Pengaruh Pemanasan Gelombang Mikro Terhadap Sifat Fisis dan Mekanis Kayu Gmelina (Gmelina arborea Roxb.) dan Terap (Artocarpus elasticus Reinw.)

XfiliEEGZE

A4
, ,11,11 .:, - il, :
. ".6.-1.1
IF '5.711.
7 iivirr' - 'VW ••• . -fts... . - 1.
*0. 4i .'nlii:
4-M11111111111111M1111 1

0 `11

..... -....

a: niZ rli: 4: 74-- ' . I iiiltW". -i.% ''' '1. ...-.. .7,„ .
!i, .
; / - ,, i 1,

Pengembangan Teknologi Pengolahan dan Pengembangan
Hasil Hutan Dalam Rangka Mendukung Pembangunan Nasional
Prosiding Seminar Nasional Masyarakat Peneliti Kayu Indonesia (MAPEKI) XII

Bandung, 23-25 Juli 2009

Editor:

Sukma Surya Kusumah, S.Hut., M.Si.
Prof. Dr. Ir. Muh. Yusram Massijaya, M.S.
Dr. Ir. Anita Firmanti, MT.
Dr. Ir. Subyakto, M.Sc.
Ir. Deded Sarip Nawawi, M.Sc.
Dr. Ir. I Nyoman J. Wistara, M.Sc.
Suhasman, S.Hut., M.Si.
Istie Sekartining Rahayu, S.Hut., M.Si.
Arinana, S.Hut., M.Si.
Lucky Risanto, S.Si.

Team Teknis:

Linda Kriswati, S.E.
Wahyu Hidayat


Diterbitkan oleh Masyarakat Peneliti Kayu Indonesia
Sekretariat : Departemen Hasil Hutan, Fakultas Kehutanan IPB
Kampus IPB Darmaga Bogor 16680
Bogor
Telp. : 0251-8621285
Fax. : 0251-8621285
E-mail : mapeki group@yahoogroups.com
Website : http://www.mapeki.org

PROSIDING SEMINAR NASIONAL MAPEKI XII

Daftar Isi

11. Pola Distribusi Kekuatan Mekanik Bambu Betung (Dendrocalamus asper)
dan Bambu Sembilang (Dendrocalamus gigantochloa) ................................ 78-85
Yetvi Rosalita, Naresworo Nugroho, Bambang Subiyanto, Sukma Surya
Kusumah
12. Bentuk Ligulate Extension Elemen Pembuluh Beberapa Jenis Kayu Sebagai
Dasar Identifikasi Kelompok Kayu Daun Lebar .................................................. 86-91
Ratih Damayanti dan I Ketut N. Pandit

13. Kaitan Antara Permeabilitas Arah Tangensial Dengan Stabilitas Dimensi
Kayu ................................................................................................................... 92
Zahrial Coto, Istie Sekartining Rahayu, dan Esti Prihatini
14. Anatomi Kayu Meranti Kuning (Shorea macrobalanos P. S. Ashton) ............... 93-103
Supartini
15. Peluang Jenis Pohon Eucalyptus Pellita Sebagai Kayu Pertukangan .............. 104-108
Riskan Effendi dan Budi Leksono
16. Identifikasi Jenis dan Sebaran Dipterokarpa Di Kawasan Hutan Jawa Barat .. 109-116
Marfu’ah Wardani
17. Pohon Calophyllum Di Jawa Barat .................................................................. 117-123
Marfu’ah Wardani
18. Sifat Fisis dan Mekanis Kayu Polistyrene Rindu dan Angsana ........................ 124-128
Rudi Hartono, Sucahyo, Yusuf Sudo Hadi, Jasni
19. Kualitas Serat Kayu Eucalyptus Grandis W. HILL ex Maiden pada Berbagai
Umur

129-133

Rudi Hartono, Onrizal, M. Cicih Harpenas
20. Pengaruh Pemanasan Gelombang Mikro Terhadap Sifat Fisis dan Mekanis

Kayu Gmelina (Gmelina arborea Roxb.) dan Terap (Artocarpus elasticus
Reinw.) ............................................................................................................ 134-138
Rudi Hartono, Irawati Azhar dan Andi Krisnatal Ginting

MAKALAH KOMPOSIT KAYU
No
1.

Materi/Pembicara
Peningkatan Mutu Kayu Pinus Yang Terserang Bluestain .............................. 139-146
AgusSalim dan Zahrial Coto

2.

Komposit Plastik Dari Limbah Sabut Buah Sawit dan Polipropilena ................. 147-156
Arif Nuryawan, Irawati Azhar, dan Parlin Situa Barel Sarumaha

BANDUNG, JAWA BARAT 23 – 25 JULI 2009

iii


A-20

PROSIDING SEMINAR NASIONAL MAPEKI XII

PENGARUH PEMANASAN GELOMBANG MIKRO TERHADAP
SIFAT FISIS DAN MEKANIS KAYU GMELINA
(Gmelina arborea Roxb.) DAN TERAP (Artocarpus elasticus Reinw.)
Oleh :
1)

1)

Rudi Hartono , Irawati Azhar dan Andi Krisnatal Ginting
1)

2)

Staf Pengajar Departemen Kehutanan, Fakultas Pertanian USU
2)


Alumni Departemen Kehutanan, Fakultas Pertanian USU
ABSTRACT

The aim of this research was to know the effect of microwave drying to physical and mechanical
properties of gmelina (Gmelina arborea Roxb.) and terap (Artocarpus elasticus Reinw). Both of
them (gmelina and terap woods) were treated by microwave drying for 10, 20, 30 minutes. The
physical properties (moisture content and density) and mechanical properties (MOE, MOR and
compression parallel to grain) were evaluated.
The results showed that moisture content of gmelina after treatment for 30 minutes decreased
from 157.766 % to 34.501 % and terap decreased from 118.024 % to 7.204 %. The other hand,
2
2
density of woods increased from 0,47 to 0,58 kg/cm for gmelina and from 0,20 to 0,24 kg/cm
for terap. Mechanical properties, such as modulus of rupture, modulus of elasticity and
compression parallel to grain increased with increasing of heating time.
Keywords: Microwave, Physical properties, Mechanical properties, Gmelina,Terap.

PENDAHULUAN
Kayu merupakan bahan alam (renewable recources) yang sangat penting peranannya

dalam kehidupan manusia. Kayu digunakan sebagai bahan bangunan, perabot rumah tangga,
meubel dan lain-lain. Saat ini pemanfaatan kayu umumnya masih terbatas pada kayu-kayu
yang diperoleh dari hutan alam. Sedangkan produksi kayu dari hutan alam terus mengalami
penurunan akibat illegal logging, perambahan hutan, kebakaran, pengelolaan yang kurang
lestari dan lain-lain.
Kondisi tersebut mendorong kita untuk mencari alternatif antara lain pemanfaatan jenis
kayu kayu gmelina (Gmelina arborea Roxb.) dan kayu terap (Artocarpus elasticus Reinw.).
Kedua jenis kayu ini banyak ditemukan di pedesaan sebagai jenis tanaman hutan rakyat.
Berbagai upaya dilakukan untuk meningkatkan kualitas kayu. Salah satunya adalah
melakukan pengeringan kayu. Pengeringan kayu pada dasarnya merupakan usaha untuk
meningkatkan mutu kayu sebagai bahan baku, sehingga disamping bisa meningkatkan kualitas
produk yang dihasilkan juga dapat meningkatkan efisiensi kayu sebagai produk sumber daya
hutan. Selain itu, pengeringan juga mampu meningkatkan keawetan kayu, terutama dari
serangan jamur.
Pada umumnya proses pengeringan kayu dilakukan dengan memanfaatkan faktor
suhu, kecepatan angin dan tingkat kelembaban untuk mencapai proses pengeringan.
Perkembangan pengeringan dimulai dengan teknik pengeringan alami, kiln drying pada tahun
1980an dan berbagai teknik pengeringan buatan (modifikasi) yang telah dikembangakan oleh
para ahli untuk menghasilkan produk yang berkualitas. Perkembangan terkini untuk
pengeringan kayu adalah dengan menggunakan microwave. Teknologi pemanasan dengan

microwave telah dikembangkan aplikasinya untuk proses pengeringan dan perlakuan
pendahuluan sebelum kayu diawetkan.
Microwave (gelombang mikro) adalah suatu bentuk gelombang electromagnet dengan
frekuensi 300 MHz-300 GHz (Goldblith, 1967). Pada saat gelombang microwave melewati

BANDUNG, JAWA BARAT 23-25 JULI 2009

134

PROSIDING SEMINAR NASIONAL MAPEKI XII

A-20

bahan kayu, molekul-molekul di dalam kayu bergetar karena susunan positif dan negative
dipolar molekul kayu bergerak ke arah sumbu elektromagnetik secara bergantian. Gerakan
memutar ke arah positif dan negative secara bergantian mengakibatkan perubahan energy
kinetic menjadi energy panas (Vinden at.al., 2000 dalam Krisdianto, 2004).
Pengeringan dengan microwave akan menguapkan air yang ada di dalam kayu.
Semakin lama waktu pengeringan dengan microwave akan semakin cepat penguapan terjadi.
Haris dan Tarras (1984) menyatakan bahwa papan yang dikeringkan dengan oven microwave

memerlukan weaktu pengeringan + 1/17 kali konvensional. lebih cepat dibandingkan dengan
menggunakan kilang konvensional
Pengeringan dengan microwave dapat mengurangi waktu pengeringan sehingga
produk yang diperoleh dalam waktu relative singkat. Namun lama waktu pengeringan dengan
microwave di duga akan berpengaruh terhadap sifat fisis dan makanis kayu.
Berdasarkan hal tersebut, maka dipandang perlu untuk melakukan penelitian dengan
tujuan untuk mengetahui pengaruh lama pemanasan microwave terhadap sifat fisis dan
mekanis kayu Gmelina (Gmelina arborea Roxb.) dan Terap (Artocarpus elasticus Reinw.)
BAHAN DAN METODE
Bahan dan Alat Penelitian
Bahan yang digunakan dalam penelitian ini adalah kayu Gmelina (Gmelina arborea
Roxb.) umur 5 tahun dan Terap (Artocarpus elasticus Reinw.) umur 10 tahun, ditebang masingmasing sebanyak 2 pohon.
Alat – alat yang digunakan dalam pelaksanaan penelitian ini adalah mesin gergaji,
mesin penyerut, pengampelas, kaliper, tanur gelombang mikro dengan merk Sico dengan 1500
Watt, oven, timbangan, desikator dan alat uji sifat mekanis.
Metode Penelitian
Pengambilan contoh uji dilakukan pada bagian pangkal pohon sepanjang 50 cm.
Contoh uji dibuat bebas cacat. Ukuran contoh uji kadar air dan kerapatan kayu berukuran (2 x 2
3
3

x 2) cm , contoh uji tekan sejajar serat berukuran (2 x 2 x 8) cm , sedangkan contoh uji untuk
3
keteguhan lentur statis berukuran (2 x 2 x 30) cm . Masing – masing pengujian kayu dibuat
sebanyak 20 contoh uji untuk empat perlakuan dan lima kali ulangan dalam kondisi basah dan
telah diampelas.
Selanjutnya contoh uji diberi perlakuan pemanasan dengan microwave merk Sico.
Pengoperasian tanur dilakukan dengan waktu pemakaian dibagi tiga yaitu 10, 20 dan 30 menit.
Sebagai pembanding disediakan contoh uji kontrol (tidak diberikan perlakuan). Kayu yang telah
dikeringkan dengan microwave selanjutnya dikondisikan selama 1 hari.
Setelah pengkondisian, kayu diuji sifat fisis meliputi : kadar air dan kerapatan. Kayu
juga diuji sifat mekanisnya meliputi : MOE, MOR dan tekan sejajar serat. Pengujian sifat fisis
dan mekanis mengacu pada British Standart (BS : 373,1957).
HASIL DAN PEMBAHASAN
Sifat Fisis Kayu
Hasil penelitian menunjukkan bahwa rata-rata kadar air awal sangat tinggi, pada kayu
Gmelina mencapai 157.766 % dan pada kayu terap mencapai 118.024 %. Terdapat
kecendrungan bahwa kadar air kayu mengalami penurunan dengan semakin lama waktu
pengeringan dengan microwave. Sebaliknya kerapatan meningkat dengan semakin lamanya
waktu pengeringan. Sedangkan penyusutan mulai terjadi pada pemanasan selama 30 menit.
Nilai rata-rata sifat fisis kayu disajikan pada Tabel 1.


BANDUNG, JAWA BARAT 23-25 JULI 2009

135

PROSIDING SEMINAR NASIONAL MAPEKI XII

A-20

Tabel 1. Rata-rata Kadar Air, Penyusutan dan Kerapatan Kayu Gmelina dan Terap setelah
Pemanasan Microwave 10, 20 dan 30 menit
3
Kadar Air (%)
Penyusutan (%)
Kerapatan (kg/cm )
Lama
Pemanasan
Gmelina
Terap
Gmelina
Terap
Gmelina
Terap
157,766
118,024
0
0
0,470
0,201
0 menit
116,421
62,512
0
0
0,494
0,225
10 menit
64,263
29,854
0
7,75
0,512
0,238
20 menit
39,501
7,204
0
13,49
0,582
0,239
30 menit
Berdasarkan Tabel 1, kadar air kayu gmelina dan terap mengalami penurunan seiring
dengan lamanya waktu pemanasan. Hal ini menunjukkan dengan semakin lamanya waktu
pemanasan, kadar air yang dihasilkan juga semakin kecil.
Air dalam kayu segar atau baru saja dipanen terletak di dalam dinding sel dan rongga
sel. Apabila kayu dikeringkan sampai tingkat bahwa semua air dalam rongga sel keluar, air
mulai meninggalkan dinding sel (Haygreen dan Bowyer, 1996). Hal ini berarti penurunan kadar
air disebabkan pemanasan yang diberikan pada kayu mengakibatkan air yang terdapat dalam
kayu keluar sehingga kadar air kayu menjadi menurun.
Hasil pengukuran kadar air terendah kayu pada pemanasan 30 menit yaitu pada kayu
gmelina kadar airnya masih berada diatas titik jenuh serat sebesar 39,501 %. Sedangkan untuk
kadar air kayu terap sudah berada di bawah titik jenuh serat, yaitu sebesar 7,204 %. Menurut
Dumanauw (1990), tingkatan titik jenuh serat untuk semua jenis kayu tidak sama, karena
adanya variasi susunan kimiawi kayu. Tetapi umumnya berkisar antara kadar air kayu 25 – 30
%. Hal ini berarti kadar air kayu gmelina berada di atas titik jenuh serat dan tidak mengalami
penyusutan, sedangkan kayu terap mengalami penyusutan.
Penurunan kadar air selama pemanasan 30 menit dari kondisi awal (kontrol) kayu
gmelina sebesar 78,131% sedangkan kayu terap sebesar 93,896 %. Hal ini berarti penurunan
kadar air terap lebih besar dibandingkan gmelina. Diduga keadaan ini disebabkan oleh sifat
anatomi kayu tersebut.
Menurut Mandang dan Pandit (1997), ciri anatomi kayu Gmelina memiliki pori
berdiameter agak kecil sampai agak besar yaitu 100 – 200 ìm , frekuensinya jarang sampai
2
agak jarang yakni 2 – 10 per mm , tilosis banyak dijumpai. Tilosis yaitu benda yang tampak
dengan bantuan lup seperti gelembung mengkilap yang menyumbat pembuluh.
Menurut Wahyudi dkk (1995), kayu terap memiliki pori berukuran sedang sampai agak
2
besar dengan diameter rata-rata 180,6 ìm dengan jumlah 3 sampai 6 sel per ìm dan
kebanyakan soliter (85%) serta mengandung sedikit tilosis. Perbedaaan ukuran pori dan
banyaknya tilosis pada kayu tersebut diduga menyebabkan kadar air kayu terap semakin cepat
menurun dibawah titik jenuh serat dibandingkan kayu gmelina.
Berdasarkan Tabel 1, kerapatan kayu gmelina dan terap mengalami kenaikan seiring
dengan lamanya waktu pemanasan. Setelah pemanasan 30 menit, kerapatam kayu gmelina
3
3
3
naik dari 0,47 kg/cm ke 0,582 kg/cm , sedangkan kayu terap dari 0,201 kg/cm menjadi 0,239
3
kg/cm .
Menurut Tsoumis (1991), pengaruh kerapatan atau berat jenis disebabkan oleh
perbedaaan struktur kayu. Perbedaan tersebut terlihat dari berat jenis gmelina lebih besar
dibandingkan terap. Haygreen dan Bowyer (1996), bahwa berat jenis contoh uji akan meningkat
jika kandungan air yang menjadi dasar di dalam kayu berkurang. Sesuai dengan hasil penelitian
bahwa kadar air kayu semakin menurun mengakibatkan adanya kenaikan berat jenis kayu.
Sifat Mekanis Kayu
Hasil penelitian menunjukkan bahwa rata-rata MOE kayu gmelina berkisar antara
2
50138,268 – 72807,789 Kg/cm , sedangkan kayu terap berkisar antara 21401,566 – 26288,258

BANDUNG, JAWA BARAT 23-25 JULI 2009

136

A-20

PROSIDING SEMINAR NASIONAL MAPEKI XII

Kg/cm , MOR kayu gmelina berkisar antara 431,285 – 544,048 Kg/cm , sedangkan kayu terap
2
berkisar antara 204,602 – 215,933 Kg/cm , keteguhan tekan sejajar serat kayu gmelina
2
berkisar antara 211,999 – 223,750 Kg/cm , sedangkan kayu terap berkisar antara 80,525 –
2
99,633 Kg/cm . Nilai rata-rata sifat mekanis kayu disajikan pada Tabel 2.
2

2

Tabel 2. Rata-rata nilai MOE, MOR dan Keteguhan Tekan Sejajar Serat Kayu Gmelina dan
Terap setelah Pemanasan Microwave 10, 20 dan 30 menit
2
2
MOE (Kg/cm )
MOR (Kg/cm )
Keteguhan Tekan //
Lama
2
Serat (kg/cm )
Pemanasan
Gmelina
Terap
Gmelina
Terap
Gmelina
Terap
50138,268
21401,566
431,285
204,602
211,999
80,525
0 menit
59321,791
22059,630
481,109
206,992
216,445
88,449
10 menit
66768,855
25477,242
491,543
207,309
217,302
92,870
20 menit
72807,789
26288,258
544,048
215,933
223,750
99,633
30 menit
. Berdasarkan Tabel 2 terlihat bahwa nilai MOE, MOR dan keteguhan tekan sejajar
serat semakin meningkat dengan semakin lamanya pemanasan microwave. Pemanasan ini
akan mengeluarkan air yang ada di dalam kayu, sehingga kadar air di dalam kayu menjadi
semakin rendah. Selain itu, pemanasan juga menyebabkan kerapatan kayu menjadi meningkat.
Hal ini berarti kadar air dan kerapatan berpengaruh terhadap sifat mekanis kayu.
Pada saat kayu mengering sebagian besar kekuatan dan sifat-sifat mekanis kayu
bertambah besar. Menurut Haygreen dan Bowyer (1996), saat air dikeluarkan dari dinding sel,
molekul-molekul berantai panjang bergerak saling mendekat dan menjadi terikat lebih kuat.
Demikian juga Tsoumis (1991), kadar air mempengaruhi sifat mekanis kayu. Saat kadar air
turun, kakuatan kayu bertambah. Pertambahan ini disebabkan oleh perubahan dalam dinding
sel yang menjadi padat. Unit strukturnya menjadi saling mendekat dan kekuatan tarik antar
rantai molekul selulosa menjadi lebih kuat.
Sadiyo (2003) dan Sadiyo dan Surjokusumo (2003) mengemukakan bahwa faktor yang
mempengaruhi kekuatan kayu antara lain BJ/kerapatan dan kadar air. Berat jenis berkolerasi
positif sangat erat dengan kekuatan kayu. Semakin tinggi berat jenis maka semakin tinggi
kekuatan kayu tersebut. Demikian juga kadar air kayu, semakin rendah kadar air kayu maka
semakin tinggi kekuatan kayu yang dihasilkan.
Lebih lanjut Haygreen dan Bowyer (1996), kekuatan kayu berhubungan rapat dengan
berat jenis. Hal ini disebabkan karena berat kering tetap konstan sedangkan volume berkurang
selama pengeringan. Sehingga sel kayu akan semakin rapat dan menambah kekuatan kayu
tersebut. Dengan kenaikan berat jenis/kerapatan kayu gmelina dan terap maka, kekuatan kayu
dalam hal ini menjadi semakin meningkat.
KESIMPULAN
Berdasarkan penelitian yang dilakukan didapat kesimpulan yaitu :
1. Perlakuan pemanasan gelombang mikro pada kayu gmelina dan terap menyebabkan
menurunnya kadar air dan meningkatnya kerapatan kayu
2. Penyusutan kayu gmelina tidak terjadi karena kondisi kadar air berada di atas titik jenuh
serat (TJS). Sedangkan pada kayu terap terjadi pada lama pemanasan 20 menit dan 30
menit sebesar 7.755 % dan 13.486%.
3. Perlakuan pemanasan gelombang mikro pada kayu gmelina dan terap meningkatkan sifat
mekanis kayu yaitu modulus elastis (MOE), modulus patah (MOR) dan keteguhan tekan
sejajar serat.

BANDUNG, JAWA BARAT 23-25 JULI 2009

137

PROSIDING SEMINAR NASIONAL MAPEKI XII

A-20

DAFTAR PUSTAKA
Anonim, 1957. Methods of Testing Small Clear Specimens of Timber. BS 373 ; 1957. British
Institution. London.
Dumanauw, J. F. 1990. Mengenal Kayu. Penerbit Kanisius. Semarang.
Harris RA dan MA Tarras. 1984. Comparison of Moisture Content Distribution, Stress
Distribution and Shrinkage of Red Oak Lumber Dried by A radio Frequency/Vacuum
Process and a Conventional Kiln. Forest Product Journal. 2801 Marshall Court.
Madison. p 44-54
Haygreen, J. G. dan J. L. Bowyer. 1996. Hasil Hutan dan Ilmu Kayu ; Suatu Pengantar. Gadjah
Mada University Press. Yogyakarta.
Krisdianto. 2004. Perubahan Struktur Anatomi Kayu Akibat Pemanasan dengan Microwave.
Jurnal Ilmu dan Teknologi Kayu Tropis. MAPEKI. Vol 2. No. 2 : 73-78
Mandang, Y.I. dan K.N. Pandit. 1997. Seri Manual Pedoman Identifikasi Jenis Kayu di
Lapangan. Yayasan Prosea Bogor Pusat Diklat Pegawai dan SDM Kehutanan.
Bogor.
Sadiyo, S. 2003. Sekilas Tentang Kekuatan Kayu. Forum Komunikasi Teknologi dan Industri
Kayu. 1 : 6 – 7.
Sadiyo, S. dan S. Surjokusumo. 2003. Kayu Sebagai Bahan Bangunan. Forum Komunikasi
Teknologi dan Industri Kayu. 2 : 9 – 10.
Sribuono, H. 2000. Pengaruh Pemanasan Gelombang Mikro Terhadap Sifat Fisis dan Mekanis
Kayu Sengon (Paraserianthes falcataria (L) Nielsen) dan Kecapi (Sandoricum
koetjape Merr.) Jurusan Teknologi Hasil Hutan Fakultas Kehutanan Institut Pertanian
Bogor. Bogor.
Tsoumis, G. 1991. Science and Technology of Wood ; Structure, Properties, Utilization. Van
Nostrond Reinhold. Inc. USA.
Wahyudi, I., I. K. N. Pandit dan Z. A. Budihartoko.1995. Struktur Anatomi Kayu Terap.
Teknologi. Bogor. 7 : 41 – 47.

BANDUNG, JAWA BARAT 23-25 JULI 2009

138