs
worked efficiently in correcting the aberrant splicing, increasing the CEP290 protein, and
restoring the cilium length, at low concentrations.
Conclusions: The molecular genetic analysis of Indonesian LCA patients in this study
revealed three new candidate variants as a LCA causative mutation in AIPL1: p.E318G,
p.R324R, and p.G11G. From 29 AONs tested in this study, GT2, GT3, and GT4 were the
most efficient. Remarkably, these AONs shared the same chemical modification.
Keywords: Leber congenital amaurosis, splicing mutation, antisense oligonucleotide, CEP290
xix
ANALISIS MOLEKULER PADA PASIEN LCA INDONESIA DAN
KOREKSI PROSES SPLICING SECARA IN VITRO UNTUK LCA
TERKAIT CEP290
WIDYA EKA NUGRAHA
ABSTRAK
Latar Belakang: Leber Congenital Amaurosis (LCA) adalah suatu penyakit genetic yang
diturunkan secara autosomal resesif dan ditandai dengan hilang penglihatan sejak dini, pupil
yang amaurotik, dan degenerasi retina. Penelitian tentang pasien LCA di Indonesia masih
terbatas.
Sementara,
studi
pre-klinis
menunjukkan
bahwa
penggunaan
antisense
oligonucleotide (AON) dapat mengembalikan transkrip abnormal pada mutasi gen CEP290
yang menjadi penyebab tersering penyakit LCA. Penelitian ini menggabungkan studi
diagnostik pada pasien LCA Indonesia sekaligus koreksi proses splicing secara in vitro
menggunakan AON.
Metode: Strategi identifikasi mutasi melibatkan gen CEP290, CRB1, GUCY2D, dan AIPL1
pada 4 pasien dari 3 keluarga yang berbeda. Teknik molekuler yang digunakan yaitu
amplification refractory mutation system (ARMS) PCR atau Sanger sequencing. Sementara
itu, 29 molekul AON yang berbeda (GT1-GT29) diuji-coba menggunakan teknik reverse
transcriptase (RT) PCR, Western blot, dan immunocytochemistry.
Hasil: Ditemukan tiga varian pada gen AIPL1: p.E318G, p.R324R, dan p.G11G. Varian
p.E318G diprediksi sebagai mutasi penyebab penyakit dengan program MutationTaster
sementara varian p.R324R dan p.G11G diprediksi menyebabkan gangguan proses splicing
oleh program ESE-finder splicing prediction. Studi fungsional menunjukkan bahwa dari 29
AON yang diuji-cobakan. GT2, GT3, dan GT4 merupakan AON yang paling efisien dalam
mengoreksi proses splicing, meningkatkan protein CEP290, dan mengembalikan panjang
cilium pada konsentrasi minimum.
Kesimpulan: Analisis molekuler pada studi ini mengungkapkan tiga kandidat varian baru
sebagai mutasi penyebab LCA untuk gen AIPL1: p.E318G, p.R324R, dan p.G11G. Dari 29
AON yang diuji, GT2, GT3, GT4 adalah yang paling efisien. Ketiga AON memiliki kerangka
molekul yang sama.
Kata kunci: Leber congenital amaurosis, mutasi splicing, antisense oligonucleotide, CEP290.
xx
PATIENTS AND IN VITRO SPLICE CORRECTION
FOR CEP290 -ASSOCIATED LCA
ANALISIS MOLEKULER PADA PASIEN LCA INDONESIA DAN
KOREKSI PROSES SPLICING SECARA IN VITRO PADA LCA
TERKAIT CEP290
THESIS
Submitted to fulfill the assignment and fit-out requisite in passing
Post Graduate Program
Master of Biomedical Science
Widya Eka Nugraha
22010112420049
Supervisors:
Prof. Sultana MH Faradz, MD, Ph.D
Kentar A Sulakso, MD, MSi.Med, Sp.M (K)
FACULTY OF MEDICINE
DIPONEGORO UNIVERSITY SEMARANG
2015
THESIS
MOLECULAR ANALYSIS OF INDONESIAN LCA PATIENTS AND
IN VITRO SPLICE CORRECTION FOR CEP290-ASSOCIATED LCA
Arranged by
Widya Eka Nugraha, MD
22010112420049
Has been defended in front of the defense committee on May, 19th 2015
And has been approved by:
The Netherlands,
Principal Supervisor,
Dr. Rob WJ Collin
Supervisor,
Dr. Alex Garanto Iglesias
Indonesia,
Principal Supervisor,
Prof. Sultana MH Faradz, MD, PhD
NIP: 1952 0202 1979 012 001
Supervisor,
Kentar A Sulakso, MD, MSi.Med, Sp.M(K)
NIP: 1968 1128 1998 03 1 001
Approved by,
Head of Master Degree Program in Biomedical Science
Faculty of Medicine Diponegoro University
Dr. Achmad Zulfa Juniarto, M.Si.Med, Sp.And, Ph.D
NIP: 19700608 1997021 001
DECLARATION
I hereby declare that this submission is my own work and that, to the best of my knowledge
and belief, it contains no material previously published or written by another person nor
material which to a substantial extent has been accepted for the award of any other degree or
diploma of the university or other institute of higher learning, except where due
acknowledgement is made in the text.
Semarang, March 2015
Widya Eka Nugraha
iii
ACKNOWLEDGEMENT
It is an honor for me to express my gratitude to everyone who have helped and
supported me to finish this thesis. First of all, I would like to thank to Prof. Dr. Sultana MH
Faradz, Ph.D for her advice, guidance, and support in my master program from the beginning
till the end despite her own tight schedule. Thank you to dr. Kentar A Sulakso, Sp.M,
MSi.Med for his support, clinical advice, and supervision in writing this thesis.
I would also like to express my gratitude to Prof. Rob WJ Collin, head of Blindness
Genetic
Therapy research group in the Department of Human Genetics of Radboud
University Medical Centre, The Netherlands, for his kind supervision during my internship
there. I am so thankful to Alex Garanto, Ph.D for his superb teaching and explanation to all
that matters in my research.
It was a great experience to do research in the blindness genetic therapy lab with the
help from Lonneke Duijkers as a technician, Galuh Astuti, Julio CC Serrano, Muriel
Messchaert, as a Ph.D student, Manon Oud as a MSc student, and Arjen Henkes as
bioinformatician.
I would also like to thank all the people from Center for Biomedical Research
(CEBIOR), Semarang, Indonesia, Rita Indriati, Inthus Apriasa, Evi Nurwulan, Lusi Suwarsi,
Wiwik Lestari, and Dwi Kustiani for their assistance during my master study.
I will always be grateful to be a part of Batch 7 of Masters in Biomedical Science
Majoring in Genetic Counseling together with my beloved wife, Iffa Mutmainah, Mitayani,
Catharina Endah W, Nura Eky V, Cinta C Rudianto, and Rendy R Pohan. Your warm
companion supports me to complete my study.
My utmost gratitude and sincere thanks goes to my beloved parents, Eko Bambang
Setyawan, S.E, and Dyah Adiati Warsitosiwi for all the genuine love and limitless support
throughout the study. I will never be able to redeem everything you have done for me.
The opportunity to be a part of Master Student in CEBIOR and to have my research
done In The Netherlands would not have been possible without the scholarship from Biro
Perencanaan Kerja Sama Luar Negeri (BPKLN), Ministry of Education, Indonesia, especially
DR. AB Susanto, MSc. as the coordinator of Beasiswa Unggulan. Finally, I would like to
iv
thank all of the Master’s degree and Fellowship coordinators, especially Prof. Dr. Sultana MH
Faradz, Ph.D, dr. Tri Indah Winarni MSi.Med, Ph.D, and Ms. Ardina Apriliani S.E.
v
CURRICULUM VITAE
Name
: Widya Eka Nugraha
Sex
: Male
Place & Date of birth
: Bekasi, November 2nd, 1988
Latest Degree
: Medical Doctor
Address
: Poncol Jaya Block C3 No.2 RT/RW 003/019, Jaka Sampurna,
Bekasi Barat P.O.BOX 17145
Phone
: +62856 8042 164
: [email protected]
Educational Background
2006-2010
: Diponegoro University, Medical Faculty (Bachelor degree)
2010-2012
: Diponegoro University, Medical Faculty (Medical Doctor)
2013-Present : Post Graduate Program Diponegoro University, Master in Biomedical Science
Majoring in Genetic Counseling (Twinning Program with Radboud
University Medical Centre Nijmegen, The Netherlands
Experience
2013-2014
: Department of Human Genetics, Radboud University Medical Centre,
Nijmegen, The Netherlands: Internship Master Student
Trainings and Courses
2013
: 11th Medical Genetic Course: From Basic to Clinic, Semarang
2013
: Cardiogenetics and Its Clinical Management, Semarang
2013
: Workshop on Writing International Research Grants and Publication,
Semarang
2013
: Molecular Biology: A Recent Update, Semarang
2013
: Gene Therapy Seminar, Semarang
2013
: 3rd International Seminar on Autism and Fragile-X Syndrome, Semarang
vi
2014
: Novel Therapies for Inherited Retinal Dystrophies, Nijmegen The
Netherlands
2014
: Clinical Master Class for Inherited Retinal Dystrophies, Nijmegen
2014
: Technical Master Class for Inherited Retinal Dystrophies, Nijmegen
2015
: Hands-on workshop on cytogenetic and molecular genetics. Semarang
Scientific Paper
2010
: Correlation Between Intracranial Pressure Based On CT-Scan Imaging and
Blood Glucosae Level in Head Injury Patient. Undergraduate thesis. Medical
Faculty of Diponegoro University, Semarang.
Scholarship
2013
: Excellent Scholarship Program of The Bureau of Planning and International
Cooperation, Ministry of National Education, Government of Indonesia.
TOEFL score
2010
: 550
vii
CONTENTS
TITLE .....................................................................................................................................
i
APPROVAL SHEET ............................................................................................................
ii
DECLARATION ...................................................................................................................
iii
ACKNOWLEDGEMENT ....................................................................................................
iv
CURRICULUM VITAE .......................................................................................................
vi
CONTENTS ...........................................................................................................................
viii
ABBREVIATIONS ...............................................................................................................
xii
LIST OF TABLES ................................................................................................................
xvi
LIST OF FIGURES ..............................................................................................................
xvii
GLOSSARY ...........................................................................................................................
xviii
ABSTRACT ...........................................................................................................................
xix
CHAPTER 1 INTRODUCTION .........................................................................................
1
1.1
Background…………………………………………………………………………..
1
1.2
Research Question…………………………………………………………………...
2
1.3
Research Purposes…………………………………………………………………..
2
1.3.1 General Research Purposes…………………………………………………....
2
1.3.2 Specific Research Purpose…………………………………………………….
2
1.4
Research Benefits……………………………………………………………………
2
1.5
Research Originality…………………………………………………………………
2
CHAPTER 2 LITERATURE REVIEW .............................................................................
3
2.1
Leber Congenital Amaurosis………………………………………………………..
4
2.1.1 Clinical Characteristics………………………………………………………..
4
2.1.2 Genetic Causes and Heritability of Leber Congenital Amaurosis…………….
6
2.1.3 CEP290………………………………………………………………………..
8
Therapeutic Strategies……………………………………………………………….
10
2.2.1 Gene Augmentation Therapy………………………………………………….
10
2.2
viii
2.2.1.1 Lentiviral Vector……………………………………………………...
10
2.2.1.2 Adeno-associated Viral Vector…………………………………….....
10
2.2.1.3 Nanoparticles…………………………………………………………
12
2.2.2 Antisense Oligonucleotide Based Therapy………………..............................
12
2.2.2.1 AON sequences……………………………………………………….
13
2.2.2.2 Chemical Structure of AON…………………………………………..
13
CHAPTER 3 RESEARCH METHODS ..............................................................................
14
3.1
Research Field………………………………………………………………………..
14
3.2
Research Location……………………………………………………………………
14
3.3
Research Period………………………………………………………………………
14
3.4
Research Design………………………………………………………………………
14
3.5
Population and sample………………………………………………………………..
14
3.5.1 Population…………………………………………..........................................
14
3.5.2 Sample…………………………………............................................................
14
3.5.2.1 Inclusion Criteria…………………………..........................................
15
3.5.2.2 Exclusion Criteria……………………………………………………...
15
Research Variable…………………………………………………………………….
15
3.6.1 Diagnostic Study………………………………................................................
15
3.6.2 Functional Study………………………………................................................
15
Diagnostic Study: Mutational Analysis of Indonesian LCA Patients………………..
15
3.7.1 DNA Isolation………………………………………………............................
15
3.7.2 Primer Design…………………………………………………........................
16
3.7.3 Polymerase Chain Reaction (PCR)…………………………............................
16
3.7.3.1 ARMS-PCR……………………..........................................................
16
3.7.3.2 Regular PCR…………………………………………………………..
16
3.7.4 Sanger Sequencing……………………………………………………………..
17
3.7.5 Restriction Fragment Length Polymorphism (RFLP)………………………….
17
3.6
3.7
ix
3.8
Functional Studies: Optimization of Antisense Oligonucleotide (AON) Therapeutic
Approach for LCA……………………………………………………………………
17
3.8.1 Cell Culture…………………………………………………………………….
17
3.8.2 Transfection…………………………………………………………………….
17
3.8.3 RNA Isolation and Reverse Transcription PCR……........................................
18
3.8.4 Western Blot……………………………………………………………………
18
3.8.5 Immunocytochemistry………………………………………………………….
18
3.8.6 Statistical Analysis……………………………………………………………..
19
Research Flow………………………………………………………………………..
19
3.9.1 Diagnostic Study Workflow……………………………………………………
20
3.9.2 Functional Study Workflow……………………………………………………
21
3.10
Data Analysis…………………………………………………………………………
22
3.11
Research Ethics……………………………………………………………………….
22
3.9
CHAPTER 4 RESULTS .......................................................................................................
23
Molecular Genetic Analysis of Indonesian LCA Patients……………………………
23
4.1.1 Clinical Findings…………………………………………...............................
24
4.1.2 Molecular Findings……………………………...............................................
24
AON Optimization of CEP290-associated LCA Treatment…………………………
26
4.2.1 Transcriptional Analysis…………………………………………………….....
26
4.2.2 Western Blot and Protein Quantification………………………………………
28
4.2.3 Immunocytochemistry………………………………………………………….
29
CHAPTER 5 DISCUSSION .................................................................................................
31
5.1
Molecular Genetic Analysis of Indonesian LCA Patients……..................................
32
5.2
AON Optimization for CEP290-associated LCA Patients……………………………
32
5.3
Progress of Gene Therapy in Retinal Dystrophies…………………………………...
33
5.3.1 RPE65-associated LCA………………………………………………………...
34
5.3.2 Choroideremia………………………………………………………………… .
34
4.1
4.2
x
Therapeutic Possibilities for CEP290-associated LCA…………………………….. .
34
CHAPTER 6 CONCLUSION AND FUTURE DIRECTIONS .........................................
36
6.1
Conclusion……………………………………………………………………………
36
6.2
Future Directions………………………………........................................................
36
5.4
CHAPTER 7 SUMMARY ....................................................................................................
37
REFERENCES ......................................................................................................................
39
APPENDICES .......................................................................................................................
44
xi
ABBREVIATIONS
2’-MOE
2’Methoxy-Ethoxy
2’-OMe
2’-O-Methyl
AAV/rAAV
Adeno-Associated Virus / Recombinant AAV
ABCA4
Adenosine Triphosphate-Binding Cassette, Sub-Family A, Member 4
ACTB
Actin Beta
ACHM
Achromatopsia
AIPL1
Aryl Hydrocarbon Receptor Interacting Protein-like 1
AON
Antisense Oligonucleotide
ARMS-PCR
Amplification Refractory Mutation System - PCR
BBS4
Bardet-Biedl Syndrome 4
BCA
Bicinchonic Acid
BSA
Bovine Serum Albumin
CABP4
Calcium Binding Protein 4
Cap
Capsid
CB
Chicken Beta actin
CEP290
Centrosomal Protein 290 kDa
CD
Cone Dystrophy
CEBIOR
Centre for Biomedical Research
cGMP
Cyclic Guanosine Monophosphate
CHM
Choroderemia
CK30PEG-NP
CK30 Polyethylene Glycol-Nano Particles
CORS
Cerebello-Oculo-Renal Syndrome
CRB1
Crumbs Family Member 1
CRD
Cone-Rod Dystrophy
xii
CRX
Cone-Rod Homeobox
DAPI
4’, 6-diaminidino-2-phenylindole
DMEM
Dulbecco’s Modified Eagle Medium
DNA/cDNA
Deoxyribo Nucleic Acid / Complementary DNA
DTHD1
Death Domain Containing 1
EDTA
Ethylendiaminetetraacetic acid
EIAV
Equine Infectious Anemia Virus
ERG
Electroretinogram
ESE-Finder
Exonic Splicing Enhancer-Finder
GDF6
Growth Differentiation Factor 6
GT
Gene Therapy
GUCY2D
Guanylate Cyclase 2D
hRPE65
Human RPE65
IBD
Identity by Descent
IMPDH1
Inosine 5’-Monophosphate Dehydrogenase 1
iPSCs
Induced Pluripotent Stem Cells
IRD
Inherited Retinal Dystrophies
ITRs
Inverted Terminal Repeats
IQCB1
IQ Motif Containing B1
JSRD
Joubert Syndrome and Related Disorders
kDa
Kilodalton
KCNJI13
Potassium Inwardly-Rectifying Channel, Subfamily J, Member 13
LCA
Leber Congenital Amaurosis
LCA5
Leber Congenital Amaurosis 5
LINE
Long Interspersed Nuclear Elements
LP
Light Perception
LRAT
Lecithin Retinol Acyltransferase
xiii
LV
Lentivirus
MEM
Minimum Essential Media
MERTK
c-mer Proto-Oncogen Tyrosine Kinase
MIPs
Molecular Inversion Probes
MKS
Meckel-Gruber Syndrome
MYO7A
Myosin VIIA
NaCl
Natrium Chloride
NMNAT1
Nicotinamide Nucleotide Adenylyltransferase 1
NP
Nano Particles
NUB1
NEDD8 Ultimate Buster 1
OMIM
Online Mendelian Inheritance in Man
OTX2
Orthodenticle Homeobox 2
PBS
Phosphate-Buffered Saline
POD
Peptide Ocular Delivery
PPRPE
Preserved Para-arteriolar Retinal Pigment Epithelium
PVDF
Polyvinylidine Difluorida
RD3
Retinal Degeneration 3
RDH12
Retinol Dehydrogenase 12
Rep
Replication
REP1
Rab Escort Protein 1
RFLP
Restriction Fragment Length Polymorphism
RIPA
Radio Immunoprecipitation Assay
RNA/mRNA
Ribo Nucleic Acid / Messenger RNA
RP
Retiniti Pigmentosa
RPE
Retinal Pigment Epithelium
RPE65
Retinal Pigment Epithelium-Specific Protein 65 kDa
RPGRIP1
Retinitis Pigmentosa GTPaseRegulator Interacting Protein 1
xiv
RT-PCR
Reverse Transcription - PCR
sFLT01
Soluble Fms-Like Tyrosine Kinase 1 Receptor
siRNA
Small Interference RNA
SLS
Senior-Loken Syndrome
SNc
Substantia Nigra pars Compacta
SPATA7
Spermatogenesis Associated 7
SRp55
Serine-Arginine rich Protein 55 kDa
SRp40
Serine-Arginine rich Protein 40 kDa
STGD
Stargardt’s Disease
TPR
Tetratricopeptide Repeat
TULP1
Tubby-like Protein 1
VMD2
Vitelliform Macular Dystrophy 2
WT
Wild Type
xv
LIST OF TABLES
Table 1. Fundus photography results of LCA patients with known mutations in causative
genes ............................................................................................................................ 5
Table 2. Mutation identification strategy. ................................................................................. 6
Table 3. Prevalence of LCA causative genes. ........................................................................... 7
Table 4. Vectors used in clinical trial for various retinal diseases. ........................................... 11
Table 5. AAV serotype and target tissue. .................................................................................. 12
Table 6. Molecular findings of Indonesian LCA patients. ........................................................ 24
Table 7. Efficacy of AONs in serial dilutions. .......................................................................... 27
xvi
LIST OF FIGURES
Figure 1. Anatomy of the eye and retinal structure. .................................................................. 3
Figure 2. Classification of IRDs according to age progression and cell involvement. ............. 4
Figure 3. Mutation spectrum in CEP290................................................................................... 9
Figure 4. Chemical structure of AON. ...................................................................................... 13
Figure 5. Schematic representation of diagnostic study workflow. .......................................... 20
Figure 6. Workflow for functional studies to optimize the potential of AON-based approach. 21
Figure 7. Pedigrees of the families analyzed in this study. ....................................................... 23
Figure 8. Splicing prediction for c.33G>C variant in AIPL1. ................................................... 25
Figure 9. Splicing prediction for c.970C>A variant in AIPL1. ................................................. 25
Figure 10. Schematic representation of AONs. ......................................................................... 26
Figure 11. Transcriptional Analysis. ......................................................................................... 28
Figure 12. Immunodetection and protein quantification of GT2, GT4, and GT22. .................. 29
Figure 13. Immunocytochemistry and statistical analysis of GT2, GT4, GT22. ...................... 30
Figure 14. AIPL1 protein domain structures. ............................................................................ 31
xvii
GLOSSARY
PCR
Polymerase Chain Reaction. Molecular technique to amplify a
single or multiple copies of a piece of DNA over several orders of
magnitude.
RFLP
Restriction Fragment Length Polymorphism. A variation in the
length of restriction fragments formed from a certain restriction
enzyme in a sample of DNA
AON
Antisense Oligonucleotide. A synthetic polymers which are created
from 15-20 chemically-modified deoxynucleotides or
ribonucleotides in an antisense sequence (3′ → 5′), complementary
to the sense sequence of an mRNA.
Centrosome
An organelle close to the nucleus of a cell that consist of the
centrioles and from which the spindle fibers develop in cell
division.
LCA
Leber Congenital Amaurosis. A genetic disorder that mainly affects
the retina and cause severe visual impairment to blindness.
xviii
ABSTRACT
Background: Leber congenital amaurosis (LCA) is an autosomal recessive retinal disorder,
characterized by an early-onset visual loss, amaurotic pupils, and retinal degeneration. Only a
few studies have been described about Indonesian LCA patients. Pre-clinical studies have
shown that antisense oligonucleotide (AON) restored the aberrant splicing caused by a
recurrent intronic mutation in the CEP290 gene. This study combined diagnostic study in
Indonesian LCA patients and in-vitro AON-based therapy for LCA.
Methods: CEP290, CRB1, GUCY2D, and AIPL1 genes were screened in 4 LCA patients from
3 unrelated families by amplification refractory mutation system (ARMS) PCR or Sanger
sequencing. Meanwhile, 29 different AONs (GT1 to GT29) with two chemistries were
designed and tested by RT-PCR, Western blot, and immunocytochemistry.
Results: Three variants were found in AIPL1 gene: p.E318G, p.R324R, and p.G11G.
Interestingly, p.E318G was predicted as a disease causing mutation by MutationTaster
program while p.R324R and p.G11G were predicted to cause a splicing alteration by ESEfinder splicing prediction. On the other hand, from 29 AON tested in this study, 4 AONs
worked efficiently in correcting the aberrant splicing, increasing the CEP290 protein, and
restoring the cilium length, at low concentrations.
Conclusions: The molecular genetic analysis of Indonesian LCA patients in this study
revealed three new candidate variants as a LCA causative mutation in AIPL1: p.E318G,
p.R324R, and p.G11G. From 29 AONs tested in this study, GT2, GT3, and GT4 were the
most efficient. Remarkably, these AONs shared the same chemical modification.
Keywords: Leber congenital amaurosis, splicing mutation, antisense oligonucleotide, CEP290
xix
ANALISIS MOLEKULER PADA PASIEN LCA INDONESIA DAN
KOREKSI PROSES SPLICING SECARA IN VITRO UNTUK LCA
TERKAIT CEP290
WIDYA EKA NUGRAHA
ABSTRAK
Latar Belakang: Leber Congenital Amaurosis (LCA) adalah suatu penyakit genetic yang
diturunkan secara autosomal resesif dan ditandai dengan hilang penglihatan sejak dini, pupil
yang amaurotik, dan degenerasi retina. Penelitian tentang pasien LCA di Indonesia masih
terbatas.
Sementara,
studi
pre-klinis
menunjukkan
bahwa
penggunaan
antisense
oligonucleotide (AON) dapat mengembalikan transkrip abnormal pada mutasi gen CEP290
yang menjadi penyebab tersering penyakit LCA. Penelitian ini menggabungkan studi
diagnostik pada pasien LCA Indonesia sekaligus koreksi proses splicing secara in vitro
menggunakan AON.
Metode: Strategi identifikasi mutasi melibatkan gen CEP290, CRB1, GUCY2D, dan AIPL1
pada 4 pasien dari 3 keluarga yang berbeda. Teknik molekuler yang digunakan yaitu
amplification refractory mutation system (ARMS) PCR atau Sanger sequencing. Sementara
itu, 29 molekul AON yang berbeda (GT1-GT29) diuji-coba menggunakan teknik reverse
transcriptase (RT) PCR, Western blot, dan immunocytochemistry.
Hasil: Ditemukan tiga varian pada gen AIPL1: p.E318G, p.R324R, dan p.G11G. Varian
p.E318G diprediksi sebagai mutasi penyebab penyakit dengan program MutationTaster
sementara varian p.R324R dan p.G11G diprediksi menyebabkan gangguan proses splicing
oleh program ESE-finder splicing prediction. Studi fungsional menunjukkan bahwa dari 29
AON yang diuji-cobakan. GT2, GT3, dan GT4 merupakan AON yang paling efisien dalam
mengoreksi proses splicing, meningkatkan protein CEP290, dan mengembalikan panjang
cilium pada konsentrasi minimum.
Kesimpulan: Analisis molekuler pada studi ini mengungkapkan tiga kandidat varian baru
sebagai mutasi penyebab LCA untuk gen AIPL1: p.E318G, p.R324R, dan p.G11G. Dari 29
AON yang diuji, GT2, GT3, GT4 adalah yang paling efisien. Ketiga AON memiliki kerangka
molekul yang sama.
Kata kunci: Leber congenital amaurosis, mutasi splicing, antisense oligonucleotide, CEP290.
xx