AISC_Steel Design Guide Series_01_Base Plate and Anchor Rod Design_2nd edition.pdf
1
SteelDesignGuide BasePlateand AnchorRodDesign
SecondEdition
1 BasePlateand AnchorRodDesign JAMESM.FISHER,Ph.D.,P.E.
ComputerizedStructuralDesign,S.C.
Milwaukee,Wisconsin and
LeJueneSteelCompany Minneapolis,Minnesota
SecondEdition SteelDesignGuide
LAWRENCEA.KLOIBER,P.E.
Copyright©2006 by AmericanInstituteofSteelConstruction,Inc.
Allrightsreserved.Thisbookoranypartthereof
mustnotbereproducedinanyformwithoutthe
writtenpermissionofthepublisher.
Theinformationpresentedinthispublicationhasbeenpreparedinaccordancewithrecognized engineeringprinciplesandisforgeneralinformationonly.Whileitisbelievedtobeaccurate, thisinformationshouldnotbeusedorrelieduponforanyspecificapplicationwithoutcompe- tentprofessionalexaminationandverificationofitsaccuracy,suitability,andapplicabilitybya licensedprofessionalengineer,designer,orarchitect.Thepublicationofthematerialcontained hereinisnotintendedasarepresentationorwarrantyonthepartoftheAmericanInstitute ofSteelConstructionorofanyotherpersonnamedherein,thatthisinformationissuitablefor anygeneralorparticularuseoroffreedomfrominfringementofanypatentorpatents.Anyone makinguseofthisinformationassumesallliabilityarisingfromsuchuse. Cautionmustbeexercisedwhenrelyinguponotherspecificationsandcodesdevelopedbyother bodiesandincorporatedbyreferencehereinsincesuchmaterialmaybemodifiedoramended fromtimetotimesubsequenttotheprintingofthisedition.TheInstitutebearsnoresponsi- bilityforsuchmaterialotherthantorefertoitandincorporateitbyreferenceatthetimeofthe initialpublicationofthisedition.
PrintedintheUnitedStatesofAmerica FirstPrinting:May2006
AISCwouldalsoliketothankthefollowingindividuals whoassistedinreviewingthedraftsofthisDesignGuidefor theirinsightfulcommentsandsuggestions.
Acknowledgements
The authors would like to thank Robert J. Dexter from the University of Minnesota, and Daeyong Lee from the SteelStructureResearchLaboratory,ResearchInstituteof Industrial Science & Technology (RIST), Kyeonggi-Do, SouthKorea,fortheirwritingofAppendixAandthefirst draftofthisGuide.Theauthorsalsorecognizethecontribu- tionsoftheauthorsofthefirsteditionofthisguide,John DeWolf from the University of Connecticut and David Ricker(retired)fromBerlinSteelConstructionCompany, andthankChristopherHewittandKurtGustafsonofAISC fortheircarefulreading,suggestions,andtheirwritingof AppendixB.SpecialappreciationisalsoextendedtoCarol T.WilliamsofComputerizedStructuralDesignfortyping themanuscript.
VictoriaArbitrio ReidarBjorhovde CrystalBlanton CharlesJ.Carter BradDavis RobertO.Disque JamesDoyle RichardM.Drake SamuelS.Eskildsen DanielM.Falconer MarshallT.Ferrell RogerD.Hamilton JohnHarris AllenJ.Harrold
DonaldJohnson GeoffreyL.Kulak BillR.LindleyII DavidMcKenzie RichardOrr DavisG.ParsonsII WilliamT.Segui DavidF.Sharp VictorShneur BozidarStojadinovic RaymondTide GaryC.Violette FloydJ.Vissat
TableofContents 1.0 INTRODUCTION.....................................................1 2.0 MATERIAL,FABRICATION,
INSTALLATION,ANDREPAIRS..........................2
2.1 MaterialSpecifications...................................... 2 2.2 BasePlateMaterialSelection............................ 2 2.3 BasePlateFabricationandFinishing................ 3 2.4 BasePlateWelding............................................ 4 2.5 AnchorRodMaterial......................................... 5 2.6 AnchorRodHolesandWashers........................ 6 2.7 AnchorRodSizingandLayout......................... 7 2.8 AnchorRodPlacementandTolerances............ 7 2.9 ColumnErectionProcedures............................. 8 2.9.1 SettingNutandWasherMethod............. 8 2.9.2 SettingPlateMethod.............................. 9 2.9.3 ShimStackMethod................................ 9 2.9.4 SettingLargeBasePlates....................... 9 2.10 GroutingRequirements..................................... 9 2.11 AnchorRodRepairs........................................ 10 2.11.1AnchorRodsintheWrongPosition.... 10 2.11.2AnchorRodsBentorNotVertical....... 10 2.11.3AnchorRodProjectionTooLong orTooShort.......................................... 10 2.11.4AnchorRodPatternRotated90°.......... 12 2.12 DetailsforSeismicDesignD.......................... 12
3.0 DESIGNOFCOLUMNBASE PLATECONNECTIONS.......................................13
3.1 ConcentricCompressiveAxialLoads............. 14 3.1.1 ConcreteBearingLimit........................ 14 3.1.2 BasePlateYieldingLimit (
W-Shapes)........................................... 15 3.1.3 BasePlateYieldingLimit (
HSSandPipe)................................... 16 3.1.4 GeneralDesignProcedure.................... 16 3.2 TensileAxialLoads......................................... 18 3.2.1 AnchoreRodTension........................... 19 3.2.2 ConcreteAnchoragefor TensileForces....................................... 19 3.3 DesignofColumnBasePlateswith SmallMoments................................................ 23 3.3.1 ConcreteBearingStress....................... 24 3.3.2 BasePlateFlexuralYielding LimitatBearingInterface.................... 24
3.3.3 BasePlateFlexuralYielding atTensionInterface............................... 25 3.3.4 GeneralDesignProcedure.................... 25 3.4 DesignofColumnBasePlateswith LargeMoments................................................ 25 3.4.1 ConcreteBearingand AnchorRodForces............................... 25 3.4.2 BasePlateYieldingLimit atBearingInterface.............................. 26 3.4.3 BasePlateYieldingLimit atTensionInterface............................... 27 3.4.4 GeneralDesignProcedure.................... 27 3.5 DesignforShear.............................................. 27 3.5.1 Friction.................................................. 27 3.5.2 Bearing.................................................. 27 3.5.3 ShearinAnchorRods........................... 29 3.5.4 InteractionofTensionand ShearintheConcrete........................... 30 3.5.5 HairpinsandTieRods.......................... 30
4.0 DESIGNEXAMPLES............................................31
4.1 Example:BasePlateforConcentricAxial CompressiveLoad (Noconcreteconfinement).............................. 31 4.2 Example:BasePlateforConcentrixAxial CompressiveLoad (Usingconcreteconfinement)......................... 32 4.3 Example:AvailableTensileStrengthofa w-in.AnchorRod............................................ 34 4.4 Example:ConcereteEmbedmentStrength..... 34 4.5 Example:ColumnAnchoragefor TensileLoads................................................... 34 4.6 Example:SmallMomentBasePlateDesign.. 37 4.7 Example:LargeMomentBasePlateDesign.. 38 4.8 Example:ShearTransferUsingBearing......... 40 4.9 Example:ShearLugDesign............................ 40 4.10 Example:EdgeDisttanceforShear................ 42 4.11 Example:AnchorRodResistingCombined TensionandShear........................................... 42
REFERENCES...............................................................45 APPENDIXA.................................................................47 APPENDIXB.................................................................55
1.0INTRODUCTION
Column base plate connections are the critical interface betweenthesteelstructureandthefoundation.Thesecon- nectionsareusedinbuildingstosupportgravityloadsand functionaspartoflateral-load-resistingsystems.Inaddition, theyareusedformountingofequipmentandinoutdoorsup- portstructures,wheretheymaybeaffectedbyvibrationand fatigueduetowindloads.
Baseplatesandanchorrodsareoftenthelaststructural steel items to be designed but are the first items required onthejobsite.Thescheduledemandsalongwiththeprob- lems that can occur at the interface of structural steel and reinforcedconcretemakeitessentialthatthedesigndetails takeintoaccountnotonlystructuralrequirements,butalso include consideration of constructability issues, especially anchor rod setting procedures and tolerances. The impor- tance of the accurate placement of anchor rods cannot be over-emphasized.Thisistheoneofthekeycomponentsto safelyerectingandaccuratelyplumbingthebuilding.
ThematerialinthisGuideisintendedtoprovideguidelines forengineersandfabricatorstodesign,detail,andspecify column-base-plateandanchorrodconnectionsinamanner thatavoidscommonfabricationanderectionproblems.This Guideisbasedonthe2005AISCSpecificationforStructur-
alSteelBuildings
(AISC,2005),andincludesguidancefor designsmadeinaccordancewithloadandresistancefactor design(LRFD)orallowablestressdesign(ASD).
ThisGuidefollowstheformatofthe2005AISCSpecifi- cation, developing strength parameters for foundation sys- tem design in generic terms that facilitate either load and resistance factor design (LRFD) or allowable strength de- sign (ASD). Column bases and portions of the anchorage designgenerallycanbedesignedinadirectapproachbased on either LRFD orASD load combinations.The one area ofanchoragedesignthatisnoteasilydesignedbyASDis theembedmentofanchorrodsintoconcrete.Thisisdueto thecommonuseofACI318AppendixD,whichisexclu- sivelybasedonthestrengthapproach(LRFD)forthedesign ofsuchembedment.Othersteelelementsofthefoundation system, including the column base plate and the sizing of anchordiametersareequallyproficienttoevaluationusing LRFDorASDloadmethods.Incasessuchasanchorssub- jectedtoneithertensionnorshear,theanchoragedevelop- mentrequirementmaybearelativelyinsignificantfactor.
Thegenericapproachindevelopmentoffoundationde- signparameterstakeninthisGuidepermitstheuserachoice todeveloptheloadsbasedoneithertheLRFDorASDap- proach.Thederivationsoffoundationdesignparameters,as presentedherein,aretheneithermultipliedbytheresistance
factor
, φ,ordividedbyasafetyfactor,Ω,basedontheap- propriate load system utilized in the analysis; consistent withtheapproachusedinthe2005Specification.Manyof theequationsshownhereinareindependentoftheloadap- proachandthusareapplicabletoeitherdesignmethodology. Theseareshowninsingularformat.Otherderivedequations arebasedontheparticularloadapproachandarepresented inaside-by-sideformatofcomparableequationsforLRFD orASDapplication.
Thetypicalcomponentsofacolumnbaseareshownin Figure1.1. Material selection and design details of base plates can significantly affect the cost of fabrication and erection of steel structures, as well as the performance under load. Relevant aspects of each of these subjects are discussed brieflyinthenextsection.Notonlyisitimportanttodesign thecolumn-base-plateconnectionforstrengthrequirements, it is also important to recognize that these connections affect the behavior of the structure. Assumptions are made in structural analysis about the boundary conditions representedbytheconnections.Modelscomprisingbeamor trusselementstypicallyidealizethecolumnbaseconnection as either a pinned or fixed boundary condition. Improper characterization can lead to error in the computed drifts, leading to unrecognized second-order moments if the stiffness is overestimated, or excessive first-floor column sizes if the stiffness is underestimated. If more accurate analysesaredesired,itmaybenecessarytoinputthestiffness ofthecolumn-base-plateconnectionintheelasticandplastic ranges, and for seismic loading, possibly even the cyclic force-deformation relations. The forces and deformations fromthestructuralanalysesusedtodesignthecolumn-base- plateconnectionaredependentonthechoiceofthecolumn- base-plateconnectiondetails.
Figure1.1.Columnbaseconnectioncomponents.
DESIGNGUIDE1,2NDEDITION/
2/DESIGNGUIDE1,2NDEDITION/
additionalexamplesanddiscussionrelativetothedesignof anchorrods.
ASTMA36 [a] Preferredmaterialspecification
ASTMA36 [a] ASTMA572Gr42 ASTMA588Gr42 t p >6in.
<t p ≤6in.
ASTMA36 [a] ASTMA572Gr42or50 ASTMA588Gr42or50 4in.
Table2.1.BasePlateMaterials
Thickness(t p ) PlateAvailability t p ≤4in.BaseplatesshouldbedesignedusingASTMA36material unless the availability of an alternative grade is confirmed
2.2BasePlateMaterialSelection
TheAISCSpecificationlistsanumberofplateandthreaded rod materials that are structurally suitable for use in base plateandanchorroddesigns.Basedoncostandavailability, thematerialsshowninTables2.1and2.2arerecommended fortypicalbuildingdesign.
INSTALLATION,ANDREPAIRS 2.1MaterialSpecifications
2.0MATERIALS,FABRICATION,
ings:RoofstoColumnAnchorage (Fisher,2004),contains
The vast majority of building columns are designed for axialcompressiononlywithlittleornouplift.Forsuchcol- umns,thesimplecolumn-base-plateconnectiondetailshown inFigure1.1issufficient.Thedesignofcolumn-base-plate connectionsforaxialcompressiononlyispresentedinSec- tion 3.The design is simple and need not be encumbered withmanyofthemorecomplexissuesdiscussedinAppen- dixA,whichpertainstospecialstructures.Anchorrodsfor gravity columns are often not required for the permanent structureandneedonlybesizedtoprovideforcolumnsta- bilityduringerection.
TheAISCDesignGuide7,2ndedition,IndustrialBuild-
for the pullout and breakout strength of anchor rods and otherembeddedanchors.Designguidanceforanchorrods basedontheACIrecommendationsisincluded,alongwith practicalsuggestionsfordetailingandinstallinganchorrod assemblies.Theseguidelinesdealprincipallywithcast-in- placeanchorsandwiththeirdesign,installation,inspection, andrepairincolumn-base-plateconnections.
Structural Concrete (ACI, 2002) has improved provisions
there has been significant research and improved design guidelines issued subsequent to the publication of Design Guide1in1990.TheACIBuildingCodeRequirementsfor
ColumnBasePlates .InadditiontotheOSHAregulations,
ThisGuidesupersedestheoriginalAISCDesignGuide1,
Historically,twoanchorrodshavebeenusedinthearea boundedbycolumnflangesandweb.Recentregulationsof the U.S. Occupational Safety and Health Administration (OSHA)SafetyStandardsforSteelErection(OSHA,2001) (SubpartRof29CFRPart1926)requirefouranchorrodsin almostallcolumn-base-plateconnectionsandrequireallcol- umnstobedesignedforaspecificbendingmomenttoreflect thestabilityrequiredduringerectionwithanironworkeron the column. This regulation has essentially eliminated the typical detail with two anchor rods except for small post- type structures that weigh less than 300 lb (e.g., doorway portalframes).
Thisguidewillenablethedesignertodesignandspecify economicalcolumnbaseplatedetailsthatperformadequate- lyforthespecifieddemand.Theobjectiveofthedesignpro- cessinthisGuideisthatunderserviceloadingandunderex- tremeloadinginexcessofthedesignloads,thebehaviorof columnbaseplatesshouldbeclosetothatpredictedbythe approximatemathematicalequationsinthisDesignGuide.
Column base plate moment connections can be used to resistwindandseismicloadsonthebuildingframe.Moment atthecolumnbasecanberesistedbydevelopmentofaforce couplebetweenbearingontheconcreteandtensioninsome oralloftheanchorrods.
Columnbaseplateconnectionsarealsocapableoftrans- mittingupliftforcesandcantransmitshearthroughthean- chorrodsifrequired.Ifthebaseplateremainsincompres- sion, shear can be transmitted through friction against the groutpadorconcrete;thus,theanchorrodsarenotrequired tobedesignedforshear.Largeshearforcescanberesisted by bearing against concrete, either by embedding the col- umnbaseorbyaddingashearlugunderthebaseplate.
BASEPLATEANDANCHORRODDESIGN
Table2.2.AnchorRodMaterials
Material ASTM Tensile Strength,4 [a] Nominalstressonunthreadedbodyforcutthreads(basedonmajorthreaddiameterforrolledthreads) [b] Threadsexcludedfromshearplane [c] Threadsincludedintheshearplane [d] Preferredmaterialspecification
43.5
29.0
23.2
4 A307
58
43.5
29.0
23.2
4 A354 GrBD 150 112
75.0 60.0 2� 140 105
70.0
56.0
priortospecification.SinceASTMA36plateisreadilyavail- able,theplatescanoftenbecutfromstockmaterial.There isseldomareasontousehigh-strengthmaterial,sincein- creasingthethicknesswillprovideincreasedstrengthwhere needed.Platesareavailablein
3 A36
8-in.incrementsupto14in. thicknessandin 4-in.incrementsabovethis.Thebaseplate sizesspecifiedshouldbestandardizedduringdesigntofa- cilitatepurchasingandcuttingofthematerial.
Whendesigningbaseplateconnections,itisimportantto considerthatmaterialisgenerallylessexpensivethanlabor and,wherepossible,economymaybegainedbyusingthick- erplatesratherthandetailingstiffenersorotherreinforce- menttoachievethesamestrengthwithathinnerbaseplate. Apossibleexceptiontothisruleisthecaseofmoment-type basesthatresistlargemoments.Forexample,inthedesign ofacranebuilding,theuseofaseatorstoolatthecolumn basemaybemoreeconomical,ifiteliminatestheneedfor large complete-joint-penetration (CJP) groove welds to heavyplatesthatrequirespecialmaterialspecifications.
Mostcolumnbaseplatesaredesignedassquaretomatch thefoundationshapeandmorereadilyaccommodatesquare anchor rod patterns. Exceptions to this include moment- resistingbasesandcolumnsthatareadjacenttowalls.
Many structural engineers have established minimum thicknessesfortypicalgravitycolumns.Forpostsandlight HSScolumns,theminimumplatethicknessistypically2in., andforotherstructuralcolumnsaplatethicknessof win.is commonlyacceptedastheminimumthicknessspecified.
2.3BasePlateFabricationandFinishing
Typically,baseplatesarethermallycuttosize.Anchorrod andgroutholesmaybeeitherdrilledorthermallycut.Sec- tionM2.2oftheAISCSpecificationlistsrequirementsfor thermalcuttingasfollows:
“…thermallycutfreeedgesthatwillbesubjecttocalculated static tensile stress shall be free of round-bottom gouges greater than
x in. deep … and sharp V-shaped notches.
Gougesdeeperthan bygrindingandrepairedbywelding.”
Becausefreeedgesofthebaseplatearenotsubjecttotensile stress,theserequirementsarenotmandatoryfortheperimeter edges;however,theyprovideaworkmanshipguidethatcan beusedasacceptancecriteria.Anchorrodholes,whichmay besubjecttotensilestress,shouldmeettherequirementsof SectionM2.2.Generally,round-bottomgrooveswithinthe limits specified are acceptable, but sharp notches must be repaired.Anchorrodholesizesandgroutingarecoveredin Sections2.6and2.10ofthisdesignguide.
Finishingrequirementsforcolumnbasesonsteelplates are covered in Section M2.8 of theAISC Specification as follows:
“Steelbearingplates2in.…orlessinthicknessarepermit- tedwithoutmilling,providedasatisfactorycontactbearing isobtained.Steelbearingplatesover2in.…butnotover4 in.…inthicknessarepermittedtobestraightenedbypress-
58
36.0
F u (ksi) NominalTensile Stress, [a]
30.0
F nt =0.75F u (ksi) NominalShear Stress(Xtype), [a,b]
F nv =0.50F u (ksi) NominalShearStress (Ntype), [a,c]
F nv =0.40F u (ksi) Maximum Diameter, in.
F1554 Gr36 [d]
58
43.5
29.0
23.2
4 Gr55
75
56.3
37.5
4 Gr105 125
45.0
93.8
62.5
50.0
3 A449 120
90.0
60.0
48.0
1 105
78.8
57.5 42.0 1�
90
67.5
DESIGNGUIDE1,2NDEDITION/
ing or, if presses are not available, by milling for bearing betweenthewebandflangeaddverylittlestrengthand
surfaces … to obtain a satisfactory contact bearing. Steel areverycostly. bearingplatesover4in.…inthicknessshallbemilledfor- Formostwide-flangecolumnssubjecttoaxialcompres-
bearingsurfaces….”
siononly,weldingononesideofeachflange(seeFigure2.1) Twoexceptionsarenoted:Thebottomsurfaceneednotbe with c-in. fillet welds will provide adequate strength milledwhenthebaseplateistobegrouted,andthetopsur- and the most economical detail. When these welds are faceneednotbemilledwhenCJPgrooveweldsareusedto notadequateforcolumnswithmomentoraxialtension, connectthecolumntothebaseplate. consideraddingfilletweldsonallfacesupto win.insize
AISCSpecification,SectionM4.4,definesasatisfactory beforeusinggroovewelds. bearingsurfaceasfollows:
- Forrectangular
HSScolumnssubjecttoaxialcompres-
“Lackofcontactbearingnotexceedingagapof zin.…
siononly,weldingontheflatsofthefoursidesonlywill
regardlessofthetypeofspliceused…ispermitted.Ifthe
avoid having to make an out-of-position weld on the
gapexceeds zin.…butislessthan�in.…andifanengi-
corners.Note,however,thatcornersmustbeweldedfor
neeringinvestigationshowsthatsufficientcontactareadoes
HSScolumnsmomentoraxialtensionandanchorrods
notexist,thegapshallbepackedoutwithnontaperedsteel
atthecornersofthebaseplatesincethecriticalyieldline
shims.Shimsneednotbeotherthanmildsteel,regardlessof
willformintheplateatthecornersofthe HSS.
thegradeofmainmaterial.”
WhiletheAISCSpecificationrequirementsforfinishing • Theminimumfilletweldrequirementshavebeenchanged areprescriptiveinform,itisimportanttoensurethatasatis- inthe2005AISCSpecification.Theminimum-sizefillet factorycontactbearingsurfaceisprovided.Byapplyingthe weldisnowbasedonthethinnerofthematerialsbeing provisionsofSectionM4.4,itmaynotbenecessarytomill joined. platesover4in.thickiftheyareflatenoughtomeetthegap
Mostcolumnbaseplatesareshopweldedtothecolumn requirementsunderthecolumn.Standardpracticeistoorder shaft.Inthepastitwascommontodetailheavybaseplates allplatesoverapproximately3in.withanextra 4in.to2 formulti-storybuildingasloosepiecestobesetandgrouted in.overthedesignthicknesstoallowformilling.Typically, beforeerectingthecolumnshaft.Thebaseplatewasdetailed onlytheareadirectlyunderthecolumnshaftismilled.The withthreeadjustingscrews,asshowninFigure2.2,andthe baseelevationforsettingthecolumnisdeterminedinthis milledsurfacewascarefullysettoelevation. casebytheelevationatthebottomofthecolumnshaftwith
Thisapproachhadtheadvantageofreducingtheweight thegroutspaceandshimsadjustedaccordingly. ofheavymembersforhandlingandshippingandprovideda fullygroutedbaseplateinplacetoreceiveaveryheavycol-
2.4BasePlateWelding
The structural requirements for column base plate welds onlyandcolumnsinwhichmoment,shear,and/ortension forcesarepresent.Weldsattachingbaseplatestocolumns areoftensizedtodevelopthestrengthoftheanchorrodsin tension,whichcanmostoftenbeachievedwitharelatively small fillet weld. For example, a c-in., 22-in.-long fillet weldtoeachcolumnflangewillfullydevelopa1-in.-diameter ASTM F1554 Grade 36 anchor rod when the directional strengthincreaseforfilletweldsloadedtransverselyisused, Alternativecriteriamaybeadvisablewhenroddiametersare largeormaterialstrengthlevelsarehigh.
Afewbasicguidelinesonbaseplateweldingareprovided here:
- Filletweldsarepreferredtogrooveweldsforallbutlarge moment-resistingbases.
- Theuseoftheweld-all-aroundsymbolshouldbeavoided, especiallyonwide-flangeshapes,sincethesmallamount ofweldacrossthetoesoftheflangesandintheradius Figure2.1.Typicalgravitycolumnbaseplateweld.
4/DESIGNGUIDE1,2NDEDITION/
BASEPLATEANDANCHORRODDESIGN
umnshaft.Thecolumnmayormaynotbeweldedaftererec- tiondependingonthestructuralrequirementsandthetypeof erectionaidprovided.Mosterectorsnowprefertohavethe baseplateshopweldedtothecolumnwheneverpossible.
2.5AnchorRodMaterial
AsshowninTable2.2,thepreferredspecificationforanchor rodsisASTMF1554,withGrade36beingthemostcommon strengthlevelused.Theavailabilityofothergradesshould beconfirmedpriortospecification.
ASTMF1554Grade55anchorrodsareusedwhenthere arelargetensionforcesduetomomentconnectionsoruplift fromoverturning.ASTMF1554Grade105isaspecialhigh- strengthrodgradeandgenerallyshouldbeusedonlywhen itisnotpossibletodeveloptherequiredstrengthusinglarger Grade36orGrade55rods.
Unlessotherwisespecified,anchorrodswillbesupplied withunifiedcoarse(UNC)threadswithaClass2atolerance, aspermittedinASTNF1554.WhileASTMF1554permits standardhexnuts,allnutsforanchorrods,especiallythose usedinbaseplateswithlargeoversizeholes,shouldbefur- nishedasheavyhexnuts,preferablyASTMA563GradeA orDHforGrade105.
ASTMF1554anchorrodsarerequiredtobecolorcoded toalloweasyidentificationinthefield.Thecolorcodesare asfollows:
Grade36............................................................... Blue Grade55............................................................Yellow Grade105.............................................................. Red
In practice, Grade 36 is considered the default grade and oftenisnotcolorcoded.
TheASTMspecificationallowsF1554anchorrodstobe supplied either straight (threaded with nut for anchorage), bentorheaded.Rodsuptoapproximately1in.indiameter aresometimessuppliedwithheadshotforgedsimilartoa structuralbolt.Thereafter,itismorecommonthattherods willbethreadedandnutted.
Hooked-typeanchorrodshavebeenextensivelyusedin thepast.However,hookedrodshaveaverylimitedpullout strengthcomparedwiththatofheadedrodsorthreadedrods withanutforanchorage.Therefore,currentrecommended practiceistouseheadedrodsorthreadedrodswithanutfor anchorage.
The addition of plate washers or other similar devices doesnotincreasethepulloutstrengthoftheanchorrodand can create construction problems by interfering with rein- forcingsteelplacementorconcreteconsolidationunderthe plate.Thus,itisrecommendedthattheanchoragedevicebe limitedtoeitheraheavyhexnutoraheadontherod.Asan exception,theadditionofplatewashersmaybeofusewhen high-strengthanchorrodsareusedorwhenconcreteblowout couldoccur(seeSection3.22ofthisGuide).Inthesecases, calculationsshouldbemadetodetermineifanincreasein thebearingareaisnecessary.Additionally,itshouldbecon- firmedthattheplatesizespecifiedwillworkwiththerein- forcingsteelandconcreteplacementrequirements.
ASTMF1554Grade55anchorrodscanbeorderedwith a supplementary requirement, S1, which limits the carbon equivalentcontenttoamaximumof45%,toprovideweld- ability when needed. Adding this supplement is helpful shouldweldingbecomerequiredforfixesinthefield.Grade 36istypicallyweldablewithoutsupplement.
Therearealsotwosupplementalprovisionsavailablefor Grades55and105regardingCharpyV-Notch(CVN)tough- ness.TheseprovideforCVNtestingof15ft-lbsateither40°F(S4)
−20°F(S5).Note,however,thatanchorrodstypically havesufficientfracturetoughnesswithoutthesesupplemen- talspecifications.Additionalfracturetoughnessisexpensive andgenerallydoesnotmakemuchdifferenceinthetimeto failureforanchorrodssubjectedtofatigueloading.Although fracturetoughnessmaycorrespondtoagreatercracklength atthetimeoffailure(becausecracksgrowatanexponential rate)95%ofthefatiguelifeoftheanchorrodisconsumed whenthecracksizeislessthanafewmillimeters.Thisis alsothereasonitisnotcosteffectivetoperformultrasonic testingorothernondestructivetestsonanchorrodstolook forfatiguecracks.Thereisonlyasmallwindowbetweenthe timecracksarelargeenoughtodetectandsmallenoughto notcausefracture.Thus,itgenerallyismorecosteffective todesignadditionalredundancyintotheanchorrodsrather thanspecifyingsupplementalCVNproperties.
Figure2.2.Baseplatewithadjustingscrews.
DESIGNGUIDE1,2NDEDITION/
6/DESIGNGUIDE1,2NDEDITION/
4in.thick,asallowedinFootnote3inTable2.3. Thiswillallowtheholestobepuncheduptothisplatethick- ness,andtheuseofASTMF844(USSStandard)washersin lieuofthecustomwashersofdimensionsshowninthetable. Thispotentialfabricationsavingsmustbeweighedagainst possibleproblemswithplacementofanchorrodsoutoftol- erance.
2.Adequateclearancemustbeprovidedforthewashersizeselected. 3.Seediscussionbelowregardingtheuseofalternate1z-in.holesizeforw-in.-diameteranchorrods,withplateslessthan1�in.thick.
5 w
2� 3� 5� d
Notes:1.Circularorsquarewashersmeetingthesizeshownareacceptable.1� 2c 3� � 1w 2w 4 s 2 3�
3 a 1� 2z 3 �
2 �
d 1b 2� c
1 1m
Table2.3.RecommendedSizesforAnchorRodHolesinBasePlates
AnchorRod Diameter,in. Hole Diameter,in. Min.Washer Dimension,in. Min.Washer Thickness,in. w 1cForanchorrodsforcolumnsdesignedforaxialcompres- sion only, the designer may consider using a smaller hole diameterof1 zin.withw-in.-diameterrodsandbaseplates lessthan1
Galvanizedanchorrodsareoftenusedwhenthecolumn- base-plate assembly is exposed and subject to corrosion. Eitherthehot-dipgalvanizingprocess(ASTM153)orthe mechanical galvanizing process (ASTM B695) is allowed inASTMF1554;however,allthreadedcomponentsofthe fastenerassemblymustbegalvanizedbythesameprocess. Mixingofrodsgalvanizedbyoneprocessandnutsbyan- other may result in an unworkable assembly. It is recom- mendedthatgalvanizedanchorrodsandnutsbepurchased fromthesamesupplierandshippedpreassembled.Because thisisnotanASTMrequirement,thisshouldbespecifiedon thecontractdocuments.
ThewasherdiametersshowninTable2.3aresizedtocov- ertheentireholewhentheanchorrodislocatedattheedge ofthehole.Platewashersareusuallycustomfabricatedby thermalcuttingtheshapeandholesfromplateorbarstock. Thewashermaybeeitheraplaincircularwasherorarectan- gularplatewasheraslongasthethicknessisadequatetopre- ventpullingthroughthehole.Theplatewasherthicknesses showninthetablearesimilartotherecommendationinDe- sign Guide 7, that the washer thickness be approximately one-thirdtheanchorroddiameter.Thesamethicknessisad- equateforallgradesofASTMF1554,sincethepull-through criterionrequiresappropriatestiffnessaswellasstrength.
TheseholesizesoriginatedinthefirsteditionofDesign Guide1,basedonfieldproblemsinachievingthecolumn settingtolerancesrequiredfortheprevioussomewhatsmall- errecommendedsizes.TheywerelaterincludedintheAISC SteelConstructionManual .
Themostcommonfieldproblemisanchorrodplacements thateitherdonotfitwithintheanchorrodholepatternor donotallowthecolumntobeproperlypositioned.Because OSHA requires any modification of anchor rods to be ap- provedbytheEngineerofRecord,itisimportanttoprovide as large a hole as possible to accommodate setting toler- ances.TheAISC-recommendedholesizesforanchorrods aregiveninTable2.3.
2.6AnchorRodHolesandWashers
Drilled-in epoxy-type anchor rods are discussed in sev- eralplacesinthisDesignGuide.Thiscategoryofanchorrod doesnotincludewedge-typemechanicalanchors,whichare notrecommendedforanchorrodsbecausetheymustbeten- sionedtosecurelylockinthewedgedevice.Columnmove- mentduringerectioncancausewedge-typeanchorrodsto loosen.
ASTMA449,A36andA307specificationsarelistedin Table2.2forcomparisonpurposes,becausesomesuppliers aremorefamiliarwiththesespecifications.NotethatASTM F1554gradesmatchupcloselywithmanyaspectsofthese oldermaterialspecifications.Notealsothattheseolderma- terialspecificationscontainalmostnoneoftheanchorrod specificrequirementsfoundinASTMF1554.
Notealsothatgalvanizingincreasesfrictionbetweenthe nutandtherodandeventhoughthenutsareovertapped, speciallubricationmayberequired.