PERILAKU MEKANIK PADA KOMPOSIT

  ! " # $ % " & ' # (

  • c = f f m m E E

  V E

  V

  • c = f f m m σ σ

  V σ

  V c ! E !

  σ c

  " # $% & ' $% & ' & %

  ( % % % ( ) ( " ! % ( * %

  • σ′
  •     
  • σ = σ
  • ,

  V V f fu

  fraksi volum fiber minimum: As ↓, ↑.

  As ↑, ↑.

  degree of work hardening , matrix f fiber , f

  ε < ε σ′ −

  σ

  m mu fu m mu min

  σ

  Agar memiliki penguatan komposit dari serat,

  V min ( ) σ′

  − σ m mu

  V min )

  V ) 1 ( V 1 (

  V f mu f m f fu cu

  

σ ≥ − σ′ + σ

  UTS of composite UTS of matrix after fiber fracture

  All fibers are identical and uniform. → same UTS Jika serat retak, sebuah matriks menjadi mengeras mengimbangi kehilangan beban/daya dukung.

  = σ

  Modulus m f c m m f f

  %

  % %

  V V m m f f c σ′

  = σ

  V d d

  V d d E

     

  Effect of Fiber Volume Fraction on Tensile Strength (Kelly and Davies, 1965) Assumption : Ductile matrix ( ) work hardens.

    ε σ

   ε σ =

  ε ε

  V V m m f fu cu σ′

  σ

  fu σ′ m

  • σ σ′ − σ = ≥
In order to be the strength of composite higher than that of monolithic matrix,

  (

  1 V ) V f m − ≥ mu

  • cu = fu

  σ σ σ′ f σ

  UTS of pure matrix

  Critical Fiber Volume Fraction −

  σ mu σ′ m

  V V ≥ = crit

  f fu − m

  σ σ′ As ↓, ↑. σ fu

  V crit As − ↑, crit ↑.

  ( σ mu σ′ m )

  V

  degree of work hardening

>

  Note that > mu )

  V V σ

  crit min always! (∵

  • (. / , ! / % ! / % / % ! % ! % % ! / ! % % ! ! , ! ! ! ! ! % % ! % 0 ! ! , ! ! ! !

  2

  2

  π E  d  σ =

   

  c

  16 l  

  % %

  2 Types of Compressive Deformation 1) In/phase Buckling : melibatkan deformasi geser pada matrix

  G E

  m m

  ( or )

  = = ∝ σ G E m c m

  1 )

  • 2 (

  ν

  V m m V m m E for isostropic matrix, =

  G m

  1 ν ) m → terutama pada fraksi volum fiber yang besar. 2) Out/of/phase Buckling : melibatkan kompresi transversal dan tegangan pada matrix dan fiber

  • 2 (

  1 /

  2 

  V E E 

  1 /

  2 f m f = ∝ ⋅ σ

  2 V   ( E E )

  c f m f

  3 V

  m   → terutama pada fraksi volum fiber rendah.

  Faktor/faktor yang mempengaruhi kekuatan kompresi: m m , G E f

  E V f

  Interfacial Bond Strength : poor bonding → easy buckling

  • (1 (% $ ' / %

  2

  3 / ! ! % $ ' ! % ! % ! ! ! % $ '

  

4 ! ! % ! %

4 ! ! % % %

  , matrix f fiber , f ε ≠ ε

  2' ( % ! & % ( % % % ( ! !

  %

  % % .' ( % & % ( % ( %

  V V V m m m mu f fu σ′

  − σ > σ

  σ′ m

  V V

  V m m m mu f fu

  σ′ − σ <

  σ

  . 5 * 5 % ! * l

  5 ) % l

  c $ '

  If distance from crack plane to fiber end <

  2

  • → 5 → 3

  l c

  If distance from crack plane to fiber end >

  2

  → → 3

  Fracture of Continuous Fiber Reinforced Composite Patahan fiber pada bidang retak atau posisi lain yang tergantung pada posisi cacat.

  ↓ Pullout of fibers For max. fiber strengthening → fiber fracture is desired.

  For max. fiber toughening → fiber pullout is desired. Analysis of Fiber Pullout

  Assumption : Single fiber in matrix

  r

  : fiber radius

  f

  l : fiber length in matrix

  σ : tensile stress on fiber f

  τ

  : interfacial shear strength

  i τ i σ f

  W

  2 d

  1 d l

  4 If l l

  l r 2 r i f f

  2 f τ π > σ π 

     = ≥

  τ → < f i fu c r

  1 2' ! .' 5 1' *

  r

  W d

  W

  p W W W p d fracture

  W

  p Load Displacement

  W

  P

  2

  f i fu c

  Force Equilibrium ( l

  c i f fu

  c

  : critical length of fiber ) 1) Condition for fiber fracture, 2) Condition for fiber pullout, l r

  2 r

  i f f

  2 f

  τ π = σ π

  2 f = 2 r τ π σ π l r d l r

  σ → >

  2 l 4 c f c i fu = =

  τ σ r l

  2 f c i fu = τ σ l r 2 r i f f

  2 f τ π < σ π

    

    

  = < τ

  • ) % ) ( ( %
    • =
    Energy Required for Fracture & Debonding

  2

  2    π  σ fu d

  =   ⋅   ⋅ x x : debond length W d 24  E f    elastic strain E. volume

  Energy Required for Pullout  l c  k

  Let k : distance (lekat) of a broken fiber from crack plane < <  

  2  

  x : pullout distance at a certain moment

  : interfacial shear strength

  τ i

  τ π d ( k − x )

  Force to resist the pullout =

  i fiber contact area

  Energy to pullout a distance dx = τ π d ( k − x ) dx i

  Total energy(work) to pullout a fiber for distance k

  2 k

  τ π dk

  i

  = τ π d ( k − x ) dx = W

  p i ∫

  2

  l c

  Average energy to pullout per fiber(considering all fibers with different k, ) k

  < < l 2 c

  2

  2 τ π dl 1 τ i π dk i c

  ∴ = dk = W p , ave

  ∫

  2

  24 l

  2 c

  Fracture of Discontinuous Fiber Reinforced Composite l

  

c

  If a fiber is located within a distance, ± , from crack plane, → pullout

  2

  l c

  Probabilit y for pullout of a fiber with length, l ≈ l

  Average energy to pullout per fiber with length, l

  2

  l τ π dl  

  c i c

  W =  

  p , ave

  l

  24  

  probability for pullout energy required for pullout

  Energy for Fiber Pullout vs Fiber Length(l) If l < l , fiber pullout distance increases with increasing length l.

  c

  2

  → W increases, with increasing length l. ∝ l W

  p ( p ) If l > l , fiber fracture tendency increases with increasing length l. c

  1   → W decreases, with increasing length l. ∝ l = constant  W  p

p c

l  

  W becomes maximum, when l l .

  ≈

  6 " 77 " 6 & % % %

  , % ) % 2' * % % ( % % % .' 1' ! $ 5 % ' ( % % %

  ! 3 !

  : diameter fiber d

  V V Energy d fracture of f m

  2    

   

τ

i d Energy fracture of p p d fracture

  W W W W ≈ + =

  σ σ

  σ yy

  σ xx

  8 →

  % →

  ! 5 % 9 % % →

  → !

  σ xx

  • (:

  6 ) % → ; $ % ' ( % 5 $ % ' ( & %

  ; → → < = > ? "

  5 β − 1 β

  f σ = L αβσ exp − L ασ

  ( ) ( )

  f σ

  ( )

  • %

  α , β

  9 σ d + σ σ

  • (@ %

  A % !

  → ) 9 % %

  • ( % ( % ! B%

  ! % →

  ! $ ; ' → ) 6 & % % % %

  =

  ( ( % , 5 % 6 % &

  ! % % ( $∵

  ' 5 % $ ! ' % ( $∵

  ' ( & + * & 3 B* B*

  % & →

  ( & + ) % $;B6 6 .

  C

  1 B6 6 .

  C

  1 B '

  • " ! ) %

  ( ! 6 % % % & % 6 %

  ( % %

  6 %

  • & ! ,

  & & & % = % % % B% 9 % %

  ! 5 5 % & ' * !

  ' 5 % '

  )

  

σ

  C ) ) σ 2 n max 1 dE  σ  max

  σ m

  A − =

   2  E dN E ( 1 − E / E )

    time

  σ min

  > % > % %

  D σ max

  !

  6

  2  1 dE   σ  max log − vs log plot 

  2   

  →

E dN E ( 1 − E / E )    

  E % % % &

  % →

  • (F , % % , , % % % ! % ! % % ! ! % $α'

    % %

    ! ! % % ! % *

  ! % 0 ! % & % ! % T

  σ ∝ ' α ⋅ ' / ! ! % ! % ! ! % !

  % / % % ! ! % ! % ! % ! / & % % ! B% ! !

  ! ! % ! ! % ! % % % ! ! % % % ! % % ! ! ! B% ! % %

  ! ! % % !

Dokumen yang terkait

PENGARUH LIFE SKILLS TERHADAP PERILAKU SEKS PADA REMAJA DI WILAYAH SEBERANG ULU KOTA PALEMBANG INFLUENCE OF LIFE SKILLS ON SEXUAL BEHAVIORIN ADOLESCENT AT SEBERANG ULU AREA OF PALEMBANG CITY

0 0 11

PERBEDAAN PERILAKU SEKSUAL REMAJA PADA SISWA SMA X DAN SMA Y INDRALAYA DETERMINE DIFFERENCES IN ADOLESCENTS SEXUAL BEHAVIOUR BETWEEN STUDENTS OF SMA X AND SMA Y INDRALAYA

0 0 8

GAMBARAN KEJADIAN ANEMIA GIZI PADA IBU HAMIL DI WILAYAH KERJA PUSKESMAS PERUMNAS KABUPATEN LAHAT DESCRIPTIVE OF NUTRITIONAL ANEMIA INCIDENCE IN PREGNANT WOMEN IN THE WORKING AREA OF PERUMNAS HEALTH CENTER IN DISTRICT OF LAHAT

0 0 5

PERILAKU ANAK DALAM MEMILIH MAKANAN JAJANAN DI SD NEGERI 23 PALEMBANG CHILDREN BEHAVIOUR OF SNACKS PREFERENCE AT SD N 23 IN PALEMBANG

0 1 13

PEMETAAN SPATIAL KASUS INFEKSI DENGUE DAN UJI KERENTANAN AEDES AEGYPTI PADA ORGANOFOSFAT SPATIAL MAPPING DENGUE INFECTION AND VULNERABILITY TEST ON AEDES AEGYPTI TO ORGANOFOSFAT IN SOUTH DENPASAR DISTRICT, DENPASAR, BALI

0 0 11

ANALISIS DETERMINAN PERILAKU PETUGAS DALAM PENGELOLAAN LIMBAH CAIR SISTEM PET DI PT PUSRI PALEMBANG ANALYSIS OF DETERMINANT WORKERS BEHAVIOR IN EFFLUENT MANAGEMENT SYSTEM PET IN PT PUSRI PALEMBANG

0 1 8

ANALISIS HUBUNGAN DERAJAT MEROKOK DENGAN KEJADIAN TUBERKULOSIS PADA PEROKOK DI INDONESIA (ANALISIS DATA IFLS 2014) Indah Wahyuni Harahap, Rini Mutahar, Yeni

0 0 11

ANALISIS PENGUNGKAPAN SUKARELA PADA BANK UMUM SYARIAH DI INDONESIA Muhammad Haidir Ali dan Ahmad Tarmizi Lbs

0 0 16

DEWAN PENGAWAS SYARIAH DAN PENGUNGKAPAN ASPEK LINGKUNGAN, PRODUK DAN JASA PADA BANK SYARIAH Ari Purwanti

0 0 13

PENERAPAN INTERNET FINANCIAL REPORTING (IFR) PADA BANK UMUM SYARIAH DI INDONESIA Ria Nur Rizqiyah dan Ahmad Tarmizi Lubis

0 0 20