PENGENALAN CITRA WAJAH MENGGUNAKAN TRANSFORMASI WAVELET DISKRIT DAN JARINGAN SARAF TIRUAN BACK - PROPAGATION - Binus e-Thesis

  

UNIVERS ITAS BINA NUS ANTARA

  Jurusan Teknik Informatika Skripsi Sarjana Komputer

  Semester Genap tahun 2004/2005

  

PENGEN ALAN CITRA WAJAH D ENGAN MENGGUNAKAN

TRANS FORMAS I WAVELET DIS KRIT D AN JARINGAN S ARAF TIRUAN

BACK-PROPAGATION

  

Suhendry Effendy 0500545733

Jeffri 0500584961

Abstrak

  Skripsi ini membahas mengenai sistem pengenalan citra wajah dengan menggunakan Transformasi Wavelet Diskrit dan jaringan saraf tiruan back-propagation. Transformasi Wavelet Diskrit memproses citra masukan untuk mendapatkan fitur penting yang terdapat pada citra wajah. Fitur tersebut kemudian diklasifikasikan dengan menggunakan jaringan saraf tiruan back-propagation agar citra masukan dapat diidentifikasi. Pengujian sistem menggunakan citra wajah dari AT&T Database of Faces sebanyak 400 citra yang terdiri dari 40 individu dan citra wajah hasil tangkapan web-

  

camera sebanyak 100 citra yang terdiri dari 10 individu. Tingkat akurasi pengenalan

  pada AT&T Database of Faces mencapai 93.5%, sedangkan tingkat akurasi pengenalan pada citra tangkapan web-camera mencapai 96%. Pengujian juga dilakukan terhadap citra AT&T Database of Faces yang diberi noise. Ternyata noise pada citra tidak memberikan pengaruh yang berarti terhadap tingkat akurasi pengenalan.

  Kata Kunci :

  Pengenalan wajah, Transformasi Wavelet Diskrit, jaringan saraf tiruan, back- propagation.

  

KAT A PENGANTAR

  Puji dan syukur kami ucapkan kepada Tuhan Yang M aha Esa yang telah membimbing kami dalam menyelesaikan skripsi yang berjudul “Pengenalan Citra Wajah dengan M enggunakan Transformasi Wavelet Diskrit dan Jaringan Saraf Tiruan Back- Propagation”.

  Skripsi ini disusun dengan tujuan untuk memenuhi syarat kelulusan jenjang studi Strata-1 (S1) jurusan Teknik Informatika di Universitas Bina Nusantara.

  Tak lupa pada kesempatan ini kami mengucapkan terima kasih atas segala bantuan dan dorongan yang telah diberikan oleh :

  • Bapak Evermy Vem, M.Sc selaku Pejabat Rektor Universitas Bina Nusantara yang telah memberikan kesempatan kepada kami untuk menempuh pendidikan di Universitas Bina Nusantara • Bapak Ir. Sablin Yusuf, M.Sc. M.Comp.Sc. selaku Dekan Fakultas Ilmu Komputer, Bapak H. M ohammad Subekti, BE, M .Sc. selaku Ketua Jurusan Teknik Informatika, dan Freddy Purnomo, S.Kom, M .Kom. selaku Sekretaris Jurusan Teknik Informatika Universitas Bina Nusantara yang telah memberikan kesempatan, kepercayaan, serta saran dalam penyusunan skripsi ini.
  • Ibu Anny Tandyo, S.Kom, M.Sc. selaku dosen pembimbing yang telah menyediakan banyak waktu untuk membantuk, memberikan sumbangan pemikiran, serta membimbing penulis dalam menyelesaikan masalah-masalah yang kami temui selama penyusunan skripsi.
memberikan fasilitas komputer dan peminjaman buku, pemeriksaan kelengkapan dokumen/skripsi, serta simulasi ujian pendadaran berupa pra-sidang skripsi.

  • Orang tua serta keluarga kami yang telah memberikan dukungan dan nasehat yang membangun dalam menyelesaikan skripsi ini.
  • Rekan-rekan mahasiswa Universitas Bina Nusantara yang secara langsung maupun tidak langsung telah memberikan dukungan kepada kami. Dengan segala kerendahan hati, kami sangat mengharapkan saran dan kritik untuk membangun skripsi ini. Akhir kata, kami berharap agar skripsi ini dapat memberikan manfaat bagi semua pembaca dan semua pihak yang berkepentingan.

  Atas segala perhatiannya, kami ucapkan terima kasih sebanyak-banyaknya.

  Jakarta, 19 Juni 2005 Tim Penulis

  DAFTAR IS I

  Halaman Judul Luar ....................................................................................................... i Halaman Judul Dalam .................................................................................................... ii Halaman Persetujuan Hardcover ................................................................................... iii Halaman Pernyataan Dewan Penguji ............................................................................. iv Abstrak ........................................................................................................................... vi Kata Pengantar ............................................................................................................... vii Daftar Isi ........................................................................................................................ ix Daftar Tabel ................................................................................................................... xiv Daftar Gambar ............................................................................................................... xvi

  

BAB 1 PENDAHULUAN ............................................................................................ 1

  1.1 Latar Belakang ....................................................................................... 1

  1.2 Ruang Lingkup ....................................................................................... 2

  1.3 Tujuan dan M anfaat ............................................................................... 3

  1.4 M etodologi Penelitian ............................................................................ 4

  1.5 Sistematika Penulisan ............................................................................. 5

  

BAB 2 LANDAS AN TEORI ........................................................................................ 7

  2.1 Citra ........................................................................................................ 7

  2.1.1 Definisi Citra .............................................................................. 7

  2.1.2 Pengolahan Citra ........................................................................ 7

  2.1.3 Konvolusi ................................................................................... 8

  2.1.4 Grayscaling ................................................................................ 9

  Computer Vision .................................................................................... 11

  2.2 Sistem Pengenalan Wajah ...................................................................... 12

  2.3 Ekstraksi Fitur ....................................................................................... 14

  2.4

  2.4.1 Principal Component Analysis (PCA) ...................................... 15

  2.4.2 Discrete Cosine Transform (DCT) ........................................... 16

  2.4.3 Transformasi Wavelet ............................................................... 17

  2.4.3.1 Transformasi Wavelet Kontinu ..................................... 17

  2.4.3.2 Transformasi Wavelet Diskrit ....................................... 18

  2.4.3.3 Transformasi Wavelet dalam Sistem Pengenalan Wajah ............................................................................. 20

  Jaringan Saraf Tiruan ............................................................................. 21

  2.5

  2.5.1 Definisi Jaringan Saraf Tiruan ................................................... 21

  2.5.2 Komponen Jaringan Saraf Tiruan .............................................. 22

  2.5.3 Fungsi Aktivasi .......................................................................... 22

  2.5.4 Arsitektur Jaringan Saraf Tiruan ............................................... 25

  2.5.5 M etode Pembelajaran ................................................................ 26

  2.5.6 Back-Propagation ..................................................................... 27

  

BAB 3 PERANCANGAN S IS TEM ........................................................................... 29

Gambaran Umum .................................................................................. 29

  3.1 Tahap Pengambilan Input ...................................................................... 30

  3.2 Pemrosesan Awal ................................................................................... 31

  3.3

  3.3.1 Grayscaling ................................................................................ 31

  Tahap Ekstraksi Fitur ............................................................................ 32

  3.4

  3.4.1 Transformasi Wavelet Diskrit ................................................... 33 Tahap Klasifikasi .................................................................................. 37

  3.5

  3.5.1 Pelatihan Jaringan Saraf Tiruan Back-Propagation .................. 38

  3.5.1.1 Normalisasi Koefisien Wavelet ................................. 38

  3.5.1.2 Strategi Representasi Data Output ............................ 40

  3.5.1.3 Penentuan Nilai Weight Awal .................................... 41

  3.5.1.4 Inisialisasi Input dan Target Output .......................... 41

  3.5.1.5 Proses Komputasi Forward ....................................... 42

  3.5.1.6 Proses Komputasi Backward ..................................... 43

  3.5.1.7 Proses Update Weight ................................................ 44

  3.5.1.8 Batas Pelatihan ........................................................... 45

  3.5.2 Penentuan Identitas ................................................................... 45

  3.5.2.1 Inisialisasi Input ......................................................... 46

  3.5.2.2 Komputasi Forward ................................................... 46 Perancangan Proses ............................................................................... 47

  3.6

  3.6.1 M odul Pemrosesan Awal ........................................................... 47

  3.6.2 M odul Ekstraksi Fitur ................................................................ 48

  3.6.3 M odul Klasifikasi ...................................................................... 49 Perancangan Database ........................................................................... 52

  3.7 Perancangan Layar ................................................................................ 53

  3.8

  3.8.1 Perancangan Layar Input Pola M asukan ................................... 53

  3.8.3 Perancangan Layar Identifikasi Wajah ..................................... 55

  3.8.4 Perancangan Layar Penambahan Nama Baru ........................... 56 Perancangan Layar Konfigurasi Sistem ................................. 56

  3.8.5 BAB 4 IMPLEMENTAS I DAN EVALUAS I ............................................................ 59 Spesifikasi Sistem .................................................................................. 59

  4.1

  4.1.1 Spesifikasi Perangkat Keras ...................................................... 59

  4.1.2 Spesifikasi Perangkat Lunak ..................................................... 59 Prosedur Operasional ............................................................................ 60

  4.2 Prosedur Evaluasi .................................................................................. 66

  4.3 Pengujian pada AT&T Database of Faces ............................................ 67

  4.4

  4.4.1 Evaluasi Pengaruh Jumlah Node pada Hidden Layer ............... 68

  4.4.2 Evaluasi Pengaruh Learning Rate ............................................. 70

  4.4.3 Evaluasi Pengaruh Target Error ............................................... 71

  4.4.4 Evaluasi Pengaruh Jumlah Data Pelatihan Per Subjek ............. 73

  4.4.5 Evaluasi Pengaruh Jumlah Subjek ............................................ 74

  4.4.6 Evaluasi Pengaruh Level Dekomposisi Wavelet ...................... 77 Pengujian pada Citra Tangkapan Web-Camera .................................... 79

  4.5

  4.5.1 Evaluasi Pengaruh Jumlah Node pada Hidden Layer ............... 80

  4.5.2 Evaluasi Pengaruh Jumlah Data Pelatihan Per Subjek ............. 81

  4.5.3 Evaluasi Pengaruh Jumlah Subjek ............................................ 83

  4.5.4 Evaluasi Pengaruh Level Dekomposisi Wavelet ...................... 85 Evaluasi Pengaruh Noise ....................................................................... 86

  4.6

  Evaluasi Pengaruh Penggunaan Koefisien DWT Detil ......................... 88

  4.8 Evaluasi Aplikasi Secara Umum ........................................................... 90

  4.9 Rangkuman Hasil Evaluasi Secara Keseluruhan ................................... 90

  

BAB 5 S IMPULAN DAN S ARAN ............................................................................. 93

  5.1 Simpulan ................................................................................................ 93

  5.2 Saran ...................................................................................................... 94

  

DAFTAR PUS TAKA .................................................................................................. 95

RIWAYAT HID UP ..................................................................................................... 97

LAMPIRAN ................................................................................................................. L1

A.

  Citra Wajah AT&T Database of Faces ................................................. L1 B. Citra Wajah AT&T Database of Faces dengan Noise .......................... L12 C. Lampiran Citra Wajah Tangkapan Web-Camera ................................. L15 D. Listing Program .................................................................................... L18

DAFTAR TABEL

Tabel 2.1 Tabel Perbadingan M etode PCA, DCT dan DWT .............................. 14Tabel 3.2 Tabel Database Subjek ........................................................................ 52Tabel 3.2 Tabel Database Pola M asukan ............................................................. 52Tabel 4.1 Tabel Data Hasil Pengujian Pengaruh Jumlah Node Hidden Layer pada AT&T Database of Faces ............................................................ 68Tabel 4.2 Tabel Data Hasil Pengujian Pengaruh Learning Rate pada AT&T

  Database of Faces ............................................................................... 70

Tabel 4.3 Tabel Data Hasil Pengujian Pengaruh Target Error pada AT&T

  Database of Faces ............................................................................... 72

Tabel 4.4 Tabel Data Hasil Pengujian Pengaruh Jumlah Data Pelatihan Per

  Subjek pada AT&T Database of Faces ............................................... 73

Tabel 4.5 Tabel Data Hasil Pengujian Pengaruh Jumlah Subjek pada AT&T

  Database of Faces ............................................................................... 75

Tabel 4.6 Tabel Data Hasil Pengujian Pengaruh Level Dekomposisi Wavelet pada AT&T Database of Faces ............................................................ 77Tabel 4.7 Tabel Data Hasil Pengujian Pengaruh Jumlah Node Hidden Layer pada Citra Tangkapan Web-Camera ................................................... 80Tabel 4.8 Tabel Data Hasil Pengujian Pengaruh Jumlah Data Pelatihan Per

  Subjek pada Citra Tangkapan Web-Camera ....................................... 82

Tabel 4.9 Tabel Data Hasil Pengujian Pengaruh Jumlah Subjek pada Citra

  Tangkapan Web-Camera ..................................................................... 83

Tabel 4.10 Tabel Data Hasil Pengujian Pengaruh Level Dekomposisi Wavelet pada Citra Tangkapan Web-Camera ................................................... 85Tabel 4.11 Tabel Data Hasil Pengujian Pengaruh Noise ....................................... 87Tabel 4.12 Tabel Data Hasil Pengujian Pengaruh Penggunaan Koefisien DWT

  Detil ..................................................................................................... 89

Tabel 4.13 Tabel Konfigurasi Sistem yang Optimal ............................................. 91Tabel 4.14 Tabel Rangkuman Hasil Pengujian yang Optimal .............................. 91Tabel 4.15 Tabel Rangkuman Hasil Pengujian Pengaruh Noise ........................... 92

  

DAFTAR GAMB AR

Gambar 2.1 Ilustrasi Citra Kecil (kiri) dan Kernel (kanan) pada Konvolusi ..........

Gambar 2.12 Jaringan Saraf Tiruan Lapis Banyak ................................................... 26Gambar 3.8 Dekomposisi Wavelet 3 Level ............................................................. 36Gambar 3.7 Dekomposisi Wavelet pada Level-1 .................................................... 33Gambar 3.6 Tahap Ekstraksi Fitur .......................................................................... 33Gambar 3.5 Histogram Citra Asli dan Histogram Hasil Normalisasi ..................... 32Gambar 3.4 Proses Grayscaling .............................................................................. 31Gambar 3.3 Tahap Pemrosesan Awal ..................................................................... 31Gambar 3.2 Tahap Pengambilan Input .................................................................... 30Gambar 3.1 Tahap-Tahap dalam Sistem Pengenalan Wajah .................................. 30Gambar 2.11 Jaringan Saraf Tiruan Lapis Tunggal .................................................. 25

  9 Gambar 2.2 Sistem Computer Vision ...................................................................... 11

Gambar 2.10 Fungsi Hypertangent ........................................................................... 24Gambar 2.9 Fungsi Sigmoid .................................................................................... 24Gambar 2.8 Fungsi Tangga ..................................................................................... 23Gambar 2.7 Fungsi Identitas ................................................................................... 23Gambar 2.6 M odel Neuron ...................................................................................... 22Gambar 2.5 Transformasi Wavelet pada Sinyal 1-D dan Sinyal 2-D (Citra) .......... 21Gambar 2.4 Ilustrasi Algoritma Dekomposisi Wavelet .......................................... 19Gambar 2.3 Perbandingan Proses pada PCA dengan DCT / DWT ......................... 15Gambar 3.9 Koefisien DWT Citra Global pada Level-3 ......................................... 36Gambar 3.10 Tahap Klasifikasi ................................................................................. 38Gambar 3.11 Tahap Pelatihan Jaringan Saraf Tiruan Back-Propagation ................. 38Gambar 3.12 Ilustrasi Strategi Representasi Data Output ......................................... 41Gambar 3.13 Ilustrasi Tahap Inisialisasi Input dan Target Output pada Jaringan

  Saraf Tiruan Back-Propagation .......................................................... 42

Gambar 3.14 Tahap Komputasi Forward ................................................................. 42Gambar 3.15 Tahap Komputasi Backward ............................................................... 43Gambar 3.16 Tahap Eksekusi Jaringan Saraf Tiruan Back-Propagation ................. 46Gambar 3.17 Rancangan Layar Input Pola M asukan ................................................ 53Gambar 3.18 Rancangan Layar Pelatihan Pola M asukan ......................................... 54Gambar 3.19 Rancangan Layar Identifikasi Wajah .................................................. 55Gambar 3.20 Rancangan Layar Penambahan Nama Baru ........................................ 56Gambar 3.21 Rancangan Layar Konfigurasi Umum ................................................. 56Gambar 3.22 Rancangan Layar Konfigurasi Jaringan Saraf Tiruan Back-

  Propagation ......................................................................................... 57

Gambar 4.1 Layar M ode Input Pola M asukan ........................................................ 60Gambar 4.2 Layar M ode Pelatihan Pola ................................................................. 61Gambar 4.3 Layar M ode Pengenalan Wajah ........................................................... 62Gambar 4.4 Layar Capture M enggunakan Web-Camera ....................................... 63Gambar 4.5 Layar Konfigurasi Sistem .................................................................... 64Gambar 4.6 Layar Informasi Pola yang Terdapat di Database ............................... 65Gambar 4.7 Layar Penambahan Nama Subjek Baru ............................................... 65Gambar 4.8 Layar Informasi Aplikasi ..................................................................... 66Gambar 4.9 Contoh Citra Wajah pada AT&T Database of Faces .......................... 68

  Akurasi Pengenalan pada AT&T Database of Faces .......................... 78

Gambar 4.20 Grafik Pengaruh Level Dekomposisi Wavelet Terhadap Tingkat

  Pengenalan pada Citra Tangkapan Web-Camera ................................ 84

Gambar 4.19 Grafik Pengaruh Jumlah Subjek Terhadap Perubahan Tingkat Akurasi

  Camera ................................................................................................ 82

  Perubahan Tingkat Akurasi Pengenalan pada Citra Tangkapan Web-

Gambar 4.18 Grafik Pengaruh Jumlah Data Pelatihan Per Subjek Terhadap

  Tingkat Akurasi Pengenalan pada Citra Tangkapan Web-Camera ..... 81

Gambar 4.17 Grafik Pengaruh Jumlah Node Hidden Layer Terhadap PerubahanGambar 4.16 Contoh Citra Wajah pada Citra Tangkapan Web-Camera .................. 79Gambar 4.15 Grafik Pengaruh Level Dekomposisi Wavelet Terhadap TingkatGambar 4.10 Grafik Pengaruh Jumlah Node Hidden Layer Terhadap Perubahan

  Pengenalan pada AT&T Database of Faces ........................................ 76

Gambar 4.14 Grafik Pengaruh Jumlah Subjek Terhadap Tingkat Akurasi

  Akurasi Pengenalan pada AT&T Database of Faces .......................... 74

Gambar 4.13 Grafik Pengaruh Jumlah Data Pelatihan Per Subjek Terhadap Tingkat

  Pengenalan pada AT&T Database of Faces ........................................ 72

Gambar 4.12 Grafik Pengaruh Target Error Terhadap Perubahan Tingkat Akurasi

  Pengenalan pada AT&T Database of Faces ........................................ 71

Gambar 4.11 Grafik Pengaruh Learning Rate Terhadap Perubahan Tingkat Akurasi

  Tingkat Akurasi Pengenalan pada AT&T Database of Faces ............. 69

  Akurasi Pengenalan pada Citra Tangkapan Web-Camera .................. 85

Gambar 4.21 Contoh Citra Wajah pada AT&T Database of Faces dengan Noise .... 86Gambar 4.22 Grafik Perbandingan Tingkat Akurasi Pengenalan Akibat Pengaruh

  Noise .................................................................................................... 87

Gambar 4.23 Grafik Perbandingan Tingkat Akurasi Pengenalan Akibat Pengaruh

  Penggunaan Koefisien DWT Detil ...................................................... 89

Lanjutkan membaca

Dokumen baru

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

48 1177 16

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

18 333 43

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

17 268 23

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

3 190 24

PENGARUH PENERAPAN MODEL DISKUSI TERHADAP KEMAMPUAN TES LISAN SISWA PADA MATA PELAJARAN ALQUR’AN HADIS DI MADRASAH TSANAWIYAH NEGERI TUNGGANGRI KALIDAWIR TULUNGAGUNG Institutional Repository of IAIN Tulungagung

16 253 23

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

17 346 14

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

14 318 50

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

5 180 17

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

8 325 30

KREATIVITAS GURU DALAM MENGGUNAKAN SUMBER BELAJAR UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN PENDIDIKAN AGAMA ISLAM DI SMPN 2 NGANTRU TULUNGAGUNG Institutional Repository of IAIN Tulungagung

16 367 23