FEM FOR PLATES SHELLS

  Finite Element Method FEM FOR PLATES & SHELLS

  1 CONTENTS 

  INTRODUCTION 

PLATE ELEMENTS

  • – Shape functions
  • – Element matrices

   SHELL ELEMENTS

  • – Elements in local coordinate system
  • – Elements in global coordinate system
  • – Remarks

  INTRODUCTION  FE equations based on Mindlin plate theory will be developed.

   FE equations of shells will be formulated by superimposing matrices of plates and those of 2D solids.

   Computationally tedious due to more DOFs.

PLATE ELEMENTS

   Geometrically similar to 2D plane stress solids except that it carries only transverse loads. Leads to bending.

   2D equilvalent of the beam element.  Rectangular plate elements based on Mindlin plate theory will be developed – conforming element.

   Much software like ABAQUS does not offer plate elements, only the general shell element.

PLATE ELEMENTS

   Consider a plate structure: f z

  Middle plane y z, w h x

  Middle plane (Mindlin plate theory)

PLATE ELEMENTS

  L θ χ (Curvature)

  L

     

     

     y x y x

          

          

   Mindlin plate theory: ( , , ) ( , ) ( , , ) ( , ) y x u x y z z x y v x y z z x y

      

       y x y x y x x y

              

     

  Middle plane where

    In-plane strain:

  χ ε z

     

PLATE ELEMENTS

  1    

      

   

       

    

  

G

G

 

  γ c γ τ s yz xz

  In-plane stress & strain Off-plane shear stress & strain

    γ τ σ ε

  Off-plane shear strain:     

         

  1 d d

  2

  T h e d d

  A z z A U e e A T h A

  γ Potential (strain) energy:

     

       y w x w x y yz xz

  

 

      

  2

PLATE ELEMENTS

  

 

  G xz   c

       Substituting τ γ γ

    s   z

    ε χ ,

   G

yz

   

 

  3 1 h

  1 T T c c

  U d Ah d A  

  χ χ γ γ e s

   AA e e

  2

  12

  2

  1

  

2

  2

  2 Kinetic energy:

T   ( u   v w )d

  V e

  Ve

  2 u x y z ( , , ) z ( , ) x y

    y Substituting v x y z ( , , ) z ( , ) x y

     x

  3

  

3

1 h h

  1

  2

  2

2 T

  d I d T ( hw )d A ( )d A

         e x y

   A eA e

  2

  12

  

12

  2

PLATE ELEMENTS

  3

  3 1 h h

  1

  2

  2

2 T

  d I d T ( hw )d A ( )d A

         e x y

   A eA e

  2

  12

  12

  2    h

  

  w

    3 h

    

   

  I d  , where x

       

  12   3  

   h

   y

     

   

  12   Shape functions 

  Note that rotation is independent of deflection w , ,

  4

  1

  4

  1

  4

  1 i y i i y i x i i x i i i

  N N w N w    

       

     ) 1 )(

  1 (

  4

  1     i i i

  N    where

  (Same as rectangular

  2D solid) Shape functions h x e y w

              

   z 3

  ,

   y 2

  ,

   z 2

  ) 3 (1, +1) (u 3 , v 3 , w 3 ,

   x 3

  ,

   y 3

  ,

  )

  (u 2 , v 2 , w 2 ,

  2a

  4 ( 1, +1)

  (u 4 , v 4 , w 4 ,

   x 4

  ,

   y 4

  ,

   z 4

  )

   x 2

  ) 2 (1, 1)

  Nd 1 1 1 2

     d

where

  2 2

  3 3 3

  4 4 4 displacement at node 1 displacement at node 2 displacement at node 3 displacement at node 4 x y x y e x y x y e w w w w

         

                

             

       

                

             

  1 2 3 4 1 2 3 4

   z 1

  1 2 3 4 Node 1 Node 2 Node 3 Node 4 N N N N

N N N N

N N N N

            

  N

  1 ( 1, 1)

  (u 1 , v 1 , w 1 ,

   x 1

  ,

   y 1

  ,

  2b   z, w

  Element matrices Substitute h x e y w

   m N I N

            

         

    

  12 h h h

  12

  3

  3

  Recall that:

  A

                d Nd into e e T e e

   where T d e e A

   d I d

  A T A

  2 e T

e

  1  1 ( )d

  2

   

  T d m d

  I (Can be evaluated analytically but in practice, use Gauss integration) Element matrices A h A h s A A e e e

  ] d [ d ] [

  N y x N N y N x j j j j

     

      

     

  1    

  4

  1 ) 1 (

  4

    ) 1 (

         

  N x N

  N y N a x

  I j B i i j j i i j j b y

            

  12 O T O

     

       

  I 1 B B B B B

  2 I

  3 I

  4 I

  I

   

                d Nd into potential energy function from which we obtain

     Substitute h x e y w

  3 B c B cB B k  

  I

  I T

   , b y a x     Note: Element matrices  

  O

     

  1 z T e abf

  1

  1

  1

   

  N f For uniformly distributed load,

        

  T 

  4 O

  A f e A z e d

  (m e can be solved analytically but practically solved using Gauss integration)

  N y N N x N B

   O j j j j j

        

     

  2 O O 1 B B B B B

  3 O

   f

SHELL ELEMENTS

   Loads in all directions  Bending, twisting and in-plane deformation

   Combination of 2D solid elements (membrane effects) and plate elements (bending effect).

   Common to use shell elements to model plate structures in commercial software packages.

  Elements in local coordinate system Consider a flat shell element z, w

  4 ( 1, +1)

   d node

  1  e 1 (u 4 , v 4 , w 4 ,

   3 (1, +1)

       d x y z

  4 , 4 , 4 ) 2 node

  2  e  (u 3 , v 3 , w 3 , d e    d

     e 3 node

  3 x y z

  3 , 3 , 3 )  

  2b d

    node 4 e 4

     2a u x

    displacement in direction i 2 (1,

1 (

  1) 1, 1)   v y

  (u 2 , v 2 , w 2 , i displacement in direction (u 1 , v 1 , w 1 ,         x , y , z ) x y z

  2

  2

  2  

  1 , 1 , 1 ) w z displacement in direction   i d ei

     x

   rotation about -axis xi     y

   rotation about -axis yi  

   rotation about -axis z   zi   Elements in local coordinate system Membrane stiffness (2D solid element):

  4 node 3 node 2 node 1 node node4 node3 node2 node1

  44 34 24 14 43 33 23 13 42 32 22 12 41 31 21 11      

       

   m m m m m m m m m m m m m m m m m e k k k k k k k k k k k k k k k k k

  Bending stiffness (plate element): 4 node 3 node 2 node 1 node node4 node3 node2 node1

  44 34 24 14 43 33 23 13 42 32 22 12 41 31 21 11      

       

   b b b b b b b b b b b b b b b b b e k k k k k k k k k k k k k k k k k

  (2x2) (3x3) Elements in local coordinate system

  4 node 3 node 2 node 1 node

  4 node 3 node 2 node 1 node

  44

44

34

34

24

24

14

14

43 43 33 33 23 23 13 13 42 42 32 32 22 22 12 12 41 41 31 31 21 21 11 11

     

      

      

      

                       

                     

  

  b

m

b

m

b

m

b

m

b m b m b m b m b m b m b m b m b m b m b m b m e k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k k

             

  (24x24) Components related to the DOF

   z

  , are zeros in local coordinate system. Elements in local coordinate system Membrane mass matrix (2D solid element):

  13 11 12

14

23 21 22

24

33 31 32

34

  43 41 42

44

node3 node1 node2 node4 node 1 node 2 node 3 node 4 m m m m m m m m m e m m m m m m m m

              m m m m m m m m m m m m m m m m m

  Bending mass matrix (plate element):

  13 11 12

14

23 21 22

24

33 31 32

34

  43 41 42

44

node3 node1 node2 node4 node 1 node 2 node 3 node 4 b b b b b b b b b e b b b b b b b b

              m m m m m m m m m m m m m m m m m Elements in local coordinate system 4 node 3 node 2 node 1 node

  4 node 3 node 2 node 1 node

  44 44 34 34 24 24 14 14 43 43 33 33 23 23 13 13 42 42 32 32 22 22 12 12 41 41 31 31 21 21 11 11    

      

      

      

                       

                     

   b m b m b m b m b m b m b m b m b m b m b m b m b m b m b m b m e m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m

              Components related to the DOF

   z

  , are zeros in local coordinate system.

  (24x24) Elements in global coordinate system T k T K e T e

   T m T M e T e

   e T e

  T f F

              

              

  

  3 3 3 3 3 3 3 3 T T T T T T T T T      

     

   z z z y y y x x x n m l n m l n m l

  where

3 T

  Remarks  The membrane effects are assumed to be uncoupled with the bending effects in the element level.

   This implies that the membrane forces will not result in any bending deformation, and vice versa.

   For shell structure in space, membrane and bending effects are actually coupled (especially for large curvature), therefore finer element mesh may have to be used.

CASE STUDY

   Natural frequencies of micro-motor

  Natural Frequencies (MHz) 1280 Mode

  CASE 768 triangular 384 quadrilateral quadrilateral elements with elements with elements with

  480 nodes 480 nodes 1472 nodes STUDY

  1

  7.67

  5.08

  4.86

  2

  7.67

  5.08

  4.86

  3

  7.87

  7.44

  7.41

  4

  10.58

  8.52

  8.30

  5

  10.58

  8.52

  8.30

  6

  13.84

  11.69

  11.44

  7

  13.84

  11.69

  11.44

  8

  14.86

  12.45

  12.17

CASE STUDY

  Mode 1: Mode 2:

CASE STUDY

  Mode 3: Mode 4:

CASE STUDY

  Mode 5: Mode 6:

CASE STUDY

  Mode 7: Mode 8:

CASE STUDY

   Transient analysis of micro-motor F F F x x

  Node 210 Node 300