Perancangan Termometer Digital Menggunakan WTV020 Berbasis ATMega 32

(1)

BAB 2

LANDASAN TEORI

2.1. SENSOR SUHU LM35

LM35 adalah komponen sensor suhu berukuran kecil seperti transistor (TO-92), komponen yang sangat mudah digunakan ini mampu mengukur suhu hingga 100 derajad celcius. Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. Sensor Suhu LM35 yang dipakai dalam penelitian ini berupa komponen elektronika elektronika yang diproduksi oleh National Semiconductor. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan. Dengan tegangan keluaran yang terskala linear dengan suhu terukur, yakni 10 milivolt per 1 derajad celcius.

Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan kesensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5 ºC pada suhu 25 ºC. Aplikasi-aplikasi seperti thermometer ruang digital, mesin pasteurisasi, atau termometer badan digital.


(2)

2.1.1. Struktur Sensor LM35

Gambar 2.1. Sensor Suhu LM35

Dari gambar diatas dapat diketahui bahwa sensor suhu IC LM35 pada dasarnya memiliki 3 pin diantaranya yaitu, pin 1 berfungsi sebagai sumber tegangan kerja dari LM35, pin 2 atau tengah digunakan sebagai tegangan keluaran atau Vout dengan jangkauan kerja dari 0 Volt sampai dengan 1,5 Volt dengan tegangan operasi sensor LM35 yang dapat digunakan antar 4 Volt sampai 30 Volt. Keluaran sensor ini akan naik sebesar 10 mV setiap derajad celcius sehingga diperoleh persamaan sebagai berikut :


(3)

Gambar 2.2. Skematik rangkaian dasar sensor suhu

Gambar diatas kanan adalah gambar skematik rangkaian dasar sensor suhu LM35-DZ. Rangkaian ini sangat sedeCrhana dan praktis. Vout adalah tegangan keluaran sensor yang terskala linear terhadap suhu terukur, yakni 10 milivolt per 1 derajad celcius. Jadi jika Vout = 530mV, maka suhu terukur adalah 53 derajad Celcius. Dan jika Vout = 320mV, maka suhu terukur adalah 32 derajad Celcius. Tegangan keluaran ini bisa langsung diumpankan sebagai masukan ke rangkaian pengkondisi sinyal seperti rangkaian penguat operasional dan rangkaian filter, atau rangkaian lain seperti rangkaian pembanding tegangan dan rangkaian Analog-to-Digital Converter.

Rangkaian dasar tersebut cukup untuk sekedar bereksperimen atau untuk aplikasi yang tidak memerlukan akurasi pengukuran yang sempurna. Akan tetapi tidak untuk aplikasi yang sesungguhnya. Terbukti dari eksperimen yang telah saya lakukan, tegangan keluaran sensor belumlah stabil. Pada kondisi suhu yang relatif sama, jika tegangan suplai saya ubah-ubah (saya naikkan atau turunkan), maka Vout juga ikut berubah. Memang secara logika hal ini sepertinya benar, tapi untuk instrumentasi hal ini tidaklah diperkenankan. Dibandingkan dengan tingkat kepresisian, maka tingkat akurasi alat ukur lebih utama karena alat ukur seyogyanya dapat dijadikan patokan bagi penggunanya. Jika nilainya


(4)

berubah-ubah untuk kondisi yang relatif tidak ada perberubah-ubahan, maka alat ukur yang demikian ini tidak dapat digunakan.

2.1.2. Karakteristik Sensor LM35.

Gambar 2.3. kaki-kaki LM35

1. Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.

2. Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 ºC seperti terlihat pada gambar 2.2.

3. Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC. 4. Bekerja pada tegangan 4 sampai 30 volt.

5. Memiliki arus rendah yaitu kurang dari 60 µA.

6. Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.

7. Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA. 8. Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.

Sensor suhu IC LM35 memiliki keakuratan tinggi dan mudah dalam perancangan jika dibandingkan dengan sensor suhu yang lain, sensor suhu LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi


(5)

sehingga dapat dengan mudah dihubungkan dengan rangkaian kontrol khusus serta tidak memerlukan setting tabahan karena output dari sensor suhu LM35 memiliki karakter yang linier dengan perubahan 10mV/°C. Sensor suhu LM35 memiliki jangkauan pengukuran -55°C hingga +150°C dengan akurasi ±0,5°C. Tegangan output sensor suhu IC LM35 dapat diformulasikan Vout LM35 = temperature ° x 10mV.

Sensor suhu LM35 terdapat dalam beberapa varian sebagai berikut:

• LM35, LM35A memiliki range pengukuran temperature -55°C hingga +150°C.

• LM35C, LM35CA memiliki range pengukuran temperatur -40℃ hingga +110℃.

• LM35D memiliki range pengukuran temperatur 0°C hingga +100°C.

Gambar 2.4. Grafik akurasi LM35 terhadap suhu

Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt. Sensor ini mempunyai pemanasan diri (self heating)


(6)

kurang dari 0,1°C, dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian control yang sangat mudah.

IC LM 35 sebagai sensor suhu yang teliti dan terkemas dalam bentuk Integrated Circuit (IC), dimana output tegangan keluaran sangat linear terhadap perubahan suhu. Sensor ini berfungsi sebagai pegubah dari besaran fisis suhu ke besaran tegangan yang memiliki koefisien sebesar 10 mV /°C yang berarti bahwa kenaikan suhu 1° C maka akan terjadi kenaikan tegangan sebesar 10 mV.

Gambar 2.5. Rangkaian Sensor LM35

IC LM 35 ini tidak memerlukan pengkalibrasian atau penyetelan dari luar karena ketelitiannya sampai lebih kurang seperempat derajat celcius pada temperature ruang. Jangka sensor mulai dari – 55°C sampai dengan 150°C, IC LM35 penggunaannya sangat mudah, difungsikan sebagai kontrol dari indicator tampilan catu daya terbelah. IC LM 35 dapat dialiri arus 60 μ A dari supplay sehingga panas yang ditimbulkan sendiri sangat rendah kurang dari 0 ° C di dalam suhu ruangan.

Untuk mendeteksi suhu digunakan sebuah sensor suhu LM35 yang dapat dikalibrasikan langsung dalam C (celcius), LM35 ini difungsikan sebagai basic temperature sensor.


(7)

Adapun keistimewaan dari IC LM 35 adalah : • Kalibrasi dalam satuan derajat celcius.

• Lineritas +10 mV/ º C.

• Akurasi 0,5 º C pada suhu ruang. • Range +2 º C – 150 º C.

• Dioperasikan pada catu daya 4 V – 30 V. • Arus yang mengalir kurang dari 60 μA

2.1.3. Prinsip Kerja Sensor LM35

Secara prinsip sensor akan melakukan penginderaan pada saat perubahan suhu setiap suhu 1 ºC akan menunjukan tegangan sebesar 10 mV. Pada penempatannya LM35 dapat ditempelkan dengan perekat atau dapat pula disemen pada permukaan akan tetapi suhunya akan sedikit berkurang sekitar 0,01 ºC karena terserap pada suhu permukaan tersebut. Dengan cara seperti ini diharapkan selisih antara suhu udara dan suhu permukaan dapat dideteksi oleh sensor LM35 sama dengan suhu disekitarnya, jika suhu udara disekitarnya jauh lebih tinggi atau jauh lebih rendah dari suhu permukaan, maka LM35 berada pada suhu permukaan dan suhu udara disekitarnya .

Jarak yang jauh diperlukan penghubung yang tidak terpengaruh oleh interferensi dari luar, dengan demikian digunakan kabel selubung yang ditanahkan sehingga dapat bertindak sebagai suatu antenna penerima dan simpangan didalamnya, juga dapat bertindak sebagai perata arus yang mengkoreksi pada kasus yang sedemikian, dengan mengunakan metode bypass kapasitor dari Vin untuk ditanahkan.


(8)

Maka dapat disimpulkan prinsip kerja sensor LM35 sebagai berikut:

• Suhu lingkungan di deteksi menggunakan bagian IC yang peka terhadap suhu

• Suhu lingkungan ini diubah menjadi tegangan listrik oleh rangkaian di dalam IC, dimana perubahan suhu berbanding lurus dengan perubahan tegangan output.

• Pada seri LM35

Vout=10 mV/oC

Tiap perubahan 1oC akan menghasilkan perubahan tegangan output sebesar 10mV

2.1.4. Kelebihan dan Kelemahan Sensors LM35 Kelebihan:

a. Rentang suhu yang jauh, antara -55 sampai +150 oC b. Low self-heating, sebesar 0.08 oC

c. Beroperasi pada tegangan 4 sampai 30 V d. Rangkaian tidak rumit

e. Tidak memerlukan pengkondisian sinyal • Kekurangan:

Membutuhkan sumber tegangan untuk beroperasi

2.2. LCD ( Liquid Crystal Display )

LCD ( Liquid Crystal Dispalay ) sering diartikan dalam bahasa indonesia sebagai tampilan kristal cair merupakan suatu jenis media tampilan yang menggunakan kristal cair sebagai penampil utama.


(9)

LCD dapat menampilkan karakter ASCI sehingga kita bisa menampilkan campuran huruf dan angka sekaligus berwarna ataupun tidak berwarna, hal ini disebabkan karena terdapat banyak sekali titik cahaya (piksel) yang terdiri dari satu buah kristal cair sebagai sebuah titik cahaya. Walau disebut sebagai titik cahaya namun kristal cair ini tidak memancarkan cahaya sendiri. Sumber cahaya didalam sebuah perangkat LCD adalah lampu neon berwarna putih dibagian belakang susunan kristal cair tadi. Titik cahaya yang jumlahnya puluhan ribu bahkan jutaan inilah yang membentuk tampilan citra. Kutub kristal cair yang dilewati arus listrik akan berubah karena pengaruh polarisasi medan magnetik yang timbul dan oleh karenanya akan hanya membiarkan beberapa warna diteruskan sedangkan warna lainnya tersaring.

Dalam menampilkan karakter untuk membantu menginformasikan proses dan control yang terjadi dalam suatu program robot kita sering menggunakan LCD. Ada beberapa jenis LCD perbedaannya hanya terletak pada alamat menaruh karakternya. Salah satu LCD yang sering dipergunakan adalah LCD 16x2 artinya LCD tersebut terdiri dari 16 kolom dan 2 baris. LCD ini sering digunakan karena harganya yang relatif murah dan pemakaian nya yang mudah. LCD yang kita gunakan masih membutuhkan agar dapat dikoneksikan dengan system minimum dalam suatu mikrokontroler. Driver tersebut berisi rangkaian pengaman, pengatur tingkat kecerahan backligt maupun data serta untuk mempermudah pemasangan di mikrokontroler (portable-red).


(10)

Gambar 2.6. LCD 16 x 2 Modul LCD memiliki karakteristik sebagai berikut:

1. Terdapat 16 x 2 karakter huruf yang bisa ditampilkan. 2. Setiap terdiri dari 5 x 7 dot-matrix cursor.

3. Terdapat 192 macam karakter.

4. Terdapat 80 x 8 bit display RAM ( maksimal 80 karakter ).

5. Memiliki kemampuan penulisan dengan 8 bit maupun dengan 4 bit. 6. Dibangun oleh osilator lokal.

7. Satu sumber tegangan 5 Volt.

8. Otomatis reset saat tegangan dihidupkan. 9. Bekerja pada suhu 0oC sampai 550C.

2.2.1. Konfigurasi Pin LCD

Tabel 2.1. Konfigurasi Pin LCD

No Simbol Level Fungsi

1 Vss - 0 Volt

2 Vcc - 5+10% Volt

3 Vee - Penggerak LCD

4 RS H/L H=Memasukkan Data,L=Memasukkan Ins

5 R/W H/L H=Baca, L=Tulis


(11)

7 DB0 H/L

Data Bus

8 DB1 H/L

9 DB2 H/L

10 DB3 H/L

11 DB4 H/L

12 DB5 H/L

13 DB6 H/L

14 DB7 H/L

15 V+BL

Kecerahan LCC

16 V-BL

2.3. Mikrokontroler ATmega32

Mikrokontroler ATmega32 adalah mikrokontroler 8-bit keluaran Atmel dari keluarga AVR. Pihak Atmel menyatakan bahwa AVR bukanlah sebuah akronim atau singkatan dari suatu kalimat tertentu, perancang arsitektur AVR, Alf-Egil Bogen dan Vegard Wollan tidak memberikan jawaban yang pasti tentang singkatan AVR ini (http://en.wikipedia.org/wiki/Atmel_AVR). Mikrokontroler ini dirancang berdasarkan arsitektur AVR RISC (Reduced Instruction Set Computer) yang mengeksekusi satu instruksi dalam satu siklus clock sehingga dapat mencapai eksekusi instruksi sebesar 1 MIPS (Million Instruction Per Second) setiap 1 MHZ frekuensi clock yang digunakan mikrokontroler tersebut. Frekuensi clock yang digunakan dapat diatur melalui fuse bits dan kristal yang digunakan. Jika kristal yang digunakan sebesar 16 MHZ sehingga frekuensi clock-nya sebesar 16 MHZ maka eksekusi instruksinya mencapai 16 MIPS (Atmel, 2009).

ATmega32 memiliki fitur utama antara lain: 16K x 16 byte In-System Programmable Flash Program memory dari alamat 0000H sampai 3FFFH. Flash memory ini terbagi menjadi dua bagian yaitu application flash section dan boot


(12)

flash section. Data memori sebesar 2144 byte yang terbagi atas 32 general purpose register, 64 I/O register, dan 2KB internal SRAM (Static Random Access Memory), 1 KB EEPROM (Electrically Eraseable Read Only Memory), 32 I/O pin, tiga unit timer/counter, internal dan eksternal interrupt, USART (Universal Synchronous and Asynchronous Receiver Transceiver), TWI (Two-wire Serial Interface), 10-bit ADC (Analog to Digital Converter) delapan saluran, SPI (Serial Programmable Interface), watchdog timer, dan internal clock generator. Seperti telah disebutkan di atas, ATmega32 memiliki 32 general purpose register, dan register ini terhubung langsung dengan dengan ALU (Arithmatic Logic Unit) sehingga dua register dapat sekaligus diakses dalam satu instruksi yang dieksekusi tiap clock-nya. Sehingga arsitektur seperti ini lebih efisien dalam eksekusi kode program dan dapat mencapai eksekusi sepuluh kali lebih cepat dibandingkan mikrokontroler CISC (Complete Instruction Set Computer) (Atmel, 2009). Gambar 2.1, 2.2, dan 2.3 masing-masing menunjukkan desain memori, susunan pin, dan arsitektur mikrokontroler ATmega32.


(13)

(14)

Gambar 2.8. Arsitektur Mikrokontroler Atmega32

ATmega32 memiliki clock generator internal sehingga mikrokontroler ini dapat bekerja langsung tanpa menggunakan clock eksternal. Sinyal clock internal yang dibangkitkan sebesar 1 MHZ. Jadi, cukup dengan menghubungkan Vcc dan Gnd dengan tegangan 5V DC mikrokontroler ini dapat bekerja.

Untuk membuat program untuk ATmega32 dapat digunakan WinAVR atau AVR Studio yang dapat diperoleh secara gratis (freeware). Namun dalam pembahasan, ini software yang digunakan adalah WinAVR. Program dibuat dalam bahasa C dan menambahkan file header untuk ATmega32 yang berisi


(15)

register-register pada ATmega32. Setelah program di-compile akan menghasilkan file dengan tipe Intel hex (.hex). File inilah yang nantinya akan di-programkan ke ATmega32 melalui interface bsd programmer (Brian Dean's Programmer) yang terhubung ke komputer melalui port paralel. Koneksi antara ATmega32 dan port paralel untuk bsd programmer diberikan oleh tabel berikut ini

Tabel 2.2 Koneksi Pin Port Paralel dan ATmega32

Port paralel ATmega32 No pin Nama pin No pin Nama pin

7 D5 9 Reset

8 D6 8 SCK

9 D7 6 MOSI

10 S6 7 MISO

9 Ground 11 Ground

2.4. ADC (Analog To Digital Converter)

ADC (Analog To Digital Conventer) adalah perangkat elektronika yang berfungsi untuk mengubah sinyal analog (sinyal kontinyu) menjadi sinyal digital. Perangkat ADC (Analog To Digital Conventer) dapat berbentuk suatu modul atau rangkaian elektronika maupun suatu chip IC. ADC (Analog To Digital Conventer) berfungsi untuk menjembatani pemrosesan sinyal analog oleh sistem digital.

Converter alat bantu digital yang paling penting untuk teknologi kontrol proses adalah yang menerjemahkan informasi digital ke bentuk analog dan juga sebaliknya. Sebagian besar pengukuran variabel-variabel dinamik dilakukan oleh


(16)

piranti ini yang menerjemahkan informasi mengenai variabel kebentuk sinyal listrik analog. Untuk menghubungkan sinyal ini dengan sebuah komputer atau rangkaian logika digital, sangat perlu untuk terlebih dahulu melakukan konversi analog ke digital (A/D). Hal-hal mengenai konversi ini harus diketahui sehingga ada keunikan, hubungan khusus antara sinyal analog dan digital.

2.4.1. Karakteristik ADC

Kecepatan Sampling ADC

kecepatan sampling suatu ADC menyatakan “seberapa sering sinyal analog dikonversikan ke bentuk sinyal digital pada selang waktu tertentu”. Kecepatan sampling biasanya dinyatakan dalam sample per second (SPS). • Resolusi ADC

Resolusi ADC menentukan “ketelitian nilai hasil konversi ADC”. Sebagai contoh, ADC 8 bit akan memiliki output 8 bit data digital, ini berarti sinyal input dapat dinyatakan dalam 4096 nilai diskrit. Dari contoh diatas ADC 12 bit akan memberikan ketelitian nilai hasil konversi yang jauh lebih baik daripada ADC 8 bit.

2.4.2. Prinsip Kerja ADC

Prinsip kerja ADC adalah mengkonversi sinyal analog kedalam bentuk besaran yang merupakan rasio perbandingan sinyal input dan tegangan refrensi. Sebagai contoh, bila tegangan refrensi 5 volt, tegangan input 3 volt, rasio input terhadap refrensi adalah 60%. Jadi, jika menggunakan ADC 8 bit dengan skala maksimum 255, akan didapatkan sinyal digital sebesar 60% x 255 = 153 (bentuk decimal) atau 10011001 (bentuk biner).


(17)

2.4.3. Komparator ADC

Bentuk komunikasi yang paling mendasar antara wujud digital dan analog adalah piranti (biasanya berupa IC) disebut komparator. Piranti ini, yang diperlihatkan secara skematik pada gambar dibawah, secara sederhana membandingkan dua tegangan pada kedua terminal inputnya. Bergantung pada tegangan mana yang lebih besar, outputnya akan berupa sinyal digital 1 (high) atau 0 (low). Komparator ini digunakan secara luas untuk sinyal alarm ke komputer atau sistem memproses digital. Elemen ini juga merupakan satu bagian dengan konverter analog ke digital dan digital ke analog.

Gambar 2.9. Konsep Komparator Pada ADC (Analog to Digital Converter)

Gambar diatas memperlihatkan sebuah komparator merubah keadaan logika output sesuai fungsi tegangan input analog. Sebuah komparator dapat tersusun dari opamp yang memberikan output terpotong untuk menghasilkan level yang diinginkan untuk kondisi logika (+5 dan 0 untuk TTL 1 dan 0). Komparator komersil didesain untuk memiliki level logika yang diperlukan pada bagian outputnya.


(18)

2.4.4. Jenis-jenis ADC (Analog to Digital Converter) • ADC Simultan

ADC simultan atau biasa disebut flash converter atau paralel converter. Input analog Vi yang akan diubah ke bentuk digital diberikan secara simultan pada sisi + pada komparator tersebut, dan input pada sisi – tergantung pada ukuran bit converter. Ketika Vi melebihi tegangan input – dari suatu komparator, maka output komparator adalah high, sebaliknya memberikan output low.


(19)

Bila Vref diset pada nilai 5 volt, maka dari gambar 3 dapat didapatkan: V(-) untuk C7 = Verf * (13/14) = 4,64

V(-) untuk C6 = Verf * (11/14) = 3,93 V(-) untuk C5 = Verf * (9/14) = 3,21 V(-) untuk C4 = Verf * (7/14) = 2,5 V(-) untuk C3 = Verf * (5/14) = 1,78 V(-) untuk C2 = Verf * (3/14) = 1,07 V(-) untuk C1 = Verf * (1/14) = 0,36

Misal: Vin diberi sinyal analog 3 volt, maka output dari C7=0, C6=0, C5=0, C4=1, C3=1, C2=1, C1=1, sehingga didapatkan output ADC yaitu 100 biner.

Tabel 2.3. Output ADC Simultan

Ada beberapa konsep dasar dari ADC adalah dengan cara Counter Ramp ADC, Successive Aproximation ADC dan lain sebagainya.


(20)

• Counter Ramp ADC

Gambar 2.11. Diagram Blok Counter Ramp ADC Pada gambar diatas, ditunjukkan blok diagram Counter Ramp ADC didalamnya terdapat DAC yang diberi masukan dari counter, masukan counter dari sumber Clock dimana sumber Clock dikontrol dengan cara meng AND kan dengan keluaran Comporator.

• SAR (Successive Aproximation Register) ADC


(21)

Pada gambar diatas ditunjukkan diagram ADC jenis SAR, yaitu dengan memakai konvigurasi yang hampir sama dengan counter ramp tetapi dalam melakukan trace dengan cara tracking dengan mengeluarkan kombinasi bit MSB = 1 ===> 1000 0000. Apabila belum sama (kurang dari tegangan analog input maka bit MSB berikutnya = 1 ===> 1100 0000) dan apabila tegangan analog input ternyata lebih kecil dari tegangan yang dihasilkan DAC maka langkah berikutnya menurunkan kombinasi bit ===> 1010 0000.

2.5. WTV 020

Gambar 2.13. Modul WTV020-SD

Modul ini digunakan untuk memutar berkas suara menggunakan chip WTV020 dan membaca berkas suara dalam format WAV/AD4. Anda dapat menggunakan modul elekrtonika ini untuk membuat proyek mikrokontroller/arduino dengan penyimpanan media di kartu micro SD.


(1)

piranti ini yang menerjemahkan informasi mengenai variabel kebentuk sinyal listrik analog. Untuk menghubungkan sinyal ini dengan sebuah komputer atau rangkaian logika digital, sangat perlu untuk terlebih dahulu melakukan konversi analog ke digital (A/D). Hal-hal mengenai konversi ini harus diketahui sehingga ada keunikan, hubungan khusus antara sinyal analog dan digital.

2.4.1. Karakteristik ADC

Kecepatan Sampling ADC

kecepatan sampling suatu ADC menyatakan “seberapa sering sinyal analog dikonversikan ke bentuk sinyal digital pada selang waktu tertentu”. Kecepatan sampling biasanya dinyatakan dalam sample per second (SPS). • Resolusi ADC

Resolusi ADC menentukan “ketelitian nilai hasil konversi ADC”. Sebagai contoh, ADC 8 bit akan memiliki output 8 bit data digital, ini berarti sinyal input dapat dinyatakan dalam 4096 nilai diskrit. Dari contoh diatas ADC 12 bit akan memberikan ketelitian nilai hasil konversi yang jauh lebih baik daripada ADC 8 bit.

2.4.2. Prinsip Kerja ADC

Prinsip kerja ADC adalah mengkonversi sinyal analog kedalam bentuk besaran yang merupakan rasio perbandingan sinyal input dan tegangan refrensi. Sebagai contoh, bila tegangan refrensi 5 volt, tegangan input 3 volt, rasio input terhadap refrensi adalah 60%. Jadi, jika menggunakan ADC 8 bit dengan skala maksimum 255, akan didapatkan sinyal digital sebesar 60% x 255 = 153 (bentuk decimal) atau 10011001 (bentuk biner).


(2)

2.4.3. Komparator ADC

Bentuk komunikasi yang paling mendasar antara wujud digital dan analog adalah piranti (biasanya berupa IC) disebut komparator. Piranti ini, yang diperlihatkan secara skematik pada gambar dibawah, secara sederhana membandingkan dua tegangan pada kedua terminal inputnya. Bergantung pada tegangan mana yang lebih besar, outputnya akan berupa sinyal digital 1 (high) atau 0 (low). Komparator ini digunakan secara luas untuk sinyal alarm ke komputer atau sistem memproses digital. Elemen ini juga merupakan satu bagian dengan konverter analog ke digital dan digital ke analog.

Gambar 2.9. Konsep Komparator Pada ADC (Analog to Digital Converter)

Gambar diatas memperlihatkan sebuah komparator merubah keadaan logika output sesuai fungsi tegangan input analog. Sebuah komparator dapat tersusun dari opamp yang memberikan output terpotong untuk menghasilkan level yang diinginkan untuk kondisi logika (+5 dan 0 untuk TTL 1 dan 0). Komparator komersil didesain untuk memiliki level logika yang diperlukan pada bagian outputnya.


(3)

2.4.4. Jenis-jenis ADC (Analog to Digital Converter) • ADC Simultan

ADC simultan atau biasa disebut flash converter atau paralel converter. Input analog Vi yang akan diubah ke bentuk digital diberikan secara simultan pada sisi + pada komparator tersebut, dan input pada sisi – tergantung pada ukuran bit converter. Ketika Vi melebihi tegangan input – dari suatu komparator, maka output komparator adalah high, sebaliknya memberikan output low.


(4)

Bila Vref diset pada nilai 5 volt, maka dari gambar 3 dapat didapatkan: V(-) untuk C7 = Verf * (13/14) = 4,64

V(-) untuk C6 = Verf * (11/14) = 3,93 V(-) untuk C5 = Verf * (9/14) = 3,21 V(-) untuk C4 = Verf * (7/14) = 2,5 V(-) untuk C3 = Verf * (5/14) = 1,78 V(-) untuk C2 = Verf * (3/14) = 1,07 V(-) untuk C1 = Verf * (1/14) = 0,36

Misal: Vin diberi sinyal analog 3 volt, maka output dari C7=0, C6=0, C5=0, C4=1, C3=1, C2=1, C1=1, sehingga didapatkan output ADC yaitu 100 biner.

Tabel 2.3. Output ADC Simultan

Ada beberapa konsep dasar dari ADC adalah dengan cara Counter Ramp ADC, Successive Aproximation ADC dan lain sebagainya.


(5)

• Counter Ramp ADC

Gambar 2.11. Diagram Blok Counter Ramp ADC Pada gambar diatas, ditunjukkan blok diagram Counter Ramp ADC didalamnya terdapat DAC yang diberi masukan dari counter, masukan counter dari sumber Clock dimana sumber Clock dikontrol dengan cara meng AND kan dengan keluaran Comporator.

• SAR (Successive Aproximation Register) ADC


(6)

Pada gambar diatas ditunjukkan diagram ADC jenis SAR, yaitu dengan memakai konvigurasi yang hampir sama dengan counter ramp tetapi dalam melakukan trace dengan cara tracking dengan mengeluarkan kombinasi bit MSB = 1 ===> 1000 0000. Apabila belum sama (kurang dari tegangan analog input maka bit MSB berikutnya = 1 ===> 1100 0000) dan apabila tegangan analog input ternyata lebih kecil dari tegangan yang dihasilkan DAC maka langkah berikutnya menurunkan kombinasi bit ===> 1010 0000.

2.5. WTV 020

Gambar 2.13. Modul WTV020-SD

Modul ini digunakan untuk memutar berkas suara menggunakan chip WTV020 dan membaca berkas suara dalam format WAV/AD4. Anda dapat menggunakan modul elekrtonika ini untuk membuat proyek mikrokontroller/arduino dengan penyimpanan media di kartu micro SD.