Penentuan konfigurasi sensor tanah longsor berbasis fiber optik kaca model gabungan beberapa titik tarik AWAL

perpustakaan.uns.ac.id

digilib.uns.ac.id

PENENTUAN KONFIGURASI SENSOR TANAH LONGSOR
BERBASIS FIBER OPTIK KACA MODEL GABUNGAN
BEBERAPA TITIK TARIK

Disusun Oleh:
IMAM GHOSSAN ASMAWAN
M0210035

SKRIPSI

PROGRAM STUDI FISIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS SEBELAS MARET
SURAKARTA
commit to user
November, 2015
1


perpustakaan.uns.ac.id

digilib.uns.ac.id

PENENTUAN KONFIGURASI SENSOR TANAH LONGSOR
BERBASIS FIBER OPTIK KACA MODEL GABUNGAN
BEBERAPA TITIK TARIK

Disusun oleh:
IMAM GHOSSAN ASMAWAN
M0210035

SKRIPSI
Diajukan untuk memenuhi sebagian
persyaratan mendapatkan gelar Sarjana Sains

PROGRAM STUDI FISIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS SEBELAS MARET

SURAKARTA
commit to user
November, 2015

i

perpustakaan.uns.ac.id

digilib.uns.ac.id

HALAMAN PERSETUJUAN
SKRIPSI
Penentuan Konfigurasi Sensor Tanah Longsor Berbasis Fiber Optik Kaca
Model Gabungan Beberapa Titik Tarik

Oleh
IMAM GHOSSAN ASMAWAN
M0210035

Telah disetujui oleh


commit to user

ii

perpustakaan.uns.ac.id

digilib.uns.ac.id

HALAMAN PENGESAHAN
Skripsi dengan judul: Penentuan Konfigurasi Sensor Tanah Longsor Berbasis Fiber
Optik Kaca Model Gabungan Beberapa Titik Tarik
Yang ditulis oleh :
Nama : Imam Ghossan Asmawan
NIM
: M0210035
Telah diuji di depan dewan penguji pada
Hari
: Kamis
Tanggal : 19 November 2015

Dewan Penguji:
1. Mohtar Yunianto, S.Si., M.Si
NIP. 19800630200501 1 001

2. Dr. Fahru Nurosyid, S.Si., M.Si
NIP. 19721013200003 1 002

3. Ahmad Marzuki, S.Si., Ph.D
NIP . 19680508 199702 1 001

4. Sorja Koesuma, S.Si., M.Si
NIP . 19720801 200003 1 001

commit to user

iii

perpustakaan.uns.ac.id

digilib.uns.ac.id


PERNYATAAN

Dengan ini saya menyatakan bahwa isi intelektual Skripsi saya yang berjudul
“PENENTUAN KONFIGURASI SENSOR TANAH LONGSOR BERBASIS
FIBER OPTIK KACA MODEL GABUNGAN BEBERAPA TITIK TARIK“
adalah hasil kerja saya dan sepengetahuan saya hingga saat ini isi Skripsi tidak
berisi materi yang telah dipublikasikan atau ditulis oleh orang lain atau materi yang
telah diajukan untuk mendapatkan gelar kesarjanaan di Universitas Sebelas Maret
atau di Perguruan Tinggi lainnya kecuali telah dituliskan di daftar pustaka Skripsi
ini dan segala bentuk bantuan dari semua pihak telah ditulis di bagian ucapan
terimakasih. Isi Skripsi ini boleh dirujuk atau diphotocopy secara bebas tanpa harus
memberitahu penulis.

Surakarta, 1 November 2015

IMAM GHOSSAN ASMAWAN

commit to user


iv

perpustakaan.uns.ac.id

digilib.uns.ac.id

MOTTO
“If you can’t explain it simply, you don’t understand it well enough.”
(Albert Einstein)
“Whatever you’re, be a good one”
(Abraham Lincoln)
“You don’t have to be a genius or a visionary or even a college graduate to be
successful. You just need a framework and a dream.”

(Michael Dell)
“Try not to become a man of success, but rather try to become a man of value.”
(Albert Einstein)
“Just follow your heart and go for what you love.”
(Steve Angello)
“If something is important enough you should try, even if the probable outcome is

failure.”
(Elon Musk)
“Failure is an option here, if thing are not failing, you are not innovating
enough.”
(Elon Musk)

commit to user

v

perpustakaan.uns.ac.id

digilib.uns.ac.id

PERSEMBAHAN

Karya ini kupersembahkan kepada:

 Ibu dan Bapak Tercinta
 Adik-adikku Tersayang

 Sahabat-sahabatku
 Almamaterku
 Tanah Airku

commit to user

vi

perpustakaan.uns.ac.id

digilib.uns.ac.id

Penentuan Konfigurasi Sensor Tanah Longsor Berbasis Fiber Optik
Kaca Model Gabungan Beberapa Titik Tarik

IMAM GHOSSAN ASMAWAN
Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam,
Universitas Sebelas Maret
ABSTRAK
Skripsi ini berisikan tentang penelitian mengenai penentuan konfigurasi

sensor tanah longsor berbasis fiber optik kaca model gabungan beberapa titik tarik.
Sistem sensor yang dikembangkan menggunakan prinsip modulasi intensitas
macrobending loss. Bagian utama dari sensor ini terdiri dari sensor pergerseran
fiber, piranti linier mekanis, dan juga piranti SMS gateway yang dilengkapi dengan
piranti alarm. Dengan terintegrasi terhadap teknologi SMS gateway sehingga dapat
mengirimkan sinyal ketika tercapai kondisi kritis. Pengambilan data dilakukan
dengan melilitkan fiber optik dalam rubber silicon dengan variasi diameter yaitu 1
cm; 1,5 cm; 2 cm; dan 2,5 cm. Jumlah lilitan pada tiap variasi diameter juga
divariasi yaitu antara 1 lilitan hingga 10 lilitan. Fiber koil yang terbentuk diberi
penekanan yang mengakibatkan perubahan intensitas cahaya keluaran pada fiber
optik. Perubahan intensitas cahaya tersebut akan dibaca oleh program interface
yang telah dibuat menggunakan software LabView 2013. Dari macam-macam
konfigurasi yang diteliti didapatkan bahwa daerah loss dengan konfigurasi diameter
2,5 cm dan 10 jumlah lilitan memiliki tren grafik yang linier. Dari hasil penelitian
ini juga membuktikan bahwa konfigurasi tersebut memiliki sensitifitas terbaik
sehingga diterapkan pada tiap sistem titik tarik yang masing-masing terintegrasi
pada piranti SMS gateway. Sensor ini telah dilakukan simulasi pada model longsor
dan mampu mengirimkan sinyal SMS ketika pergeseran tanah dicapai sebesar 4 cm.
Hal ini berlaku juga pada tiap titik tarik pada sistem sensor.
Kata kunci : sensor tanah longsor, sensor fiber optik, multipoint sensor , SMS

Gateway, macrobending loss

commit to user

vii

perpustakaan.uns.ac.id

digilib.uns.ac.id

Determine Configuration of Landslide Sensor Based on Glass Optical
Fiber with Multi-Monitoring Model

IMAM GHOSSAN ASMAWAN
Physics Department, Faculty of Mathematics and Natural Sciences,
Sebelas Maret University
ABSTRACT
Determine configuration of landslide sensor based on glass fibre optical
multi-monitoring model has been researched. This sensor developed using intensity
modulation principle macrobending loss. Mainly part of this sensor consist of

displacement fibre sensors, mechanical displacement sensors, and Short Messaging
Service (SMS) gateway equipped with a siren. This sensor can send a signal SMS
when critical condition has been reached. Optical fibre sensors made by wrapping
a glass optical fibre around a holey elastic cylinder. The elastic cylinder made with
diameter of 1 cm; 1,5 cm; 2 cm; & 2,5 cm. The number of turn for each diameter
was varied from 1 turn to 10 turns. A coil fibre gave pressured would made a
changed of output light intensity. This changed would read by interface program
has made with LabView 2013. From the experimental results, we suggest a
configuration with 2,5 cm coil diameter and 10 turns has best sensitivity for applied
to sensor systems. The configuration looked from linear graph trend about relation
between light loss and displacement. The sensor has been simulated on landslide
model and it could sent a warning SMS when critical displacement reached, for
example 4 cm. This work occured too in every point of system.
Keywords : landslide sensor, optical fibre sensor, multipoint sensor, SMS Gateway,
macrobending loss

commit to user

viii

perpustakaan.uns.ac.id

digilib.uns.ac.id

KATA PENGANTAR

Puji syukur kepada Allah SWT atas segala limpahan nikmat dan karuniaNya,
sehingga penulis dapat menyelesaikan penulisan Skripsi. Sholawat dan salam
senantiasa penulis haturkan kepada Rasulullah SAW yang telah menjadi panutan
serta suri tauladan umatnya.
Skripsi yang penulis susun sebagai bagian dari syarat untuk mendapatkan
gelar Sarjana Sains ini penulis beri judul “PENENTUAN KONFIGURASI
SENSOR TANAH LONGSOR BERBASIS FIBER OPTIK KACA MODEL
GABUNGAN BEBERAPA TITIK TARIK“. Terselesaikannya Skripsi ini adalah
suatu kebahagiaan bagi penulis. Setelah sekitar satu semester penulis harus
berjuang untuk bisa menyelesaikan Skripsi ini tepat waktu. Dengan segala suka dan
dukanya, pada akhirnya Skripsi ini terselesaikan juga. Kepada berbagai pihak yang
telah membantu penulis menyelesaikan Skripsi ini penulis ucapkan terima kasih.
Atas bantuannya yang sangat besar selama proses pengerjaan Skripsi ini, ucapan
terima kasih secara khusus penulis sampaikan kepada:
1. Bapak Ahmad Marzuki, S.Si., Ph.D (Pembimbing I).
2. Bapak Soerja Koesuma, S.Si., M.Si (Pembimbing II)
3. Ibu Dra. Riyatun, M.Si (Pembimbing Akademis).
4. Bapak dan Ibu dosen serta Staff di Jurusan Fisika FMIPA UNS.

5. Ibu dan Bapak, atas semua kasih sayang dan kesabaran dalam mendidik.
6. Rekan kerja Laboratorium Optics & Photonics.
7. Rekan-rekan Fisika FMIPA UNS.
Semoga Allah SWT membalas jerih payah dan pengorbanan yang telah
diberikan dengan balasan yang lebih baik. Amiin.
Penulis menyadari akan banyaknya kekurangan dalam penulisan Skripsi ini.
Namun demikian, penulis berharap semoga karya kecil ini bermanfaat.
Surakarta, 01 November 2015

commit to user

ix

Penulis

perpustakaan.uns.ac.id

digilib.uns.ac.id

PUBLIKASI

Sebagian skripsi saya yang berjudul “Pembuatan Sensor Tanah Longsor Berbasis
Fiber Optik Kaca dengan Metode Penambahan Titik Acuan” akan dipublikasikan
pada Digital Library Fakultas Matematika dan Ilmu Pengetahuan Alam,
Universitas Sebelas Maret.

commit to user

x

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR ISI

Halaman
HALAMAN JUDUL ...................................................................................... i
HALAMAN PERSETUJUAN ....................................................................... ii
HALAMAN PENGESAHAN ........................................................................ iii
HALAMAN PERNYATAAN ........................................................................ iv
HALAMAN MOTTO .................................................................................... v
HALAMAN PERSEMBAHAN ..................................................................... vi
HALAMAN ABSTRAK ................................................................................ vii
HALAMAN ABSTRACT .............................................................................. viii
KATA PENGANTAR .................................................................................... ix
HALAMAN PUBLIKASI .............................................................................. x
DAFTAR ISI ................................................................................................... xi
DAFTAR TABEL ........................................................................................... xiii
DAFTAR GAMBAR ...................................................................................... xiv
DAFTAR SIMBOL ........................................................................................ xvi
DAFTAR LAMPIRAN .................................................................................. xviii
BAB I PENDAHULUAN ............................................................................... 1
1.1. Latar Belakang Masalah................................................................. 1
1.2. Batasan Masalah ............................................................................ 3
1.3. Perumusan Masalah ....................................................................... 4
1.4. Tujuan Penelitian ........................................................................... 4
1.5. Manfaat Penelitian ......................................................................... 5
BAB II TINJAUAN PUSTAKA .................................................................... 6
2.1. Macam-macam Sensor Tanah Longsor ......................................... 6
2.2. Aplikasi Fiber Optik dalam Sensor Tanah Longsor....................... 12
2.3. Pemantulan dan Pembiasan Cahaya .............................................. 16
2.4. Perambatan Cahaya dalam Fiber Optik ......................................... 18
2.5. Rugi-Rugi Kelengkungan Fiber Optik .......................................... 20
2.6. Tanah Longsor ............................................................................... 24
2.7. Jenis Tanah Longsor ...................................................................... 27
BAB III METODOLOGI PENELITIAN .................................................... 30
3.1. Tempat dan Waktu Penelitian ....................................................... 30
3.2. Alat dan Bahan Penelitian.............................................................. 30
3.2.1. Alat yang Digunakan dalam Penelitian ................................ 30
3.2.2. Bahan yang Digunakan dalam Penelitian ............................ 31
3.3. Prosedur Penelitian ........................................................................ 31
3.3.1. Penyiapan Alat dan Bahan ................................................... 32
3.3.2. Pembuatan Rubber Silinder Berulir ..................................... 33
3.3.3. Pembuatan Program Interface Akuisisi Data ....................... 34
3.3.4. Pembuatan Piranti SMS Gateway ........................................ 35
3.3.5. Set-up Peralatan Penelitian .................................................. 35
3.3.6. Set-up Sensor di Lapangan .................................................. 36
commit to dan
userAnalisis Data ...................... 38
3.3.7. Pengambilan, Pengolahan,

xi

perpustakaan.uns.ac.id

digilib.uns.ac.id

BAB IV HASIL PENELITIAN DAN PEMBAHASAN ..............................
4.1. Hasil dan Pembahasan ...................................................................
4.1.1. Perangkat Keras ...................................................................
4.1.2. Program Interface Akuisisi Data .........................................
4.1.3. Loss Cahaya Akibat Pergeseran ...........................................
4.2. Hubungan Antara Loss Cahaya dengan Transmitansi ...................
4.3. Aplikasi Sensor Tanah Longsor untuk Lapangan .........................
4.4. Pemantauan Kecepatan Pergerakan Tanah ....................................
BAB V PENUTUP ..........................................................................................
5.1. Kesimpulan ....................................................................................
5.2. Saran ..............................................................................................
DAFTAR PUSTAKA .....................................................................................
LAMPIRAN ....................................................................................................

commit to user

xii

40
40
41
44
45
53
57
62
65
65
65
67
70

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR TABEL

Halaman
Tabel 3.1. Data Hubungan Transmitansi dengan Kelengkungan dan JariJari Kelengkungan ......................................................................... 39
Tabel 3.2. Data Hubungan antara Pergeseran Kecil dan Loss cahaya ............ 39
Tabel 3.3. Data Hubungan Jumlah Lilitan dan Loss Cahaya ......................... 39
Tabel 4.1. Fungsi Tombol pada Rangkaian Display ...................................... 43
Tabel 4.2. Persamaan Garis pada Grafik Hubungan Transmitansi dengan
Pergeseran ..................................................................................... 51
Tabel 4.3. Gradien Garis Loss Cahaya ........................................................... 55

commit to user

xiii

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR GAMBAR

Gambar
Gambar
Gambar
Gambar

2.1.
2.2.
2.3.
2.4.

Gambar 2.5.
Gambar 2.6.
Gambar 2.7.
Gambar 2.8.
Gambar
Gambar
Gambar
Gambar
Gambar
Gambar

2.9.
2.10.
2.11.
2.12.
2.13.
2.14.

Gambar 2.15.
Gambar 2.16.
Gambar 2.17.
Gambar 2.18.
Gambar
Gambar
Gambar
Gambar
Gambar
Gambar
Gambar

2.19.
2.20.
2.21.
2.22.
3.1.
3.2.
3.3.

Gambar 3.4.
Gambar 3.5.
Gambar 3.6.
Gambar 3.7.
Gambar 3.8.
Gambar 3.9.

Halaman
Hasil Interpretasi Gambar dari Satelit .................................... 8
Hasil Akuisisi Data Menggunakan Metode SAR ................... 9
Hasil Pengamatan Menggunakan Metode TLS ...................... 10
Ilustrasi Pemasangan Hydraulic Jack dan Sensor dalam
Metode Seismik ...................................................................... 11
(a) Distribusi Sensor Saat Pengukuran dan (b) Skema
Sederhana Pengolahan Data ................................................... 12
Skema Ilustrasi Sistem Monitoring Longsor .......................... 14
Pemasangan FBG di dalam Inclinometer................................ 15
Pemantulan dan Pembiasan Cahaya pada Bidang Batas antar
Medium .................................................................................. 16
Muka Gelombang Cahaya yang Bergerak Maju .................... 17
Perubahan Kelajuan Cahaya dalam Medium Berbeda ........... 17
Mekanisme Pembiasan Cahaya .............................................. 18
Cahaya Datang yang berada pada Sudut Kritis ...................... 19
Pemantulan Internal Total ...................................................... 19
(a) Geometri Fiber Optik saat Melengkung dan (b)
Penyetaraan dengan Distribusi Indeks Bias pada Fiber Lurus 20
Grafik Kelengkungan pada y = f(x) ....................................... 21
Gaya Gravitasi Tegak Lurus dengan Bidang Datar ............... 24
Gaya Gravitasi yang Bekerja pada Benda dengan Sudut
Kemiringan Tertentu .............................................................. 25
(a) Butir-Butir Tanah pada Kondisi Kering dan (b) ButirButir Tanah yang Telah Disusupi Air .................................... 26
Longsor Translasi ................................................................... 27
Longsor Rotasi ....................................................................... 28
Longsor Pergerakan Blok ....................................................... 28
Longsor Runtuhan Batu ......................................................... 29
Skema Tahapan-Tahapan Penelitian ...................................... 32
Rubber Silinder Berulir .......................................................... 33
Bahan pembuat silinder berulir (a) Silicone Rubber RTV (b)
Hardener Silicone RTV ......................................................... 34
Flowchart Program Interface Akuisisi Data ........................... 34
Skema Set-Up Peralatan Penelitian ........................................ 35
Perubahan Bentuk Silinder Berulir (a) Sebelum Pergeseran
dan (b) Setelah Pergeseran sejauh d ....................................... 36
Ilustrasi Set-Up Sensor di Lapangan ...................................... 37
Skema Sistem Sensor ............................................................. 37
Skema konversi pergeseran tanah ke penekanan fiber optik.. 38
commit to user

xiv

perpustakaan.uns.ac.id

Gambar 4.1.
Gambar 4.2.
Gambar
Gambar
Gambar
Gambar
Gambar
Gambar

4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

Gambar 4.9.

Gambar 4.10.
Gambar 4.11.
Gambar 4.12.
Gambar 4.13.

Gambar 4.14.
Gambar
Gambar
Gambar
Gambar

4.15.
4.16.
4.17.
4.18.

Gambar 4.19.

Gambar 4.20.
Gambar 4.21.
Gambar 4.22.

Gambar 4.23.

digilib.uns.ac.id

Fiber Koil (a) Sebelum Dilakukan Penekanan dan (b)
Setelah Dilakukan Penekanan ................................................
Perangkat Keras yang Digunakan (a) Mikrokontroler
Arduino Uno dan (b) Rangkaian Detektor Cahaya LDR .......
Piranti SMS Gateway..............................................................
Piranti Display ........................................................................
Tampilan Program Interface Akuisisi Data ...........................
Fiber Optik yang Dililitkan pada Silinder Berulir ..................
Geometri Elips .......................................................................
Grafik Hubungan antara Pergeseran dengan (a)
Kelengkungan dan (b) Jari-Jari Kelengkungan.......................
Grafik Hubungan antara Transmitansi dengan Pergeseran
Kecil pada Diameter Lilitan (a) 1,0 cm; (b) 1,5 cm; (c) 2,0
cm; dan (d) 2,5 cm .................................................................
Perambatan Cahaya dalam Fiber Optik Terlilit pada (a)
Kondisi Normal dan (b) Saat diberi Penekanan .....................
Grafik Hubungan antara Jumlah Lilitan dengan Gradien
Garis Transmitansi .................................................................
Grafik Hubungan Diameter Lilitan dengan Gradien Garis ....
Grafik Hubungan antara Loss Cahaya dengan Pergeseran
pada Diameter Lilitan (a) 1,0 cm; (b) 1,5 cm; (c) 2,0 cm;
dan (d) 2,5 cm.........................................................................
Daerah Sensing yang Baik pada Diameter 2,5 cm dengan 10
Lilitan .....................................................................................
Profil Daerah Sensing untuk Diterapkan di Sistem Sensor.....
Piranti Linier Mekanis ............................................................
Media Alat yang Digunakan untuk Pergeseran Tanah ...........
Tali yang terhubung ke Piranti Linier Mekanis dan juga
User.........................................................................................
Uji Sensor Lapangan (a) Piranti Linier yang langsung
terintegrasi Sensor dan (b) Ilustrasi Pemasangan Patok yang
terhubung ke Piranti Linier Mekanis ......................................
SMS berisi Peringatan Bahaya ..............................................
Ilustrasi Desain untuk Penerapan Sensor di Lapangan ..........
Pola Grafik Pengujian Sensor (a) Hubungan Pergeseran
Tanah dengan Waktu dan (b) Hubungan Kecepatan Tanah
dengan Waktu .........................................................................
Tipikal Grafik terjadinya Longsor ditinjau dari Kecepatan
Tanah dengan Waktu Pantau ..................................................

commit to user

xv

40
41
42
43
44
46
46
47

49
50
52
53

54
56
57
58
59
59

60
61
61

62
64

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR SIMBOL




= Sudut datang

Satuan
Derajat

= Sudut bias

Derajat

= Indeks bias medium pertama
= Indeks bias medium kedua
= Koefisien refleksi
= Koefisien transmisi



= Banyaknya sinar pantul

Watt/m2

= Banyaknya sinar datang

Watt/m2

= Banyaknya sinar bias

Watt/m2

��

= Energi sinar datang

Watt



= Energi sinar pantul

Watt



= Energi sinar bias

Watt



= Reflekstansi



= Transmitansi



= Sudut kritis

Derajat



= Sudut penerimaan

Derajat

Indeks bias udara
= Indeks bias core





= Indeks bias cladding
= Numerical Aperture



= Sudut antara sumbu x dengan garis singgung

∆�

= Perubahan sudut garis singgung �

Derajat

R

= Jari-jari kelengkungan fiber optik

mm



= Koefisien loss cahaya akibat bending
commit to user
= Konstanta 1



= Jarak antara titik P dan Q

K

= Kelengkungan fiber optik

xvi

Derajat
m
mm-1

perpustakaan.uns.ac.id

digilib.uns.ac.id

= Konstanta 2


= Intensitas cahaya keluaran

Watt/m2

��

= Intensitas cahaya masukkan

Watt/m2

N

= Jumlah lilitan



= Daya modulasi

Watt

= Daya referensi

Watt



= Daya

Watt

= Tegangan

Volt

�Ω

= Hambatan

Ohm



= Tegangan referensi

Milivolt

= Tegangan modulasi

Milivolt



= Gravitasi bumi (9,8 ms-2)



= Gravitasi searah bidang miring



= Gravitasi tegak lurus bidang miring

= Gaya berat

Newton

= Massa
d



kg

= Perubahan jarak penekanan

mm

= Jari-jari sumbu horizontal elips

mm

= Jari-jari sumbu vertikal elips

mm

= 3,14
= Jari-jari lingkaran

mm

= Sumbu x
= Sumbu y
Kmax

= Kelengkungan maksimum

R2

= Nilai linieritas grafik

L

= Panjang fiber optik

no

= Indeks bias fiber lurus

ne

= Indeks bias efektif

χ

= Efek akomoodasi elastik

mm-1

m

commit to user

xvii

perpustakaan.uns.ac.id

digilib.uns.ac.id

DAFTAR LAMPIRAN

Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran
Lampiran

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

Halaman
Block Diagram Program Interface Akuisisi Data ..................... 70
Data Penelitian (Diameter koil 1,0 cm)..................................... 71
Data Penelitian (Diameter koil 1,5 cm).................................... 76
Data Penelitian (Diameter koil 2,0 cm).................................... 81
Data Penelitian (Diameter koil 2,5 cm).................................... 86
Listing Program Sensor Tanah Longsor.................................... 96
Grafik Transmitansi vs Pergeseran (Diameter koil 1,0 cm) ..... 106
Grafik Transmitansi vs Pergeseran (Diameter koil 1,5 cm) ..... 108
Grafik Transmitansi vs Pergeseran (Diameter koil 2,0 cm) ..... 110
Grafik Transmitansi vs Pergeseran (Diameter koil 2,5 cm) ..... 112
Grafik Loss vs Pergeseran (Diameter koil 1,0 cm) ................... 114
Grafik Loss vs Pergeseran (Diameter koil 1,5 cm) ................... 116
Grafik Loss vs Pergeseran (Diameter koil 2,0 cm) ................... 118
Grafik Loss vs Pergeseran (Diameter koil 2,5 cm) ................... 120
Skema rangkaian piranti display ............................................... 122
Skema rangkaian piranti alarm ................................................. 123
Nilai linieritas loss cahaya ........................................................ 124

commit to user

xviii