Effect of Non Ionic Surfactant Addition to Cellulase Performance in High-Substrate-Loading-Hydrolysis of Palm Oil EFB and Water-Hyacinth | Bardant | Indonesian Journal of Chemistry 21326 40412 1 PB
Indo. J. Chem., 2013, 13 (1), 53 - 58
53
EFFECT OF NON IONIC SURFACTANT ADDITION TO CELLULASE PERFORMANCE
IN HIGH-SUBSTRATE-LOADING-HYDROLYSIS
OF PALM OIL EFB AND WATER-HYACINTH
Teuku Beuna Bardant1.*, Sudiyarmanto1, Haznan Abimanyu1, and Aisha Kania Hanum2
1
2
Research Center for Chemistry, Indonesian Institute of Science, Komplek PUSPIPTEK Serpong Tangerang Banten 15413
Department of Chemistry, Faculty of Science, University of Diponegoro, Jl. Prof. Soedharto Kampus Tembalang Semarang
Received October 21, 2012; Accepted February 7, 2013
ABSTRACT
Enzymatic hydrolysis with high substrate loading of palm oil (Elaeis guineensis empty fruit bunch (EFB) and
water-hyacinth (Eichhornia crassipes) were investigated as a prior part of ethanol production from lignocelluloses.
Commercial surfactant Span 85 and Tween 20 were used as cellulase performance enhancer in hydrolysis process
with substrate loading above 20% (w/w). Cellulase performances were compared based on hydrolysis conversion.
Hydrolysis conversions of EFB using cellulase with concentration 10 and 15 FPU/g-substrate was 38.55% and
88.80% respectively. Addition 2% (v/v) of Tween 20 to EFB hydrolysis reaction with cellulase concentration
10 FPU/g-substrate gave the conversion 87.30%. This addition enhance the cellulase performance up to 226.5% or
v
similar with the performance of cellulase 15 FPU/g substrate. Addition 2% ( /v) of Span 85 to the similar reaction only
enhances cellulase performance to 174.7%. Hydrolysis conversion of boiling-pretreated water-hyacinth and
autoclave-pretreated water-hyacinth using cellulase 15 FPU/g-substrate was 45.84% and 52.29% respectively.
v
Addition 2% ( /v) of Tween 20 and Span 85 to boiling-pretreated water-hyacinth hydrolysis with cellulase
concentration 15 FPU/g-substrate enhance cellulase performance of 128.9% and 153.5% respectively. Addition
1% (v/v) of Tween 20 and Span 85 to the similar reaction with cellulase concentration 10 FPU/g-substrate gave
conversions 51.00% and 53.79% respectively, or similar with conversion of autoclave-pretreated water-hyacinth
hydrolysis with 15 FPU/g-substrate.
Keywordscellulose enzymatic hydrolysis; Tween 20; Span 85; bioethanol lignocellulose
ABSTRAK
Proses hidroliss enzimatik dengan beban substrat tinggi menggunakan Tandan Kosong Kelapa Sawit (TKKS)
dan eceng gondok telah dikaji sebagai tahap awal proses produksi etanol dari lignoselulosa. Surfaktan komersial
Span 85 dan Tween 20 digunakan sebagai pemacu kinerja selulase dalam proses hidrolisis dengan beban substrat
w
di atas 20% ( / w) ini dan kinerja diukur dari konversinya. Konversi hidrolisis pulp TKKS dengan konsentrasi selulase
10 dan 15 FPU/g-substrat berturut turut adalah 38,55% dan 88,80%. Penambahan 2% (v/v) Tween 20 pada hidrolisis
TKKS dengan selulase 10 FPU/g-substrat memberikan konversi 87,30%. Artinya penambahan ini memacu kinerja
v
selulase hingga 226,5% lebih tinggi atau setara dengan kinerja selulase 15 FPU/g-substrat. Penambahan 2% ( /v)
Span 85 hanya memacu kinerja selulase hingga 174,7% lebih tinggi. Konversi hidrolisis eceng gondok yang
sebelumnya didihkan pada tekanan ruang (1 atm) dan pada tekanan autoclave (2 atm) menggunakan selulase
15 FPU/g-substrat berturut turut adalah 45,84% dan 52,29%. Penambahan 2% (v/v) Tween 20 dan Span 85 pada
hidrolisis eceng gondok yang sebelumnya didihkan pada tekanan ruang (1 atm) memacu kinerja selulase berturut
v
turut 128,9% dan 153,5%. Penambahan 1% ( /v) Tween 20 dan Span 85 pada reaksi berbahan baku sama dan
selulase 10 FPU/g-substrat berturut turut adalah 51,00% dan 53,79% atau setara dengan konversi hidrolisis eceng
gondok yang sebelumnya didihkan pada tekanan autoclave (2 atm) menggunakan selulase 15 FPU/g-substrat.
Kata Kuncihidrolisis enzimatik; selulosa; Tween 20; Span 85; etanol lignoselulosa
INTRODUCTION
䬬䨸릤 䬬䨸갬산䬬 ꮠ䬬
릤 릤
산 ꮠ
릤릤䬬 릤䬬릤ꮠ산䀸 ꮠ
릤 릤릤牨릤
산
릤 릤ꮠ릤 릤䨸䬬릤ઈઈ릤 산
릤䬬䬬 ꮠɬ䨸ꮠ 䨸릤 산ꮠ산ꮠ
䘐릤릤 산 산ꮠ
쀔ꮠꮠ산ꮠ
ꮠ갬
릤䨸䬬릤䬬 산䬬 릤
ꮠ산 산䘐
릤䬬ꮠ
릤䨸䬬릤 䬬䨸䬬산릤䬬 䀸 릤
䀸牨산ꮠ
牨산릤ꮠ산䬬 ꮠ
ꮠઈ릤
릤갬䀸 릤䬬䬬릤䬬 산䬬 릤릤
䬬䨸ꮠ릤
䀸䀸䬬ꮠ䬬ꮠ䬬 䬬ꮠ ꮠ ꮠ䨸 산ꮠ
릤 䀸䀸䬬ꮠ䬬산릤
릤 릤
䬬ꮠ릤䀸 魤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 릤䨸䬬릤 ꮠ
릤䬬
ꮠ
갬산䨸
릤산 鮼ઈퟰઈὨ뀨牐牐 Ὠ뀨뀨牐
魤牨산ꮠ산릤䬬䬬ɬ산ꮠ䬬牨산
䨸
ퟰ
䀸산 牨
릤䨸䨸릤䨸
산산산
릤산
54
Indo. J. Chem., 2013, 13 (1), 53 - 58
산ꮠ䀸 릤릤산䬬릤䬬 䨸ꮠ
갬 릤 ꮠ牨릤 䨸䬬릤 䀸䀸䬬ꮠ䬬
䘐 ꮠ 릤산䬬릤릤산䬬릤䀸ꮠ릤䬬산
갬릤䬬䬬ꮠ牨릤䬬
ퟰઈ㮴 ꮠ갬 릤
䀸牨릤
릤
산ꮠ
䬬산릤
릤릤릤릤산
ꮠ갬 릤䨸䬬릤
릤䬬ꮠ
산
릤
䀸牨릤 릤䀸ꮠ
갬 ꮠ䬬
ꮠ ꮠ䨸 䨸릤 산䬬ꮠ
릤
䀸牨릤䬬 릤䬬ꮠ䨸산
ꮠ갬
릤䨸䬬릤䬬
릤 릤䬬릤
䬬䨸䀸 ꮠ䬬 䨸䬬릤
릤
䀸牨산ꮠ
릤䬬ꮠ
산牨 ꮠ Elaeis guineensis
릤牨䀸 䨸ꮠ 䨸
산
䘐산릤ઈ 䀸산ꮠ
(Eichhornia
crassipes). 산䘐 牨산릤ꮠ산䬬 䘐릤릤 䬬릤
䨸릤
릤ꮠ산䨸
산
릤
릤 산ꮠ 갬䘐 산릤 릤 ꮠ
산䬬ꮠ릤 䬬릤ꮠ릤䬬
Eichhornia crassipes E. crassipes 산䬬 산䨸䬬릤
릤牨䬬ꮠ
산릤䬬산
ꮠ릤䬬 䨸갬 ઈ䨸 릤䘐 ꮠ䬬
릤 릤牨䬬릤 ꮠꮠ릤
산
산䬬릤䬬
䨸ꮠ릤
䬬산
䨸산
䬬 牨
산䨸산 산
䘐산䬬릤 䘐산릤䬬 ꮠ䬬 䬬䬬ꮠ릤
산 릤 산릤䬬릤 ꮠ牨산䬬䬬 E. crassipes 牨ꮠ갬 릤
䨸䬬릤 릤릤
䨸 릤 ꮠ
산䬬ꮠ
䬬
산ꮠꮠ
산 䨸䬬릤 E.
crassipes ꮠ牨산䬬䬬 산䬬 릤릤
ꮠ牨ꮠ릤 䬬ꮠ산갬릤 갬산
ꮠ
牨䬬ꮠ갬산䬬왌㮴
苨ꮠ
갬 苨﵌
릤䬬ꮠ산
산牨 ꮠ
䨸ꮠ
ꮠ
ퟰퟰ 산 릤산 릤 왌뀨 牨ꮠꮠ
㮴
䘐 ꮠ 牨릤산
䬬산䬬䨸릤 뀨牐牨ꮠꮠ
산牨 ꮠ
릤牨䀸 䨸ꮠ 䨸
릤 산산ꮠ산ꮠꮠ䀸 魤ꮠ䬬산䨸
산
릤
산
䘐ꮠ릤 䬬릤산 ꮠ
릤䬬ꮠ산 䘐 ꮠ 牨산릤䬬 魤 릤䀸
릤
ꮠ산 산䘐牨산릤ꮠ산䬬ꮠ
ꮠઈ릤
릤갬䀸릤䬬䬬릤䬬
魤
산
릤牨릤
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 䀸 산ꮠ
갬
䬬䨸 산산
䬬 릤 䀸䀸䬬ꮠ䬬牨ꮠ 䨸릤 산䬬 릤릤
릤릤
䀸 䬬릤릤산 산䨸 䬬 뀨ઈὨ㮴 鯈䬬 ꮠ牨산 릤 산 뀨㮴 牨산릤
산牨 䨸䬬 릤䨸䬬릤 䘐ꮠ ꮠ 릤릤
䀸릤䬬 䀸䬬산ꮠ
릤
릤䨸䬬릤䬬 苨ꮠ릤 ꮠ䬬䬬䨸릤 산릤 산
릤산ꮠ牨릤 산릤
릤䀸 䬬 䘐릤 산 릤 ꮠ갬 릤 릤 䀸䬬산ꮠ
ꮠ䀸 릤
䬬䨸䬬산릤 릤牨릤䬬ꮠꮠ릤䘐산䬬 릤릤 릤 릤산릤
䬬䨸 산산
ꮠ 릤릤
牨릤 산
ꮠ䬬牨䬬 산릤 릤릤
䬬릤
릤 䬬ꮠꮠ릤 릤 릤 䬬䨸 산산
산ꮠꮠ
산
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 릤䨸䬬릤
릤 䬬䨸 산산
䨸
산
갬릤 릤
산䨸릤 릤 䬬䨸䬬산릤 릤갬 䀸 ꮠ
릤산䬬ꮠ
갬
릤 산산ꮠ산릤 릤䨸䬬릤 䬬䨸 산릤 䀸 릤牨ꮠ
갬ꮠ
ꮠꮠ䀸
ꮠ갬
ꮠ
Ὠ㮴 ⟴䨸 산산
릤 릤䬬
릤
䀸牨릤䬬䨸䬬산릤
ꮠ
릤산ꮠ
산릤릤릤
䬬릤릤갬산䬬릤릤
䀸牨릤䬬
산릤릤릤
릤 牨ꮠ
산ꮠ산ꮠ
䀸산ꮠꮠ
䬬䨸 산산
䘐 ꮠ 산ꮠꮠ산릤䬬 릤䬬ꮠ
릤
䀸牨릤䬬 牨 䬬䨸䬬산릤
㮴䘐산䬬산䬬 䨸
산 릤릤ꮠ䬬산릤산ꮠ
릤䘐릤릤
䀸 ꮠꮠꮠ ꮠꮠ산산
릤 릤䬬䨸 산산
산
ꮠ
릤산䬬릤 ꮠ
䀸䀸䬬ꮠ䬬 牐㮴
릤 릤 릤 䬬䨸 산산
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
䬬릤 䘐산䬬 릤 릤
ꮠ
릤
䬬릤릤䬬릤산 䨸䬬릤ꮠ
산
릤 산
䨸ꮠ
갬릤䬬䬬
ퟰઈퟰ㮴
릤 牨릤 산
ꮠ䬬牨 䬬䨸 산산
릤 릤䬬 ꮠ
ꮠ갬
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 䘐산䬬 릤 릤
䬬ꮠ릤䀸 䬬䨸ꮠ릤 ꮠ
䬬릤산牨릤릤산릤⟴䨸릤⟴⟴산
릤ꮠ牨산
릤
ꮠ갬
ꮠ
ꮠ
릤릤
ꮠ
갬 산
릤 ꮠꮠ릤
릤䬬ꮠ
ꮠ갬
릤䨸䬬릤䘐산䬬
ꮠ牨릤ퟰ왌㮴
릤 릤ꮠ릤 ꮠ䬬 䘐 䘐산䬬 䬬䨸䀸 릤
䬬䬬ꮠꮠꮠꮠ릤䬬 ꮠ
릤산䬬ꮠ
갬 릤
牨ꮠ 릤산䬬ꮠꮠꮠ䀸 䘐산릤
䀸산ꮠ
산
魤䨸ꮠꮠ산ꮠ
산䬬산䘐牨산릤ꮠ산릤䨸䬬릤ઈઈ
릤 산
릤䬬䬬 䀸 릤릤ꮠ
갬 릤ꮠ 릤
䀸牨산ꮠ
릤䨸䨸릤䨸
산산산
릤산
䀸䀸䬬ꮠ䬬릤 ꮠꮠ릤
ꮠ릤䬬⟴䨸 산산
산ꮠꮠ
ꮠ
릤
䀸牨산ꮠ
䀸䀸䬬ꮠ䬬䘐산䬬 릤牨산ꮠ
산산 ꮠ䬬䘐䘐릤
릤
䀸牨릤 산ꮠ
갬 산
䘐릤 릤
ꮠꮠ
릤릤산牨릤
릤䬬䬬
릤 릤䬬䨸䬬 䘐ꮠ 산䬬 䨸䬬릤 䨸
ꮠꮠ
갬 牨릤 산산 릤 산ꮠ
릤 䬬䨸 산산
릤 릤 ꮠ
릤䨸䬬릤릤䨸산䬬릤ꮠ
릤산ꮠ
EXPERIMENTAL SECTION
Materials
릤 魤 ꮠ릤 䘐산䬬 䨸 ꮠ
왌ઈ뀨 牨 릤
갬 산
릤
ꮠ 䘐산䬬 ꮠ갬릤䬬릤 䨸䬬ꮠ
갬 ﵌산 릤䬬䬬 산鯈 산
산⟴ Ⳉ 산䬬 산ꮠ릤 산산ꮠ 䘐ꮠ ꮠ
갬 ꮠɬ䨸 ퟰ뀨
ꮠ갬릤䬬ꮠ
䘐산䬬릤산ퟰ뀨 ퟰ뀨
릤䬬 릤
魤
ꮠ릤 䘐산䬬 ꮠ릤릤 산
䘐산䬬 릤 䨸갬 䀸 䨸
ꮠ ꮠ 릤산
牨산
릤䬬 릤
魤 ꮠ릤䘐산䬬 릤
ꮠꮠ산릤ꮠ
산 ꮠ䬬 릤 ꮠ
릤 ꮠ牨릤䬬
릤 릤䬬䨸릤 魤 산䬬 牐왌Ⳉ
ꮠ갬
ꮠ
산릤ઈ 䀸산ꮠ
䨸 䘐산䬬 릤산릤 䀸 䨸䬬 ꮠ
갬 ꮠ
ꮠ
ꮠ릤䬬 산
릤
ꮠ갬릤䬬릤 䨸䬬ꮠ
갬 સ 산鯈 䘐ꮠ
ꮠ
갬 ꮠɬ䨸 ퟰ ꮠ갬릤䬬ꮠ
䘐산䬬 릤 ꮠ
䘐 ꮠ 릤릤
ꮠꮠ
䬬 산 ퟰ뀨 산
ퟰퟰ 䨸ꮠ
갬
릤䬬䬬ꮠ
ퟰ뀨 릤
산릤ꮠ릤䨸산
䨸ꮠ
갬
릤䬬䬬ꮠ
ퟰퟰ 산릤산䨸산릤䨸
릤ꮠ갬릤䬬ꮠ
릤䬬䨸䬬 䘐산䬬 ꮠ릤릤 산
䘐산䬬 릤 䨸갬 䀸 䨸
ꮠ ꮠ
릤산 릤䬬
牨산
䀸 䀸릤 䀸릤
릤ઈઈ䬬ꮠ산
牨
산䨸산릤
산䬬
䘐
산䬬
䘐릤릤
산
릤䬬릤䬬ꮠ산
牨ꮠ 䨸릤
ퟰઈ산
䀸䬬ꮠ ퟰ뀨ઈ산
䀸䬬ꮠ 산
ퟰ왌ઈ
ꮠ산
䀸䬬ꮠ산䬬
䘐
산䬬⟴산
뀨산
⟴산
䘐릤릤 산ꮠ
릤 牨 સ릤 ⟴䨸 산산
릤牨ꮠ산
䬬䨸䨸릤䬬 䘐릤릤 䬬 䘐
ꮠ
산릤ퟰ 릤䨸산䬬릤 산
βઈ
갬䨸䬬ꮠ산䬬릤 牨 ꮠ䬬 苨⟴ 산갬릤䬬산릤
릤
牨산 䘐산䬬 䨸䬬릤 ꮠ
산 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 ꮠ
ꮠ䬬
릤䬬릤산 릤䨸산䬬릤 산ꮠꮠ䀸 䘐산䬬 Ὠ 쀔牨 산
βઈ갬䨸䬬ꮠ산䬬릤산ꮠꮠ䀸 쀔갬
Instrumentation
﵌산 릤䬬䬬 魤 릤릤산牨릤
䘐산䬬
䨸릤ꮠ
산䘐ꮠ갬릤䬬릤䘐 ꮠ ꮠ䬬䨸䬬牨牨산릤䀸
산
갬 산릤 魤
릤갬릤ꮠ
갬 䘐ꮠ 산 䨸牨릤
산
䘐ꮠ
갬䨸牨릤뀨苨䨸산릤 䘐산릤 䀸산ꮠ
릤릤산牨릤
䘐릤릤 산ꮠ산릤 䀸 릤
갬 �ꮠ 산
갬산䬬䬬䘐산릤䘐릤릤䨸릤䀸䀸릤
Procedure
Hydrolysis experiments
릤릤산ꮠ
䬬䘐릤릤ꮠ
ꮠꮠ산릤䀸릤산ꮠ
갬릤
䀸牨릤
䬬䨸ꮠ
ꮠ
ퟰ牨魤릤
牨릤䀸릤䀸牨ꮠ ꮠ
갬릤䨸산䬬릤산
βઈ갬䨸䬬ꮠ산䬬릤 䘐ꮠ 䨸牨릤 산ꮠ 뀨ퟰ 산릤 릤
䬬릤릤 䬬䨸 산산
산
ꮠ䨸릤 䘐ꮠ 䬬ꮠ䨸牨 산릤산릤
䨸 릤뀨牨સ산牨ꮠ ꮠ
갬 릤릤
䀸牨릤䬬䨸ꮠ
䨸
ꮠ
Indo. J. Chem., 2013, 13 (1), 53 - 58
55
Table 1.⟴䨸 산산
릤牨ꮠ산䬬䨸䨸릤
Fig 1.魤䨸 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
Fig 2. 릤䬬ꮠ릤 산
䨸
䘐산
릤 릤䨸䬬릤릤䨸산䬬릤 ꮠ
릤산ꮠ
릤䨸산䬬릤 릤산ꮠ산ꮠ
산䨸䬬릤 䀸 ꮠ릤릤䬬ꮠ릤
ꮠ
릤산ꮠ
릤䘐릤릤
릤䨸䬬릤 산ꮠ
산
릤䨸산䬬릤 릤릤䬬ꮠ릤 릤䨸䬬릤ઈ릤䨸산䬬릤 ꮠ
릤산ꮠ
산䨸䬬릤 䀸 릤䨸산䬬릤
릤
산
갬릤 산릤 ꮠ
릤䨸䬬릤 䀸䬬산ꮠ
릤 䬬䨸䨸릤 ﵌산산 산릤 산䨸䬬릤 䀸 ꮠ릤릤䬬ꮠ릤 ꮠ
릤산ꮠ
릤䘐릤릤
䀸 ꮠ산 릤䨸산䬬릤䘐ꮠ ꮠ갬
ꮠ
魤ꮠ䬬䬬
ઈ릤䬬䬬
ઈ
릤
릤
릤 䨸牨릤 릤산 뀨 牨 ⟴ꮠ 䬬䨸䬬산릤 䀸䀸䬬ꮠ䬬
산
Ⳉ 䘐산릤ઈ 䀸산ꮠ
䨸 䀸䀸䬬ꮠ䬬
䘐
릤 릤ꮠ牨릤
䬬 릤
릤갬䨸
䀸 산ꮠ
갬 Ⳉ 䘐 릤
릤 릤ꮠ牨릤
䨸 릤
䬬산
산 Ⳉ ꮠ
魤 䨸
䬬릤릤䬬䨸䬬산릤
릤릤 릤ꮠ牨릤
䬬䘐릤릤릤 牨릤ꮠ
䀸䀸䬬ꮠ䬬 릤갬산ꮠ릤
魤 䨸 䀸䀸䬬ꮠ䬬
牨 릤牨릤산䨸릤
릤 䀸䀸䬬ꮠ䬬
릤 릤ꮠ牨릤
䬬 䘐릤릤
䨸릤 䀸 䨸䬬ꮠ
갬 릤䨸산䬬릤 䘐ꮠ
䘐산䬬 릤牨ꮠ
산릤 䀸 ꮠ릤ꮠ
갬 릤 牨ꮠ 䨸릤 䨸갬 ꮠ릤
릤
산ꮠ
ퟰ산
ퟰ뀨쀔갬䬬䨸䬬산릤ꮠ
䀸䘐릤ꮠ갬
산릤
릤䬬ꮠ
䘐산䬬 산䨸산릤 牨 릤 릤䬬䨸릤
䘐ꮠ 䨸 산
䀸 䬬䨸 산산
산ꮠꮠ
릤갬산ꮠ릤
䬬䨸갬산 䘐 ꮠ 䘐산䬬 牨릤산䬬䨸릤 산䬬릤
릤䨸ꮠ
갬 릤
䘐산릤 䀸산ꮠ
䀸䀸䬬ꮠ䬬릤 릤ꮠ牨릤
䬬䘐릤릤
䨸릤
䀸 䨸䬬ꮠ
갬 ꮠꮠ
갬ઈ릤릤산릤 䘐산릤ઈ 䀸산ꮠ
산
䨸䬬ꮠ
갬 䨸 ⟴ 牨릤 산ꮠ
갬 ⟴ ퟰઈ牐ઈ
산䨸산릤ઈ릤릤산릤 䘐산릤ઈ 䀸산ꮠ
䨸䬬ꮠ
갬 릤䨸산䬬릤
ퟰ牐牐
ퟰ뀨쀔갬䬬䨸䬬산릤ꮠ
䀸䘐릤ꮠ갬
릤 릤䨸산䬬릤 䘐산䬬 산ꮠ릤 ퟰ 산
ퟰ뀨 쀔갬
䬬䨸䬬산릤ꮠ
䀸䘐릤ꮠ갬 ⟴䨸 산산
산ꮠꮠ
䘐산䬬산ꮠ릤ퟰ
릤䨸䨸릤䨸
산산산
릤산
56
Indo. J. Chem., 2013, 13 (1), 53 - 58
Fig 3. ꮠ 릤ꮠ릤䬬 릤 산ꮠ
ꮠ
갬 䬬䨸 산산
릤 릤 산䬬
릤䨸산䬬릤 릤 牨산
릤 릤
산
릤 ퟰ ﵌산산 산릤
䬬䨸 산산
逄릤 릤䨸산䬬릤 산
ꮠ
릤산䬬릤 ꮠ䬬 䬬산ꮠꮠ䀸
﵌산산 산릤 䬬ꮠꮠ릤䀸 산 릤 릤
䀸牨릤
䬬䨸䬬산릤 ꮠ
릤산ꮠ
릤산ꮠ
갬 牨릤 릤 릤ꮠ릤
릤䬬ꮠ
릤䨸䬬릤 왌 ﵌산산 산릤
䬬䨸 산산
䬬 䨸 산䨸䬬릤 䬬䨸䬬산릤 䬬䨸䨸산 산
갬릤䬬
산
牨산릤ꮠ牨릤산릤䬬䬬ꮠ릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
魤ꮠ䬬䬬
ઈ릤䬬䬬
ઈ
릤
릤 䀸 ꮠ 산 릤
䬬䨸 산산
ꮠ
䬬 䨸갬 䀸 ꮠ ꮠ
릤산ꮠ
䬬
ꮠ갬
ꮠ
릤 ꮠ갬
릤䨸䬬릤 fi릤䬬 산
릤 䀸 ꮠꮠ
릤산 갬䨸 릤 䬬䨸 산산
릤릤
䬬 䨸
䨸ꮠ릤
ꮠ
ꮠ
갬 릤䨸산䬬릤䬬ꮠ갬
ꮠ
RESULT AND DISCUSSION
EFB Hydrolysis and Surfactant Effect
䬬䨸䬬산릤䘐산䬬산䬬牨릤산䬬䨸릤ꮠ
산릤 릤ꮠ牨릤
산
ꮠ
䘐산䬬 䬬 䘐릤 산 릤
릤
산ꮠ
릤릤 䨸
䨸
릤
䀸牨릤 䘐산䬬 산 ꮠ牨산릤䀸 䨸릤 䨸
산ꮠꮠ
䘐릤릤
﵌산산 릤 산 䬬䨸갬갬릤䬬릤 산 릤䨸산䬬릤 릤산ꮠ산ꮠ
䨸 릤 산䨸䬬릤 䀸 산牨산갬릤 릤䨸䬬릤 릤ꮠ
䬬䨸䨸릤 ꮠ릤릤䬬ꮠ릤 ꮠ
릤산ꮠ
릤䘐릤릤
릤䨸䬬릤
산ꮠ
산
릤䨸산䬬릤 산䬬 ꮠ䨸䬬산릤 ꮠ
ꮠ갬 릤䨸산䬬릤
산릤갬ꮠ릤 ꮠ
䘐 牨
릤
䬬 산䬬릤
䘐 ꮠ
䘐䬬 릤䨸산䬬릤 ퟰ 䨸䬬 릤䨸䬬릤 䀸牨릤 산ꮠ
ꮠ
릤
牨ꮠ릤 산
릤䨸산䬬릤 산산 릤䨸䬬릤 산ꮠ
산
䨸䬬 릤 산ꮠ
牨 릤 릤䨸ꮠ
갬 릤
䬬 ꮠ
릤ꮠ䬬릤
릤䨸산䬬릤䨸산릤ꮠ
릤릤䨸䬬릤 산ꮠ
산
릤산ꮠ산릤
릤릤 ꮠ 릤릤
릤 산
산ꮠ
䬬 䬬䨸 산산
릤 릤
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 䬬릤 䀸 ﵌산산 릤 산 ꮠ
릤산ꮠ릤䬬䨸ꮠ릤䬬䘐릤릤산䬬릤
릤䬬䨸 산산
䨸
ꮠ
릤릤
릤산ꮠ산ꮠ
ퟰઈퟰ㮴
䬬릤 릤 산
산ꮠ
䬬 䘐릤릤
ꮠ䨸䬬산릤ꮠ
ꮠ갬왌ꮠ䬬릤 산
산ꮠ
ꮠ䬬 산䬬䨸 산산
䬬
牨산䀸 ꮠ
릤산䬬릤 릤
䀸牨릤 䬬산ꮠꮠ䀸 산
릤릤
릤
산䨸산ꮠ
릤
䀸牨릤䬬 䨸ꮠ
갬 䀸䀸䬬ꮠ䬬 산䬬
ꮠ䨸䬬산릤 ꮠ
ꮠ갬 왌ퟰ
䘐 산䬬 산 牨䬬䀸
릤
릤 ꮠ
릤
䀸牨릤 릤
산䨸산ꮠ
䘐릤릤 릤牨산
릤산ꮠ산ꮠ
산
䬬 릤산 릤산ꮠ산ꮠ
苨 䀸䀸䬬ꮠ䬬 ꮠ
ꮠ䬬 䬬䨸䀸 䘐릤릤
䨸릤 ꮠ
牨 릤牨릤산䨸릤 릤
릤牨산 릤산ꮠ산ꮠ
산
릤
릤갬릤릤 ⟴ 릤산
릤
산䨸산ꮠ
ꮠ䬬 릤산ꮠ산ꮠ
䀸 䬬 릤산 릤䬬 䨸릤
산갬ꮠ산ꮠ
릤 䀸䀸䬬ꮠ䬬牨ꮠ 䨸릤苨 䀸䀸䬬ꮠ䬬ꮠ
ꮠ䬬
䬬䨸䀸 䘐릤릤
䨸릤 ꮠ
ꮠ갬 䬬䨸䬬산릤 산ꮠ
갬 䘐 ꮠ
산䨸䬬릤 릤산ꮠ
䬬䀸䬬릤牨 ꮠ
ꮠ䬬䨸䬬
ꮠꮠ
산
릤릤
ꮠ갬䨸䬬 산갬ꮠ산ꮠ
릤
ꮠ䬬 릤 산
산ꮠ
산
릤 䨸䬬릤 䬬ꮠ갬
ꮠ ꮠ산
릤
산
릤牨릤
릤䨸산䬬릤 릤 牨산
릤 䀸 산ꮠꮠ
䘐릤릤
산
⟴산
뀨
릤 䬬릤
릤 산
산ꮠ
䘐산䬬 䬬䨸 산산
䬬 䨸
䬬ꮠꮠ릤䀸 산 릤 릤
䀸牨릤䬬䨸䬬산릤 ꮠ
릤산ꮠ
릤산ꮠ
갬
牨릤 릤 릤ꮠ릤
릤䬬ꮠ
릤䨸䬬릤 산
릤 ꮠ
릤 산
산ꮠ
䘐산䬬 산䬬䨸 산산
䬬䨸산䨸䬬릤䬬䨸䬬산릤
䬬䨸䨸산 산
갬릤䬬 산
牨산릤 ꮠ 牨릤 산릤䬬䬬ꮠ릤
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 산䬬 ꮠ䨸䬬산릤 ꮠ
ꮠ갬 왌 산
왌왌
䘐릤릤 魤ꮠ䬬
릤 산 ꮠ䬬산갬릤릤 䘐ꮠ ꮠ䬬
릤 산
산ꮠ
산䬬릤
릤ꮠ ꮠ
ꮠ
갬 산 릤릤 ꮠ䬬
䬬ꮠ갬
ꮠ ꮠ산
릤
산
릤牨릤
ꮠ
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
䨸릤릤䨸䬬릤䀸䬬䨸 산산
산ꮠꮠ
ퟰ왌㮴
魤ꮠ䬬
䬬릤 릤 산
산ꮠ
䬬䨸 산산
릤 릤
ꮠ갬
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 ꮠ䬬 산 릤
䀸 ꮠ 산 릤 䬬䨸 산산
ꮠ
䬬 䨸갬
䀸 ꮠ ꮠ
릤산ꮠ
䬬 ꮠ갬
ꮠ
릤 ꮠ갬
릤䨸䬬릤
fi릤䬬산
릤 䀸 ꮠꮠ 릤산갬䨸 릤䬬䨸 산산
릤릤
䬬䨸
䨸ꮠ릤ꮠ
ꮠ
갬 릤䨸산䬬릤䬬ꮠ갬
ꮠ
苨ꮠꮠ
릤릤 릤䬬릤
ꮠ
ꮠ 䬬䨸 산산
䘐산䬬
릤
䬬산
산Ⳉꮠ
산魤䨸 䀸䀸䬬ꮠ䬬
ꮠ䬬
산
릤
䬬ꮠ릤릤산䬬䬬䨸 산산
䬬릤릤
ꮠ
갬苨䬬䬬 䘐
ꮠ
ꮠ갬 ퟰ
䘐릤릤
䘐산䬬 릤 릤䬬 릤䨸산䬬릤 릤 牨산
릤
릤
산
릤䘐 ꮠ ꮠ
릤산䬬릤䬬
릤䬬ꮠ
뀨Ⳉ牨산릤䬬
릤 䀸䀸䬬ꮠ䬬 䘐ꮠ 䬬산牨릤 산牨䨸
릤
䀸牨릤 䘐ꮠ
䬬䨸 산산
산ꮠꮠ
⟴산
뀨 산䬬 䘐䬬 산䬬 릤䨸산䬬릤
릤 牨산
릤 릤
산
릤 䘐 ꮠ ꮠ
릤산䬬릤䬬
릤䬬ꮠ
ퟰὨὨⳈ䨸 ⟴산
산
릤
䬬ꮠ릤릤 산䬬릤䨸산䬬릤
릤 牨산
릤릤
산
릤
ઈꮠ
ꮠ 䬬䨸 산산
䬬 산릤 릤릤
䬬 䘐
릤 릤
牨䬬 릤 릤ꮠ릤 䬬䨸 산산
䬬 ꮠ
ꮠ牨ꮠ
갬 릤䨸䬬릤
릤䬬ꮠ
산 릤 산 䬬 䘐릤 산 릤산ꮠ
릤䘐릤릤
䀸 ꮠꮠꮠ ꮠꮠ산산
릤 릤䬬䨸 산산
산
ꮠ
릤산䬬릤ꮠ
䀸䀸䬬ꮠ䬬牐㮴鯈䨸릤䬬䨸䬬
魤산갬릤릤䘐릤
䘐ꮠ 릤䬬릤 릤䬬䨸䬬
䘐릤릤
산
⟴산
뀨 산䬬
ꮠ
ꮠ
䬬䨸 산산
䬬 ꮠ
릤산䬬릤 릤 䀸䀸䬬ꮠ䬬 산
䘐릤릤
䘐 ꮠ 산䬬 산䨸릤 ퟰὨ 갬산릤 ꮠ갬 릤
릤䬬ꮠ
릤
산
릤牨릤
牨산릤䬬 ⟴산
뀨 산
䀸 산䬬 Water-hyacinth Hydrolysis
ퟰ 산䨸릤 ⟴ꮠ牨ꮠ산 릤䬬䨸䬬 䘐릤릤 산䬬 산ꮠ
릤 䀸
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
ꮠꮠ
갬ઈ릤릤산릤䘐산릤ઈ
魤ꮠ䬬
릤 산 ퟰ왌㮴 ꮠ
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 䬬릤산牨
䀸산ꮠ
산
산䨸산릤ઈ릤릤산릤䘐산릤ઈ 䀸산ꮠ
䨸䬬ꮠ
갬
릤릤산릤 䬬䨸릤 ⟴⟴ 苨䬬ꮠ
릤䨸산䬬릤 ꮠ
릤䨸䨸릤䨸
산산산
릤산
57
Indo. J. Chem., 2013, 13 (1), 53 - 58
Table 2.牨䬬ꮠꮠ
䬬 ꮠ갬
릤䨸䬬릤䬬산䬬ꮠ牨
릤
릤䨸䬬릤
릤牨ꮠ릤䨸䬬릤䬬
ꮠ갬
ꮠ
⟴䨸릤
산릤 䀸산ꮠ
Ⳉ
ퟰ牐Ὠퟰ왌
Ὠퟰ왌
릤릤牨ꮠ
릤
ퟰ㮴
Fig 4.산릤 䀸산ꮠ
䨸 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
릤䨸산䬬릤 ퟰ뀨 쀔갬ઈ䬬䨸䬬산릤 䘐산䬬 뀨Ⳉ 산
뀨牐Ⳉ
릤䬬릤ꮠ릤䀸산䬬䬬 䘐
ꮠ
ꮠ갬릤릤산牨릤
ꮠ
ퟰퟰ
ꮠ
릤산䬬릤 릤
릤䬬ꮠ
ퟰퟰퟰⳈ 牨산릤䬬 릤
릤
산 릤릤산릤 ꮠ
ퟰ뀨 苨 䬬䨸 산산
산ꮠꮠ
䘐산䬬
산ꮠ릤 䘐산릤 䀸산ꮠ
ꮠ릤 ꮠ
ퟰ뀨 苨ꮠꮠ
䘐릤릤
ꮠ
릤산䬬릤 릤
릤䬬ꮠ
ퟰ왌ퟰ牐Ⳉ
䘐 ꮠ ꮠ䬬 ꮠ갬 릤 산
䬬䨸䬬산릤 ꮠ릤 ꮠ
ퟰퟰ
⟴䨸 산산
산ꮠꮠ
ꮠ
릤산䬬릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
릤릤 산
릤릤산ꮠ
갬 릤릤산牨릤
릤牨릤산䨸릤
릤䬬릤릤䬬䨸䬬䘐ꮠ 릤산䨸산릤ꮠ
䬬릤산 ꮠ
갬
릤 ꮠꮠ릤
ꮠ릤 산
䨸ꮠ
릤䬬䬬 牨
ꮠ갬
릤䨸䬬릤䬬 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
䨸䬬ꮠ
갬 ퟰ 쀔갬ઈ
䬬䨸䬬산릤 䘐ꮠ 산ꮠꮠ
ퟰⳈ
䘐릤릤
산䨸산䀸䬬ꮠ牨ꮠ산
䘐ꮠ 릤
릤䬬ꮠ
䬬䨸䬬산릤 ꮠ릤 ꮠ
ퟰ뀨 䨸䬬ꮠ
갬
ퟰ뀨쀔갬䬬䨸䬬산릤
ꮠ갬 릤牨릤산䨸릤 산
릤䬬䬬䨸릤 䨸 ꮠ䬬䨸 릤
릤䨸䬬릤 ꮠ릤 산
릤䨸릤 릤䨸䬬릤 䀸䬬산ꮠ
ꮠ䀸ꮠ
䘐산릤
䀸산ꮠ
䨸 릤䬬䨸䨸릤 릤릤䬬䨸릤䨸릤牨릤
牨릤 산릤䬬䬬ꮠ릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
ꮠ䬬
릤 산
산ꮠ
산
릤 산ꮠ릤 릤 릤䬬䨸䬬 ꮠ갬 릤
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
䀸 릤릤산ꮠ
갬 릤릤산牨릤
릤牨릤산䨸릤 䘐릤릤 릤 릤䨸䬬릤 䬬䨸䨸산 산
갬릤
산䨸䬬릤 䀸 릤牨산 ꮠ䬬
䬬ꮠ牨ꮠ산 䘐ꮠ 릤 산
갬릤䬬
산䨸䬬릤 䀸 䬬䨸 산산
䬬ꮠ
릤 䬬䨸 산산
ꮠ
릤䨸릤
릤䨸䬬릤䀸䬬산ꮠ
ꮠ䀸
릤 ꮠ 릤릤
릤
릤䬬ꮠ
릤
산
릤牨릤
릤䘐릤릤
䘐산릤 䀸산ꮠ
산
산牨 ꮠ 魤 䘐릤릤
䬬䨸갬갬릤䬬릤 릤 䬬릤䀸 릤산릤 䘐ꮠ 릤 ꮠ 릤릤
릤
牨䬬ꮠꮠ
䬬 ꮠ갬
릤䨸䬬릤䬬 산䬬ꮠ 牨
릤
릤䘐릤릤
䬬䨸䬬산릤䬬 苨䬬 䬬 䘐
ꮠ
산릤 䘐산릤
릤䨸䨸릤䨸
산산산
릤산
ퟰퟰ
ὨὨ
왌뀨
ퟰ뀨㮴
산牨ꮠ魤Ⳉ
왌왌뀨
왌
뀨왌
ퟰ㮴
䀸산ꮠ
산릤 ꮠ갬 릤 산牨䨸
릤牨ꮠ릤䨸䬬릤䬬 䘐 ꮠ
ꮠ䬬
산䨸산䀸 ꮠ
ઈ䀸䬬산ꮠ
릤 牨
ꮠ䬬 䬬䨸䀸
䬬䨸갬갬릤䬬릤 산 䬬䨸 산산
산䬬 릤
산
릤 릤䨸산䬬릤
릤 牨산
릤 ꮠ
䀸䀸䬬ꮠ䬬
ઈ䀸䬬산ꮠ
릤 릤䨸䬬릤
䬬䨸䬬산릤 苨
릤릤 릤 릤 牨릤 산
ꮠ䬬牨 䬬䨸 산산
산䬬릤䨸산䬬릤릤 牨산
릤릤
산
릤䘐ꮠ릤ꮠ 릤릤
䘐ꮠ
릤ꮠ䨸䬬䀸 䬬릤 릤 ꮠ갬
ꮠ
산䬬 릤릤 ꮠ
魤ꮠ䬬
릤산ퟰ왌㮴산
릤산ꮠ릤ꮠ
䘐산릤 䀸산ꮠ
䬬ꮠ
릤ꮠ䬬ꮠ갬
ꮠ
릤
ꮠ䬬릤䀸䘐산
산
릤
릤갬릤릤
산 릤릤릤산牨릤
⟴䨸䬬산릤 䬬䨸䨸산 산
갬릤䬬 산䨸䬬릤 䀸
䬬䨸 산산
䘐릤릤ɬ䨸릤䬬ꮠ
릤ꮠ
릤 산ꮠ
ꮠ
갬䬬䨸 산산
릤
산䬬 릤䨸산䬬릤 릤 牨산
릤 릤
산
릤 ꮠ갬 릤
䀸牨릤
산䬬ꮠ
䨸릤 산릤 릤
䀸牨릤 䘐ꮠ ꮠ
릤䨸䬬릤
䀸䬬산ꮠ
릤 䬬䨸䨸릤 산
산䨸䬬릤 ꮠ릤릤䬬ꮠ릤 릤
䀸牨릤ઈ
䬬䨸䬬산릤 ꮠ
릤산ꮠ
䘐ꮠ 릤 산 갬ꮠ산
䬬릤ɬ䨸릤
릤
산 릤 산
산ꮠ
魤ꮠ䬬
릤 산 䘐 牨 ɬ䨸릤䬬ꮠ
릤 릤
䬬릤 릤 산
산ꮠ
산䬬릤
릤ꮠ ꮠ
ꮠ
갬 ꮠ
䨸릤
릤䨸䬬릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 䘐릤릤 ꮠ䬬
릤 산
산ꮠ
䬬䨸갬갬릤䬬릤릤ꮠ
갬牨릤산ꮠ산릤ꮠ
䘐산릤
䀸산ꮠ
䀸䀸䬬ꮠ䬬 䬬ꮠ
릤 릤牨ꮠ릤䨸䬬릤䬬 ꮠ䬬 ꮠ
산牨 䨸䬬 牨
CONCLUSION
苨ꮠꮠ
ઈꮠ
ꮠ 䬬䨸 산산
ꮠ
릤산䬬릤
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
魤 䨸 산
䘐산릤 䀸산ꮠ
䨸 苨
ꮠ牨산
릤 릤 䬬䨸 산산
산ꮠꮠ
ꮠ
䀸䀸䬬ꮠ䬬 릤䬬䬬 ꮠ䬬 릤 䬬䬬ꮠꮠꮠ䀸 䘐릤 릤
릤
䀸牨릤 산ꮠ
갬 산
䘐릤 릤릤산牨릤
릤䬬䬬
ꮠꮠ
ꮠ 산ꮠꮠ
䘐릤릤
산Ⳉ 릤산ꮠ
牨ꮠ 䨸릤 ꮠ
魤 䀸䀸䬬ꮠ䬬 䘐산䬬 䬬䬬ꮠ릤 䘐릤 릤
릤
䀸牨릤 산ꮠ
갬 䀸 왌왌Ⳉ 산
산 릤 䬬산牨릤 ꮠ牨릤 릤산ꮠ
䬬
릤䨸䬬릤
릤䬬ꮠ
산䬬릤 䘐산릤 䀸산ꮠ
산ꮠꮠ
ퟰⳈ
䘐릤릤
⟴산
뀨 䘐산䬬 䬬䬬ꮠ릤
䀸 䘐릤 릤
䀸牨릤 산ꮠ
갬 䀸 왌왌Ⳉ 䨸 산䬬
䘐릤 릤릤산牨릤
릤䬬䬬
ꮠꮠ
牨 ퟰ뀨
산牨ퟰ뀨 ퟰ산牨
⟴䨸 산산
릤 릤䬬
릤
䀸牨산ꮠ 릤䨸䬬릤
䀸䀸䬬ꮠ䬬 산릤 릤릤
䬬䨸ꮠ릤 릤산ꮠ릤晸 䘐릤릤
릤산ꮠ릤 牨릤 산
ꮠ䬬牨 산䬬 릤릤
릤䬬릤
릤 魤
䀸䀸䬬ꮠ䬬릤䬬䨸䬬산갬릤릤䬬 䘐ꮠ 릤릤ꮠ䨸䬬䀸 䬬릤
牨릤 산
ꮠ䬬牨 산 䬬䨸 산산
산䬬ꮠ
ꮠ갬
ꮠ
ꮠ
䬬䨸䬬산릤릤릤
䬬䨸
䨸ꮠ릤ꮠ
ꮠ
갬 릤
䀸牨릤䬬
ꮠ갬
ꮠ
鯈䨸릤䬬䨸ꮠ
䘐산릤 䀸산ꮠ
䀸䀸䬬ꮠ䬬ꮠ
ꮠ산릤䬬
산 䬬䨸 산산
산䬬 릤
산
릤 릤䨸산䬬릤 릤 牨산
릤 ꮠ
䀸䀸䬬ꮠ䬬
ઈ䀸䬬산ꮠ
릤 릤䨸䬬릤 䬬䨸䬬산릤
58
Indo. J. Chem., 2013, 13 (1), 53 - 58
⟴䨸䬬산릤䬬䨸䨸산 산
갬릤䬬산䨸䬬릤 䀸 䬬䨸 산산
䘐릤릤
릤ꮠ
갬 牨릤 산ꮠ산릤 牨릤 산
ꮠ䬬牨 ꮠ
ꮠ䬬 산䬬릤
䘐릤릤 牨릤 릤 릤
䬬ꮠ릤 䬬䨸䀸 䘐릤릤 릤ɬ䨸ꮠ릤
릤 산ꮠ
ꮠ
갬 䘐 릤 䬬䨸䨸산 산
갬릤䬬산
䘐 䀸 릤
릤䘐
䬬䨸䨸릤牨산릤 릤䬬䨸䬬산릤릤산䬬ꮠ릤릤 䀸䀸릤䀸
릤
䀸牨릤
REFERENCES
ퟰ 릤갬갬 산
⟴산릤 ퟰ牐牐 Biotechnol.
Bioeng.뀨ퟰ왌Ὠ뀨왌왌
산산
鯈ꮠ산䘐산 ꮠꮠ સ ﵌산 ﵌
⟴䨸ꮠ䀸산
ꮠ � �산牨산산
산
쀔산ꮠ � ퟰ
Mokuzai Gakkaishi뀨
왌 સ산ꮠ苨ὨEnviron. Int.왌왌ퟰퟰퟰ왌
સ산산䨸 ⟴ 산
સ산䨸산
산 Kompas, 릤牨릤ꮠ
산
산䨸䬬 ⟴릤ꮠ䨸䬬 산산ꮠ ꮠ 苨⟴
䨸릤䬬산䀸 산
䨸산䀸
왌ퟰퟰ
뀨 鯈䬬 ꮠ牨산 ⟴산산산 સ 산
산산
� ퟰ牐
Biotechnol. Bioeng.ퟰퟰퟰὨὨퟰὨ왌
䨸䬬䬬산ꮠ 苨 산
⟴산릤 ퟰ牐牐牐 Enzyme
Microb. Technol.왌ઈퟰ왌ퟰ왌
Ὠ ⟴
릤릤갬갬릤 સ 릤䬬䬬
સ 산䬬䬬
䘐산ઈ산䨸䬬䨸
સઈ 릤䬬 魤 鯈䬬䬬
릤䨸䨸릤䨸
산산산
릤산
⟴릤
릤ઈસ산ꮠ
䬬산
ઈ갬릤산산
⟴산䨸릤
쀔Biotechnol. Bioeng.Ὠퟰ牐牐
산
릤
릤
릤 산 ꮠ 산
릤
산
릤
સJ. Biotechnol.ퟰὨ뀨Ὠ
牐 산
산산 산산�﵌산ꮠ䨸 ꮠ
산
苨릤 산산
ퟰ牐牐Biotechnol. Bioeng.왌牐ퟰퟰퟰὨퟰ
ퟰ ﵌산산 魤 산
산릤 સ
ퟰ牐牐
Biotechnol. Bioeng.뀨牐ퟰ牐Ὠ
ퟰퟰ ﵌산산 魤 䨸ꮠ릤릤 산
﵌ꮠ
䬬 ꮠ산 સ
ퟰ牐牐Biomass Bioenergyퟰ왌ὨὨὨ
ퟰ ﵌산산 魤 산
산릤 સ
Biomass
Bioenergyퟰퟰ牐ퟰ牐牐
ퟰ왌 魤ꮠ䬬䬬
릤䬬䬬
산
릤
릤
Enzyme Microb. Technol.왌ퟰ왌왌뀨왌왌
ퟰસꮠ䬬 ꮠ牨산﵌䨸
ꮠꮠસ⟴릤ꮠ⟴﵌산⟴릤સ
산
䨸ꮠ산 સ Bioresour. Technol. 牐牐 Ὠ
牐뀨뀨
ퟰ뀨 ꮠ갬산牨J. Biotechnol.,牐ὨퟰὨퟰퟰ
ퟰ ⟴䨸ꮠ䀸산
ꮠ � ⟴䀸산ꮠ
ꮠ ⟴䨸ꮠ䀸산牨산
산
苨ꮠ牨산
䀸䨸 Proceeding of International
Conference on Bioscience and Biotechnology, 쀔
﵌산ꮠ산갬산�갬䀸산산산鯈릤ퟰퟰઈퟰ ퟰퟰ
53
EFFECT OF NON IONIC SURFACTANT ADDITION TO CELLULASE PERFORMANCE
IN HIGH-SUBSTRATE-LOADING-HYDROLYSIS
OF PALM OIL EFB AND WATER-HYACINTH
Teuku Beuna Bardant1.*, Sudiyarmanto1, Haznan Abimanyu1, and Aisha Kania Hanum2
1
2
Research Center for Chemistry, Indonesian Institute of Science, Komplek PUSPIPTEK Serpong Tangerang Banten 15413
Department of Chemistry, Faculty of Science, University of Diponegoro, Jl. Prof. Soedharto Kampus Tembalang Semarang
Received October 21, 2012; Accepted February 7, 2013
ABSTRACT
Enzymatic hydrolysis with high substrate loading of palm oil (Elaeis guineensis empty fruit bunch (EFB) and
water-hyacinth (Eichhornia crassipes) were investigated as a prior part of ethanol production from lignocelluloses.
Commercial surfactant Span 85 and Tween 20 were used as cellulase performance enhancer in hydrolysis process
with substrate loading above 20% (w/w). Cellulase performances were compared based on hydrolysis conversion.
Hydrolysis conversions of EFB using cellulase with concentration 10 and 15 FPU/g-substrate was 38.55% and
88.80% respectively. Addition 2% (v/v) of Tween 20 to EFB hydrolysis reaction with cellulase concentration
10 FPU/g-substrate gave the conversion 87.30%. This addition enhance the cellulase performance up to 226.5% or
v
similar with the performance of cellulase 15 FPU/g substrate. Addition 2% ( /v) of Span 85 to the similar reaction only
enhances cellulase performance to 174.7%. Hydrolysis conversion of boiling-pretreated water-hyacinth and
autoclave-pretreated water-hyacinth using cellulase 15 FPU/g-substrate was 45.84% and 52.29% respectively.
v
Addition 2% ( /v) of Tween 20 and Span 85 to boiling-pretreated water-hyacinth hydrolysis with cellulase
concentration 15 FPU/g-substrate enhance cellulase performance of 128.9% and 153.5% respectively. Addition
1% (v/v) of Tween 20 and Span 85 to the similar reaction with cellulase concentration 10 FPU/g-substrate gave
conversions 51.00% and 53.79% respectively, or similar with conversion of autoclave-pretreated water-hyacinth
hydrolysis with 15 FPU/g-substrate.
Keywordscellulose enzymatic hydrolysis; Tween 20; Span 85; bioethanol lignocellulose
ABSTRAK
Proses hidroliss enzimatik dengan beban substrat tinggi menggunakan Tandan Kosong Kelapa Sawit (TKKS)
dan eceng gondok telah dikaji sebagai tahap awal proses produksi etanol dari lignoselulosa. Surfaktan komersial
Span 85 dan Tween 20 digunakan sebagai pemacu kinerja selulase dalam proses hidrolisis dengan beban substrat
w
di atas 20% ( / w) ini dan kinerja diukur dari konversinya. Konversi hidrolisis pulp TKKS dengan konsentrasi selulase
10 dan 15 FPU/g-substrat berturut turut adalah 38,55% dan 88,80%. Penambahan 2% (v/v) Tween 20 pada hidrolisis
TKKS dengan selulase 10 FPU/g-substrat memberikan konversi 87,30%. Artinya penambahan ini memacu kinerja
v
selulase hingga 226,5% lebih tinggi atau setara dengan kinerja selulase 15 FPU/g-substrat. Penambahan 2% ( /v)
Span 85 hanya memacu kinerja selulase hingga 174,7% lebih tinggi. Konversi hidrolisis eceng gondok yang
sebelumnya didihkan pada tekanan ruang (1 atm) dan pada tekanan autoclave (2 atm) menggunakan selulase
15 FPU/g-substrat berturut turut adalah 45,84% dan 52,29%. Penambahan 2% (v/v) Tween 20 dan Span 85 pada
hidrolisis eceng gondok yang sebelumnya didihkan pada tekanan ruang (1 atm) memacu kinerja selulase berturut
v
turut 128,9% dan 153,5%. Penambahan 1% ( /v) Tween 20 dan Span 85 pada reaksi berbahan baku sama dan
selulase 10 FPU/g-substrat berturut turut adalah 51,00% dan 53,79% atau setara dengan konversi hidrolisis eceng
gondok yang sebelumnya didihkan pada tekanan autoclave (2 atm) menggunakan selulase 15 FPU/g-substrat.
Kata Kuncihidrolisis enzimatik; selulosa; Tween 20; Span 85; etanol lignoselulosa
INTRODUCTION
䬬䨸릤 䬬䨸갬산䬬 ꮠ䬬
릤 릤
산 ꮠ
릤릤䬬 릤䬬릤ꮠ산䀸 ꮠ
릤 릤릤牨릤
산
릤 릤ꮠ릤 릤䨸䬬릤ઈઈ릤 산
릤䬬䬬 ꮠɬ䨸ꮠ 䨸릤 산ꮠ산ꮠ
䘐릤릤 산 산ꮠ
쀔ꮠꮠ산ꮠ
ꮠ갬
릤䨸䬬릤䬬 산䬬 릤
ꮠ산 산䘐
릤䬬ꮠ
릤䨸䬬릤 䬬䨸䬬산릤䬬 䀸 릤
䀸牨산ꮠ
牨산릤ꮠ산䬬 ꮠ
ꮠઈ릤
릤갬䀸 릤䬬䬬릤䬬 산䬬 릤릤
䬬䨸ꮠ릤
䀸䀸䬬ꮠ䬬ꮠ䬬 䬬ꮠ ꮠ ꮠ䨸 산ꮠ
릤 䀸䀸䬬ꮠ䬬산릤
릤 릤
䬬ꮠ릤䀸 魤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 릤䨸䬬릤 ꮠ
릤䬬
ꮠ
갬산䨸
릤산 鮼ઈퟰઈὨ뀨牐牐 Ὠ뀨뀨牐
魤牨산ꮠ산릤䬬䬬ɬ산ꮠ䬬牨산
䨸
ퟰ
䀸산 牨
릤䨸䨸릤䨸
산산산
릤산
54
Indo. J. Chem., 2013, 13 (1), 53 - 58
산ꮠ䀸 릤릤산䬬릤䬬 䨸ꮠ
갬 릤 ꮠ牨릤 䨸䬬릤 䀸䀸䬬ꮠ䬬
䘐 ꮠ 릤산䬬릤릤산䬬릤䀸ꮠ릤䬬산
갬릤䬬䬬ꮠ牨릤䬬
ퟰઈ㮴 ꮠ갬 릤
䀸牨릤
릤
산ꮠ
䬬산릤
릤릤릤릤산
ꮠ갬 릤䨸䬬릤
릤䬬ꮠ
산
릤
䀸牨릤 릤䀸ꮠ
갬 ꮠ䬬
ꮠ ꮠ䨸 䨸릤 산䬬ꮠ
릤
䀸牨릤䬬 릤䬬ꮠ䨸산
ꮠ갬
릤䨸䬬릤䬬
릤 릤䬬릤
䬬䨸䀸 ꮠ䬬 䨸䬬릤
릤
䀸牨산ꮠ
릤䬬ꮠ
산牨 ꮠ Elaeis guineensis
릤牨䀸 䨸ꮠ 䨸
산
䘐산릤ઈ 䀸산ꮠ
(Eichhornia
crassipes). 산䘐 牨산릤ꮠ산䬬 䘐릤릤 䬬릤
䨸릤
릤ꮠ산䨸
산
릤
릤 산ꮠ 갬䘐 산릤 릤 ꮠ
산䬬ꮠ릤 䬬릤ꮠ릤䬬
Eichhornia crassipes E. crassipes 산䬬 산䨸䬬릤
릤牨䬬ꮠ
산릤䬬산
ꮠ릤䬬 䨸갬 ઈ䨸 릤䘐 ꮠ䬬
릤 릤牨䬬릤 ꮠꮠ릤
산
산䬬릤䬬
䨸ꮠ릤
䬬산
䨸산
䬬 牨
산䨸산 산
䘐산䬬릤 䘐산릤䬬 ꮠ䬬 䬬䬬ꮠ릤
산 릤 산릤䬬릤 ꮠ牨산䬬䬬 E. crassipes 牨ꮠ갬 릤
䨸䬬릤 릤릤
䨸 릤 ꮠ
산䬬ꮠ
䬬
산ꮠꮠ
산 䨸䬬릤 E.
crassipes ꮠ牨산䬬䬬 산䬬 릤릤
ꮠ牨ꮠ릤 䬬ꮠ산갬릤 갬산
ꮠ
牨䬬ꮠ갬산䬬왌㮴
苨ꮠ
갬 苨﵌
릤䬬ꮠ산
산牨 ꮠ
䨸ꮠ
ꮠ
ퟰퟰ 산 릤산 릤 왌뀨 牨ꮠꮠ
㮴
䘐 ꮠ 牨릤산
䬬산䬬䨸릤 뀨牐牨ꮠꮠ
산牨 ꮠ
릤牨䀸 䨸ꮠ 䨸
릤 산산ꮠ산ꮠꮠ䀸 魤ꮠ䬬산䨸
산
릤
산
䘐ꮠ릤 䬬릤산 ꮠ
릤䬬ꮠ산 䘐 ꮠ 牨산릤䬬 魤 릤䀸
릤
ꮠ산 산䘐牨산릤ꮠ산䬬ꮠ
ꮠઈ릤
릤갬䀸릤䬬䬬릤䬬
魤
산
릤牨릤
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 䀸 산ꮠ
갬
䬬䨸 산산
䬬 릤 䀸䀸䬬ꮠ䬬牨ꮠ 䨸릤 산䬬 릤릤
릤릤
䀸 䬬릤릤산 산䨸 䬬 뀨ઈὨ㮴 鯈䬬 ꮠ牨산 릤 산 뀨㮴 牨산릤
산牨 䨸䬬 릤䨸䬬릤 䘐ꮠ ꮠ 릤릤
䀸릤䬬 䀸䬬산ꮠ
릤
릤䨸䬬릤䬬 苨ꮠ릤 ꮠ䬬䬬䨸릤 산릤 산
릤산ꮠ牨릤 산릤
릤䀸 䬬 䘐릤 산 릤 ꮠ갬 릤 릤 䀸䬬산ꮠ
ꮠ䀸 릤
䬬䨸䬬산릤 릤牨릤䬬ꮠꮠ릤䘐산䬬 릤릤 릤 릤산릤
䬬䨸 산산
ꮠ 릤릤
牨릤 산
ꮠ䬬牨䬬 산릤 릤릤
䬬릤
릤 䬬ꮠꮠ릤 릤 릤 䬬䨸 산산
산ꮠꮠ
산
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 릤䨸䬬릤
릤 䬬䨸 산산
䨸
산
갬릤 릤
산䨸릤 릤 䬬䨸䬬산릤 릤갬 䀸 ꮠ
릤산䬬ꮠ
갬
릤 산산ꮠ산릤 릤䨸䬬릤 䬬䨸 산릤 䀸 릤牨ꮠ
갬ꮠ
ꮠꮠ䀸
ꮠ갬
ꮠ
Ὠ㮴 ⟴䨸 산산
릤 릤䬬
릤
䀸牨릤䬬䨸䬬산릤
ꮠ
릤산ꮠ
산릤릤릤
䬬릤릤갬산䬬릤릤
䀸牨릤䬬
산릤릤릤
릤 牨ꮠ
산ꮠ산ꮠ
䀸산ꮠꮠ
䬬䨸 산산
䘐 ꮠ 산ꮠꮠ산릤䬬 릤䬬ꮠ
릤
䀸牨릤䬬 牨 䬬䨸䬬산릤
㮴䘐산䬬산䬬 䨸
산 릤릤ꮠ䬬산릤산ꮠ
릤䘐릤릤
䀸 ꮠꮠꮠ ꮠꮠ산산
릤 릤䬬䨸 산산
산
ꮠ
릤산䬬릤 ꮠ
䀸䀸䬬ꮠ䬬 牐㮴
릤 릤 릤 䬬䨸 산산
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
䬬릤 䘐산䬬 릤 릤
ꮠ
릤
䬬릤릤䬬릤산 䨸䬬릤ꮠ
산
릤 산
䨸ꮠ
갬릤䬬䬬
ퟰઈퟰ㮴
릤 牨릤 산
ꮠ䬬牨 䬬䨸 산산
릤 릤䬬 ꮠ
ꮠ갬
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 䘐산䬬 릤 릤
䬬ꮠ릤䀸 䬬䨸ꮠ릤 ꮠ
䬬릤산牨릤릤산릤⟴䨸릤⟴⟴산
릤ꮠ牨산
릤
ꮠ갬
ꮠ
ꮠ
릤릤
ꮠ
갬 산
릤 ꮠꮠ릤
릤䬬ꮠ
ꮠ갬
릤䨸䬬릤䘐산䬬
ꮠ牨릤ퟰ왌㮴
릤 릤ꮠ릤 ꮠ䬬 䘐 䘐산䬬 䬬䨸䀸 릤
䬬䬬ꮠꮠꮠꮠ릤䬬 ꮠ
릤산䬬ꮠ
갬 릤
牨ꮠ 릤산䬬ꮠꮠꮠ䀸 䘐산릤
䀸산ꮠ
산
魤䨸ꮠꮠ산ꮠ
산䬬산䘐牨산릤ꮠ산릤䨸䬬릤ઈઈ
릤 산
릤䬬䬬 䀸 릤릤ꮠ
갬 릤ꮠ 릤
䀸牨산ꮠ
릤䨸䨸릤䨸
산산산
릤산
䀸䀸䬬ꮠ䬬릤 ꮠꮠ릤
ꮠ릤䬬⟴䨸 산산
산ꮠꮠ
ꮠ
릤
䀸牨산ꮠ
䀸䀸䬬ꮠ䬬䘐산䬬 릤牨산ꮠ
산산 ꮠ䬬䘐䘐릤
릤
䀸牨릤 산ꮠ
갬 산
䘐릤 릤
ꮠꮠ
릤릤산牨릤
릤䬬䬬
릤 릤䬬䨸䬬 䘐ꮠ 산䬬 䨸䬬릤 䨸
ꮠꮠ
갬 牨릤 산산 릤 산ꮠ
릤 䬬䨸 산산
릤 릤 ꮠ
릤䨸䬬릤릤䨸산䬬릤ꮠ
릤산ꮠ
EXPERIMENTAL SECTION
Materials
릤 魤 ꮠ릤 䘐산䬬 䨸 ꮠ
왌ઈ뀨 牨 릤
갬 산
릤
ꮠ 䘐산䬬 ꮠ갬릤䬬릤 䨸䬬ꮠ
갬 ﵌산 릤䬬䬬 산鯈 산
산⟴ Ⳉ 산䬬 산ꮠ릤 산산ꮠ 䘐ꮠ ꮠ
갬 ꮠɬ䨸 ퟰ뀨
ꮠ갬릤䬬ꮠ
䘐산䬬릤산ퟰ뀨 ퟰ뀨
릤䬬 릤
魤
ꮠ릤 䘐산䬬 ꮠ릤릤 산
䘐산䬬 릤 䨸갬 䀸 䨸
ꮠ ꮠ 릤산
牨산
릤䬬 릤
魤 ꮠ릤䘐산䬬 릤
ꮠꮠ산릤ꮠ
산 ꮠ䬬 릤 ꮠ
릤 ꮠ牨릤䬬
릤 릤䬬䨸릤 魤 산䬬 牐왌Ⳉ
ꮠ갬
ꮠ
산릤ઈ 䀸산ꮠ
䨸 䘐산䬬 릤산릤 䀸 䨸䬬 ꮠ
갬 ꮠ
ꮠ
ꮠ릤䬬 산
릤
ꮠ갬릤䬬릤 䨸䬬ꮠ
갬 સ 산鯈 䘐ꮠ
ꮠ
갬 ꮠɬ䨸 ퟰ ꮠ갬릤䬬ꮠ
䘐산䬬 릤 ꮠ
䘐 ꮠ 릤릤
ꮠꮠ
䬬 산 ퟰ뀨 산
ퟰퟰ 䨸ꮠ
갬
릤䬬䬬ꮠ
ퟰ뀨 릤
산릤ꮠ릤䨸산
䨸ꮠ
갬
릤䬬䬬ꮠ
ퟰퟰ 산릤산䨸산릤䨸
릤ꮠ갬릤䬬ꮠ
릤䬬䨸䬬 䘐산䬬 ꮠ릤릤 산
䘐산䬬 릤 䨸갬 䀸 䨸
ꮠ ꮠ
릤산 릤䬬
牨산
䀸 䀸릤 䀸릤
릤ઈઈ䬬ꮠ산
牨
산䨸산릤
산䬬
䘐
산䬬
䘐릤릤
산
릤䬬릤䬬ꮠ산
牨ꮠ 䨸릤
ퟰઈ산
䀸䬬ꮠ ퟰ뀨ઈ산
䀸䬬ꮠ 산
ퟰ왌ઈ
ꮠ산
䀸䬬ꮠ산䬬
䘐
산䬬⟴산
뀨산
⟴산
䘐릤릤 산ꮠ
릤 牨 સ릤 ⟴䨸 산산
릤牨ꮠ산
䬬䨸䨸릤䬬 䘐릤릤 䬬 䘐
ꮠ
산릤ퟰ 릤䨸산䬬릤 산
βઈ
갬䨸䬬ꮠ산䬬릤 牨 ꮠ䬬 苨⟴ 산갬릤䬬산릤
릤
牨산 䘐산䬬 䨸䬬릤 ꮠ
산 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 ꮠ
ꮠ䬬
릤䬬릤산 릤䨸산䬬릤 산ꮠꮠ䀸 䘐산䬬 Ὠ 쀔牨 산
βઈ갬䨸䬬ꮠ산䬬릤산ꮠꮠ䀸 쀔갬
Instrumentation
﵌산 릤䬬䬬 魤 릤릤산牨릤
䘐산䬬
䨸릤ꮠ
산䘐ꮠ갬릤䬬릤䘐 ꮠ ꮠ䬬䨸䬬牨牨산릤䀸
산
갬 산릤 魤
릤갬릤ꮠ
갬 䘐ꮠ 산 䨸牨릤
산
䘐ꮠ
갬䨸牨릤뀨苨䨸산릤 䘐산릤 䀸산ꮠ
릤릤산牨릤
䘐릤릤 산ꮠ산릤 䀸 릤
갬 �ꮠ 산
갬산䬬䬬䘐산릤䘐릤릤䨸릤䀸䀸릤
Procedure
Hydrolysis experiments
릤릤산ꮠ
䬬䘐릤릤ꮠ
ꮠꮠ산릤䀸릤산ꮠ
갬릤
䀸牨릤
䬬䨸ꮠ
ꮠ
ퟰ牨魤릤
牨릤䀸릤䀸牨ꮠ ꮠ
갬릤䨸산䬬릤산
βઈ갬䨸䬬ꮠ산䬬릤 䘐ꮠ 䨸牨릤 산ꮠ 뀨ퟰ 산릤 릤
䬬릤릤 䬬䨸 산산
산
ꮠ䨸릤 䘐ꮠ 䬬ꮠ䨸牨 산릤산릤
䨸 릤뀨牨સ산牨ꮠ ꮠ
갬 릤릤
䀸牨릤䬬䨸ꮠ
䨸
ꮠ
Indo. J. Chem., 2013, 13 (1), 53 - 58
55
Table 1.⟴䨸 산산
릤牨ꮠ산䬬䨸䨸릤
Fig 1.魤䨸 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
Fig 2. 릤䬬ꮠ릤 산
䨸
䘐산
릤 릤䨸䬬릤릤䨸산䬬릤 ꮠ
릤산ꮠ
릤䨸산䬬릤 릤산ꮠ산ꮠ
산䨸䬬릤 䀸 ꮠ릤릤䬬ꮠ릤
ꮠ
릤산ꮠ
릤䘐릤릤
릤䨸䬬릤 산ꮠ
산
릤䨸산䬬릤 릤릤䬬ꮠ릤 릤䨸䬬릤ઈ릤䨸산䬬릤 ꮠ
릤산ꮠ
산䨸䬬릤 䀸 릤䨸산䬬릤
릤
산
갬릤 산릤 ꮠ
릤䨸䬬릤 䀸䬬산ꮠ
릤 䬬䨸䨸릤 ﵌산산 산릤 산䨸䬬릤 䀸 ꮠ릤릤䬬ꮠ릤 ꮠ
릤산ꮠ
릤䘐릤릤
䀸 ꮠ산 릤䨸산䬬릤䘐ꮠ ꮠ갬
ꮠ
魤ꮠ䬬䬬
ઈ릤䬬䬬
ઈ
릤
릤
릤 䨸牨릤 릤산 뀨 牨 ⟴ꮠ 䬬䨸䬬산릤 䀸䀸䬬ꮠ䬬
산
Ⳉ 䘐산릤ઈ 䀸산ꮠ
䨸 䀸䀸䬬ꮠ䬬
䘐
릤 릤ꮠ牨릤
䬬 릤
릤갬䨸
䀸 산ꮠ
갬 Ⳉ 䘐 릤
릤 릤ꮠ牨릤
䨸 릤
䬬산
산 Ⳉ ꮠ
魤 䨸
䬬릤릤䬬䨸䬬산릤
릤릤 릤ꮠ牨릤
䬬䘐릤릤릤 牨릤ꮠ
䀸䀸䬬ꮠ䬬 릤갬산ꮠ릤
魤 䨸 䀸䀸䬬ꮠ䬬
牨 릤牨릤산䨸릤
릤 䀸䀸䬬ꮠ䬬
릤 릤ꮠ牨릤
䬬 䘐릤릤
䨸릤 䀸 䨸䬬ꮠ
갬 릤䨸산䬬릤 䘐ꮠ
䘐산䬬 릤牨ꮠ
산릤 䀸 ꮠ릤ꮠ
갬 릤 牨ꮠ 䨸릤 䨸갬 ꮠ릤
릤
산ꮠ
ퟰ산
ퟰ뀨쀔갬䬬䨸䬬산릤ꮠ
䀸䘐릤ꮠ갬
산릤
릤䬬ꮠ
䘐산䬬 산䨸산릤 牨 릤 릤䬬䨸릤
䘐ꮠ 䨸 산
䀸 䬬䨸 산산
산ꮠꮠ
릤갬산ꮠ릤
䬬䨸갬산 䘐 ꮠ 䘐산䬬 牨릤산䬬䨸릤 산䬬릤
릤䨸ꮠ
갬 릤
䘐산릤 䀸산ꮠ
䀸䀸䬬ꮠ䬬릤 릤ꮠ牨릤
䬬䘐릤릤
䨸릤
䀸 䨸䬬ꮠ
갬 ꮠꮠ
갬ઈ릤릤산릤 䘐산릤ઈ 䀸산ꮠ
산
䨸䬬ꮠ
갬 䨸 ⟴ 牨릤 산ꮠ
갬 ⟴ ퟰઈ牐ઈ
산䨸산릤ઈ릤릤산릤 䘐산릤ઈ 䀸산ꮠ
䨸䬬ꮠ
갬 릤䨸산䬬릤
ퟰ牐牐
ퟰ뀨쀔갬䬬䨸䬬산릤ꮠ
䀸䘐릤ꮠ갬
릤 릤䨸산䬬릤 䘐산䬬 산ꮠ릤 ퟰ 산
ퟰ뀨 쀔갬
䬬䨸䬬산릤ꮠ
䀸䘐릤ꮠ갬 ⟴䨸 산산
산ꮠꮠ
䘐산䬬산ꮠ릤ퟰ
릤䨸䨸릤䨸
산산산
릤산
56
Indo. J. Chem., 2013, 13 (1), 53 - 58
Fig 3. ꮠ 릤ꮠ릤䬬 릤 산ꮠ
ꮠ
갬 䬬䨸 산산
릤 릤 산䬬
릤䨸산䬬릤 릤 牨산
릤 릤
산
릤 ퟰ ﵌산산 산릤
䬬䨸 산산
逄릤 릤䨸산䬬릤 산
ꮠ
릤산䬬릤 ꮠ䬬 䬬산ꮠꮠ䀸
﵌산산 산릤 䬬ꮠꮠ릤䀸 산 릤 릤
䀸牨릤
䬬䨸䬬산릤 ꮠ
릤산ꮠ
릤산ꮠ
갬 牨릤 릤 릤ꮠ릤
릤䬬ꮠ
릤䨸䬬릤 왌 ﵌산산 산릤
䬬䨸 산산
䬬 䨸 산䨸䬬릤 䬬䨸䬬산릤 䬬䨸䨸산 산
갬릤䬬
산
牨산릤ꮠ牨릤산릤䬬䬬ꮠ릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
魤ꮠ䬬䬬
ઈ릤䬬䬬
ઈ
릤
릤 䀸 ꮠ 산 릤
䬬䨸 산산
ꮠ
䬬 䨸갬 䀸 ꮠ ꮠ
릤산ꮠ
䬬
ꮠ갬
ꮠ
릤 ꮠ갬
릤䨸䬬릤 fi릤䬬 산
릤 䀸 ꮠꮠ
릤산 갬䨸 릤 䬬䨸 산산
릤릤
䬬 䨸
䨸ꮠ릤
ꮠ
ꮠ
갬 릤䨸산䬬릤䬬ꮠ갬
ꮠ
RESULT AND DISCUSSION
EFB Hydrolysis and Surfactant Effect
䬬䨸䬬산릤䘐산䬬산䬬牨릤산䬬䨸릤ꮠ
산릤 릤ꮠ牨릤
산
ꮠ
䘐산䬬 䬬 䘐릤 산 릤
릤
산ꮠ
릤릤 䨸
䨸
릤
䀸牨릤 䘐산䬬 산 ꮠ牨산릤䀸 䨸릤 䨸
산ꮠꮠ
䘐릤릤
﵌산산 릤 산 䬬䨸갬갬릤䬬릤 산 릤䨸산䬬릤 릤산ꮠ산ꮠ
䨸 릤 산䨸䬬릤 䀸 산牨산갬릤 릤䨸䬬릤 릤ꮠ
䬬䨸䨸릤 ꮠ릤릤䬬ꮠ릤 ꮠ
릤산ꮠ
릤䘐릤릤
릤䨸䬬릤
산ꮠ
산
릤䨸산䬬릤 산䬬 ꮠ䨸䬬산릤 ꮠ
ꮠ갬 릤䨸산䬬릤
산릤갬ꮠ릤 ꮠ
䘐 牨
릤
䬬 산䬬릤
䘐 ꮠ
䘐䬬 릤䨸산䬬릤 ퟰ 䨸䬬 릤䨸䬬릤 䀸牨릤 산ꮠ
ꮠ
릤
牨ꮠ릤 산
릤䨸산䬬릤 산산 릤䨸䬬릤 산ꮠ
산
䨸䬬 릤 산ꮠ
牨 릤 릤䨸ꮠ
갬 릤
䬬 ꮠ
릤ꮠ䬬릤
릤䨸산䬬릤䨸산릤ꮠ
릤릤䨸䬬릤 산ꮠ
산
릤산ꮠ산릤
릤릤 ꮠ 릤릤
릤 산
산ꮠ
䬬 䬬䨸 산산
릤 릤
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 䬬릤 䀸 ﵌산산 릤 산 ꮠ
릤산ꮠ릤䬬䨸ꮠ릤䬬䘐릤릤산䬬릤
릤䬬䨸 산산
䨸
ꮠ
릤릤
릤산ꮠ산ꮠ
ퟰઈퟰ㮴
䬬릤 릤 산
산ꮠ
䬬 䘐릤릤
ꮠ䨸䬬산릤ꮠ
ꮠ갬왌ꮠ䬬릤 산
산ꮠ
ꮠ䬬 산䬬䨸 산산
䬬
牨산䀸 ꮠ
릤산䬬릤 릤
䀸牨릤 䬬산ꮠꮠ䀸 산
릤릤
릤
산䨸산ꮠ
릤
䀸牨릤䬬 䨸ꮠ
갬 䀸䀸䬬ꮠ䬬 산䬬
ꮠ䨸䬬산릤 ꮠ
ꮠ갬 왌ퟰ
䘐 산䬬 산 牨䬬䀸
릤
릤 ꮠ
릤
䀸牨릤 릤
산䨸산ꮠ
䘐릤릤 릤牨산
릤산ꮠ산ꮠ
산
䬬 릤산 릤산ꮠ산ꮠ
苨 䀸䀸䬬ꮠ䬬 ꮠ
ꮠ䬬 䬬䨸䀸 䘐릤릤
䨸릤 ꮠ
牨 릤牨릤산䨸릤 릤
릤牨산 릤산ꮠ산ꮠ
산
릤
릤갬릤릤 ⟴ 릤산
릤
산䨸산ꮠ
ꮠ䬬 릤산ꮠ산ꮠ
䀸 䬬 릤산 릤䬬 䨸릤
산갬ꮠ산ꮠ
릤 䀸䀸䬬ꮠ䬬牨ꮠ 䨸릤苨 䀸䀸䬬ꮠ䬬ꮠ
ꮠ䬬
䬬䨸䀸 䘐릤릤
䨸릤 ꮠ
ꮠ갬 䬬䨸䬬산릤 산ꮠ
갬 䘐 ꮠ
산䨸䬬릤 릤산ꮠ
䬬䀸䬬릤牨 ꮠ
ꮠ䬬䨸䬬
ꮠꮠ
산
릤릤
ꮠ갬䨸䬬 산갬ꮠ산ꮠ
릤
ꮠ䬬 릤 산
산ꮠ
산
릤 䨸䬬릤 䬬ꮠ갬
ꮠ ꮠ산
릤
산
릤牨릤
릤䨸산䬬릤 릤 牨산
릤 䀸 산ꮠꮠ
䘐릤릤
산
⟴산
뀨
릤 䬬릤
릤 산
산ꮠ
䘐산䬬 䬬䨸 산산
䬬 䨸
䬬ꮠꮠ릤䀸 산 릤 릤
䀸牨릤䬬䨸䬬산릤 ꮠ
릤산ꮠ
릤산ꮠ
갬
牨릤 릤 릤ꮠ릤
릤䬬ꮠ
릤䨸䬬릤 산
릤 ꮠ
릤 산
산ꮠ
䘐산䬬 산䬬䨸 산산
䬬䨸산䨸䬬릤䬬䨸䬬산릤
䬬䨸䨸산 산
갬릤䬬 산
牨산릤 ꮠ 牨릤 산릤䬬䬬ꮠ릤
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 산䬬 ꮠ䨸䬬산릤 ꮠ
ꮠ갬 왌 산
왌왌
䘐릤릤 魤ꮠ䬬
릤 산 ꮠ䬬산갬릤릤 䘐ꮠ ꮠ䬬
릤 산
산ꮠ
산䬬릤
릤ꮠ ꮠ
ꮠ
갬 산 릤릤 ꮠ䬬
䬬ꮠ갬
ꮠ ꮠ산
릤
산
릤牨릤
ꮠ
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
䨸릤릤䨸䬬릤䀸䬬䨸 산산
산ꮠꮠ
ퟰ왌㮴
魤ꮠ䬬
䬬릤 릤 산
산ꮠ
䬬䨸 산산
릤 릤
ꮠ갬
릤䨸䬬릤 䀸䀸䬬ꮠ䬬 ꮠ䬬 산 릤
䀸 ꮠ 산 릤 䬬䨸 산산
ꮠ
䬬 䨸갬
䀸 ꮠ ꮠ
릤산ꮠ
䬬 ꮠ갬
ꮠ
릤 ꮠ갬
릤䨸䬬릤
fi릤䬬산
릤 䀸 ꮠꮠ 릤산갬䨸 릤䬬䨸 산산
릤릤
䬬䨸
䨸ꮠ릤ꮠ
ꮠ
갬 릤䨸산䬬릤䬬ꮠ갬
ꮠ
苨ꮠꮠ
릤릤 릤䬬릤
ꮠ
ꮠ 䬬䨸 산산
䘐산䬬
릤
䬬산
산Ⳉꮠ
산魤䨸 䀸䀸䬬ꮠ䬬
ꮠ䬬
산
릤
䬬ꮠ릤릤산䬬䬬䨸 산산
䬬릤릤
ꮠ
갬苨䬬䬬 䘐
ꮠ
ꮠ갬 ퟰ
䘐릤릤
䘐산䬬 릤 릤䬬 릤䨸산䬬릤 릤 牨산
릤
릤
산
릤䘐 ꮠ ꮠ
릤산䬬릤䬬
릤䬬ꮠ
뀨Ⳉ牨산릤䬬
릤 䀸䀸䬬ꮠ䬬 䘐ꮠ 䬬산牨릤 산牨䨸
릤
䀸牨릤 䘐ꮠ
䬬䨸 산산
산ꮠꮠ
⟴산
뀨 산䬬 䘐䬬 산䬬 릤䨸산䬬릤
릤 牨산
릤 릤
산
릤 䘐 ꮠ ꮠ
릤산䬬릤䬬
릤䬬ꮠ
ퟰὨὨⳈ䨸 ⟴산
산
릤
䬬ꮠ릤릤 산䬬릤䨸산䬬릤
릤 牨산
릤릤
산
릤
ઈꮠ
ꮠ 䬬䨸 산산
䬬 산릤 릤릤
䬬 䘐
릤 릤
牨䬬 릤 릤ꮠ릤 䬬䨸 산산
䬬 ꮠ
ꮠ牨ꮠ
갬 릤䨸䬬릤
릤䬬ꮠ
산 릤 산 䬬 䘐릤 산 릤산ꮠ
릤䘐릤릤
䀸 ꮠꮠꮠ ꮠꮠ산산
릤 릤䬬䨸 산산
산
ꮠ
릤산䬬릤ꮠ
䀸䀸䬬ꮠ䬬牐㮴鯈䨸릤䬬䨸䬬
魤산갬릤릤䘐릤
䘐ꮠ 릤䬬릤 릤䬬䨸䬬
䘐릤릤
산
⟴산
뀨 산䬬
ꮠ
ꮠ
䬬䨸 산산
䬬 ꮠ
릤산䬬릤 릤 䀸䀸䬬ꮠ䬬 산
䘐릤릤
䘐 ꮠ 산䬬 산䨸릤 ퟰὨ 갬산릤 ꮠ갬 릤
릤䬬ꮠ
릤
산
릤牨릤
牨산릤䬬 ⟴산
뀨 산
䀸 산䬬 Water-hyacinth Hydrolysis
ퟰ 산䨸릤 ⟴ꮠ牨ꮠ산 릤䬬䨸䬬 䘐릤릤 산䬬 산ꮠ
릤 䀸
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
ꮠꮠ
갬ઈ릤릤산릤䘐산릤ઈ
魤ꮠ䬬
릤 산 ퟰ왌㮴 ꮠ
릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 䬬릤산牨
䀸산ꮠ
산
산䨸산릤ઈ릤릤산릤䘐산릤ઈ 䀸산ꮠ
䨸䬬ꮠ
갬
릤릤산릤 䬬䨸릤 ⟴⟴ 苨䬬ꮠ
릤䨸산䬬릤 ꮠ
릤䨸䨸릤䨸
산산산
릤산
57
Indo. J. Chem., 2013, 13 (1), 53 - 58
Table 2.牨䬬ꮠꮠ
䬬 ꮠ갬
릤䨸䬬릤䬬산䬬ꮠ牨
릤
릤䨸䬬릤
릤牨ꮠ릤䨸䬬릤䬬
ꮠ갬
ꮠ
⟴䨸릤
산릤 䀸산ꮠ
Ⳉ
ퟰ牐Ὠퟰ왌
Ὠퟰ왌
릤릤牨ꮠ
릤
ퟰ㮴
Fig 4.산릤 䀸산ꮠ
䨸 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
릤䨸산䬬릤 ퟰ뀨 쀔갬ઈ䬬䨸䬬산릤 䘐산䬬 뀨Ⳉ 산
뀨牐Ⳉ
릤䬬릤ꮠ릤䀸산䬬䬬 䘐
ꮠ
ꮠ갬릤릤산牨릤
ꮠ
ퟰퟰ
ꮠ
릤산䬬릤 릤
릤䬬ꮠ
ퟰퟰퟰⳈ 牨산릤䬬 릤
릤
산 릤릤산릤 ꮠ
ퟰ뀨 苨 䬬䨸 산산
산ꮠꮠ
䘐산䬬
산ꮠ릤 䘐산릤 䀸산ꮠ
ꮠ릤 ꮠ
ퟰ뀨 苨ꮠꮠ
䘐릤릤
ꮠ
릤산䬬릤 릤
릤䬬ꮠ
ퟰ왌ퟰ牐Ⳉ
䘐 ꮠ ꮠ䬬 ꮠ갬 릤 산
䬬䨸䬬산릤 ꮠ릤 ꮠ
ퟰퟰ
⟴䨸 산산
산ꮠꮠ
ꮠ
릤산䬬릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
릤릤 산
릤릤산ꮠ
갬 릤릤산牨릤
릤牨릤산䨸릤
릤䬬릤릤䬬䨸䬬䘐ꮠ 릤산䨸산릤ꮠ
䬬릤산 ꮠ
갬
릤 ꮠꮠ릤
ꮠ릤 산
䨸ꮠ
릤䬬䬬 牨
ꮠ갬
릤䨸䬬릤䬬 䀸䀸䬬ꮠ䬬
릤䬬ꮠ
䨸䬬ꮠ
갬 ퟰ 쀔갬ઈ
䬬䨸䬬산릤 䘐ꮠ 산ꮠꮠ
ퟰⳈ
䘐릤릤
산䨸산䀸䬬ꮠ牨ꮠ산
䘐ꮠ 릤
릤䬬ꮠ
䬬䨸䬬산릤 ꮠ릤 ꮠ
ퟰ뀨 䨸䬬ꮠ
갬
ퟰ뀨쀔갬䬬䨸䬬산릤
ꮠ갬 릤牨릤산䨸릤 산
릤䬬䬬䨸릤 䨸 ꮠ䬬䨸 릤
릤䨸䬬릤 ꮠ릤 산
릤䨸릤 릤䨸䬬릤 䀸䬬산ꮠ
ꮠ䀸ꮠ
䘐산릤
䀸산ꮠ
䨸 릤䬬䨸䨸릤 릤릤䬬䨸릤䨸릤牨릤
牨릤 산릤䬬䬬ꮠ릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬
ꮠ䬬
릤 산
산ꮠ
산
릤 산ꮠ릤 릤 릤䬬䨸䬬 ꮠ갬 릤
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
䀸 릤릤산ꮠ
갬 릤릤산牨릤
릤牨릤산䨸릤 䘐릤릤 릤 릤䨸䬬릤 䬬䨸䨸산 산
갬릤
산䨸䬬릤 䀸 릤牨산 ꮠ䬬
䬬ꮠ牨ꮠ산 䘐ꮠ 릤 산
갬릤䬬
산䨸䬬릤 䀸 䬬䨸 산산
䬬ꮠ
릤 䬬䨸 산산
ꮠ
릤䨸릤
릤䨸䬬릤䀸䬬산ꮠ
ꮠ䀸
릤 ꮠ 릤릤
릤
릤䬬ꮠ
릤
산
릤牨릤
릤䘐릤릤
䘐산릤 䀸산ꮠ
산
산牨 ꮠ 魤 䘐릤릤
䬬䨸갬갬릤䬬릤 릤 䬬릤䀸 릤산릤 䘐ꮠ 릤 ꮠ 릤릤
릤
牨䬬ꮠꮠ
䬬 ꮠ갬
릤䨸䬬릤䬬 산䬬ꮠ 牨
릤
릤䘐릤릤
䬬䨸䬬산릤䬬 苨䬬 䬬 䘐
ꮠ
산릤 䘐산릤
릤䨸䨸릤䨸
산산산
릤산
ퟰퟰ
ὨὨ
왌뀨
ퟰ뀨㮴
산牨ꮠ魤Ⳉ
왌왌뀨
왌
뀨왌
ퟰ㮴
䀸산ꮠ
산릤 ꮠ갬 릤 산牨䨸
릤牨ꮠ릤䨸䬬릤䬬 䘐 ꮠ
ꮠ䬬
산䨸산䀸 ꮠ
ઈ䀸䬬산ꮠ
릤 牨
ꮠ䬬 䬬䨸䀸
䬬䨸갬갬릤䬬릤 산 䬬䨸 산산
산䬬 릤
산
릤 릤䨸산䬬릤
릤 牨산
릤 ꮠ
䀸䀸䬬ꮠ䬬
ઈ䀸䬬산ꮠ
릤 릤䨸䬬릤
䬬䨸䬬산릤 苨
릤릤 릤 릤 牨릤 산
ꮠ䬬牨 䬬䨸 산산
산䬬릤䨸산䬬릤릤 牨산
릤릤
산
릤䘐ꮠ릤ꮠ 릤릤
䘐ꮠ
릤ꮠ䨸䬬䀸 䬬릤 릤 ꮠ갬
ꮠ
산䬬 릤릤 ꮠ
魤ꮠ䬬
릤산ퟰ왌㮴산
릤산ꮠ릤ꮠ
䘐산릤 䀸산ꮠ
䬬ꮠ
릤ꮠ䬬ꮠ갬
ꮠ
릤
ꮠ䬬릤䀸䘐산
산
릤
릤갬릤릤
산 릤릤릤산牨릤
⟴䨸䬬산릤 䬬䨸䨸산 산
갬릤䬬 산䨸䬬릤 䀸
䬬䨸 산산
䘐릤릤ɬ䨸릤䬬ꮠ
릤ꮠ
릤 산ꮠ
ꮠ
갬䬬䨸 산산
릤
산䬬 릤䨸산䬬릤 릤 牨산
릤 릤
산
릤 ꮠ갬 릤
䀸牨릤
산䬬ꮠ
䨸릤 산릤 릤
䀸牨릤 䘐ꮠ ꮠ
릤䨸䬬릤
䀸䬬산ꮠ
릤 䬬䨸䨸릤 산
산䨸䬬릤 ꮠ릤릤䬬ꮠ릤 릤
䀸牨릤ઈ
䬬䨸䬬산릤 ꮠ
릤산ꮠ
䘐ꮠ 릤 산 갬ꮠ산
䬬릤ɬ䨸릤
릤
산 릤 산
산ꮠ
魤ꮠ䬬
릤 산 䘐 牨 ɬ䨸릤䬬ꮠ
릤 릤
䬬릤 릤 산
산ꮠ
산䬬릤
릤ꮠ ꮠ
ꮠ
갬 ꮠ
䨸릤
릤䨸䬬릤 릤
䀸牨산ꮠ 䀸䀸䬬ꮠ䬬 䘐릤릤 ꮠ䬬
릤 산
산ꮠ
䬬䨸갬갬릤䬬릤릤ꮠ
갬牨릤산ꮠ산릤ꮠ
䘐산릤
䀸산ꮠ
䀸䀸䬬ꮠ䬬 䬬ꮠ
릤 릤牨ꮠ릤䨸䬬릤䬬 ꮠ䬬 ꮠ
산牨 䨸䬬 牨
CONCLUSION
苨ꮠꮠ
ઈꮠ
ꮠ 䬬䨸 산산
ꮠ
릤산䬬릤
䀸䀸䬬ꮠ䬬
릤䬬ꮠ
魤 䨸 산
䘐산릤 䀸산ꮠ
䨸 苨
ꮠ牨산
릤 릤 䬬䨸 산산
산ꮠꮠ
ꮠ
䀸䀸䬬ꮠ䬬 릤䬬䬬 ꮠ䬬 릤 䬬䬬ꮠꮠꮠ䀸 䘐릤 릤
릤
䀸牨릤 산ꮠ
갬 산
䘐릤 릤릤산牨릤
릤䬬䬬
ꮠꮠ
ꮠ 산ꮠꮠ
䘐릤릤
산Ⳉ 릤산ꮠ
牨ꮠ 䨸릤 ꮠ
魤 䀸䀸䬬ꮠ䬬 䘐산䬬 䬬䬬ꮠ릤 䘐릤 릤
릤
䀸牨릤 산ꮠ
갬 䀸 왌왌Ⳉ 산
산 릤 䬬산牨릤 ꮠ牨릤 릤산ꮠ
䬬
릤䨸䬬릤
릤䬬ꮠ
산䬬릤 䘐산릤 䀸산ꮠ
산ꮠꮠ
ퟰⳈ
䘐릤릤
⟴산
뀨 䘐산䬬 䬬䬬ꮠ릤
䀸 䘐릤 릤
䀸牨릤 산ꮠ
갬 䀸 왌왌Ⳉ 䨸 산䬬
䘐릤 릤릤산牨릤
릤䬬䬬
ꮠꮠ
牨 ퟰ뀨
산牨ퟰ뀨 ퟰ산牨
⟴䨸 산산
릤 릤䬬
릤
䀸牨산ꮠ 릤䨸䬬릤
䀸䀸䬬ꮠ䬬 산릤 릤릤
䬬䨸ꮠ릤 릤산ꮠ릤晸 䘐릤릤
릤산ꮠ릤 牨릤 산
ꮠ䬬牨 산䬬 릤릤
릤䬬릤
릤 魤
䀸䀸䬬ꮠ䬬릤䬬䨸䬬산갬릤릤䬬 䘐ꮠ 릤릤ꮠ䨸䬬䀸 䬬릤
牨릤 산
ꮠ䬬牨 산 䬬䨸 산산
산䬬ꮠ
ꮠ갬
ꮠ
ꮠ
䬬䨸䬬산릤릤릤
䬬䨸
䨸ꮠ릤ꮠ
ꮠ
갬 릤
䀸牨릤䬬
ꮠ갬
ꮠ
鯈䨸릤䬬䨸ꮠ
䘐산릤 䀸산ꮠ
䀸䀸䬬ꮠ䬬ꮠ
ꮠ산릤䬬
산 䬬䨸 산산
산䬬 릤
산
릤 릤䨸산䬬릤 릤 牨산
릤 ꮠ
䀸䀸䬬ꮠ䬬
ઈ䀸䬬산ꮠ
릤 릤䨸䬬릤 䬬䨸䬬산릤
58
Indo. J. Chem., 2013, 13 (1), 53 - 58
⟴䨸䬬산릤䬬䨸䨸산 산
갬릤䬬산䨸䬬릤 䀸 䬬䨸 산산
䘐릤릤
릤ꮠ
갬 牨릤 산ꮠ산릤 牨릤 산
ꮠ䬬牨 ꮠ
ꮠ䬬 산䬬릤
䘐릤릤 牨릤 릤 릤
䬬ꮠ릤 䬬䨸䀸 䘐릤릤 릤ɬ䨸ꮠ릤
릤 산ꮠ
ꮠ
갬 䘐 릤 䬬䨸䨸산 산
갬릤䬬산
䘐 䀸 릤
릤䘐
䬬䨸䨸릤牨산릤 릤䬬䨸䬬산릤릤산䬬ꮠ릤릤 䀸䀸릤䀸
릤
䀸牨릤
REFERENCES
ퟰ 릤갬갬 산
⟴산릤 ퟰ牐牐 Biotechnol.
Bioeng.뀨ퟰ왌Ὠ뀨왌왌
산산
鯈ꮠ산䘐산 ꮠꮠ સ ﵌산 ﵌
⟴䨸ꮠ䀸산
ꮠ � �산牨산산
산
쀔산ꮠ � ퟰ
Mokuzai Gakkaishi뀨
왌 સ산ꮠ苨ὨEnviron. Int.왌왌ퟰퟰퟰ왌
સ산산䨸 ⟴ 산
સ산䨸산
산 Kompas, 릤牨릤ꮠ
산
산䨸䬬 ⟴릤ꮠ䨸䬬 산산ꮠ ꮠ 苨⟴
䨸릤䬬산䀸 산
䨸산䀸
왌ퟰퟰ
뀨 鯈䬬 ꮠ牨산 ⟴산산산 સ 산
산산
� ퟰ牐
Biotechnol. Bioeng.ퟰퟰퟰὨὨퟰὨ왌
䨸䬬䬬산ꮠ 苨 산
⟴산릤 ퟰ牐牐牐 Enzyme
Microb. Technol.왌ઈퟰ왌ퟰ왌
Ὠ ⟴
릤릤갬갬릤 સ 릤䬬䬬
સ 산䬬䬬
䘐산ઈ산䨸䬬䨸
સઈ 릤䬬 魤 鯈䬬䬬
릤䨸䨸릤䨸
산산산
릤산
⟴릤
릤ઈસ산ꮠ
䬬산
ઈ갬릤산산
⟴산䨸릤
쀔Biotechnol. Bioeng.Ὠퟰ牐牐
산
릤
릤
릤 산 ꮠ 산
릤
산
릤
સJ. Biotechnol.ퟰὨ뀨Ὠ
牐 산
산산 산산�﵌산ꮠ䨸 ꮠ
산
苨릤 산산
ퟰ牐牐Biotechnol. Bioeng.왌牐ퟰퟰퟰὨퟰ
ퟰ ﵌산산 魤 산
산릤 સ
ퟰ牐牐
Biotechnol. Bioeng.뀨牐ퟰ牐Ὠ
ퟰퟰ ﵌산산 魤 䨸ꮠ릤릤 산
﵌ꮠ
䬬 ꮠ산 સ
ퟰ牐牐Biomass Bioenergyퟰ왌ὨὨὨ
ퟰ ﵌산산 魤 산
산릤 સ
Biomass
Bioenergyퟰퟰ牐ퟰ牐牐
ퟰ왌 魤ꮠ䬬䬬
릤䬬䬬
산
릤
릤
Enzyme Microb. Technol.왌ퟰ왌왌뀨왌왌
ퟰસꮠ䬬 ꮠ牨산﵌䨸
ꮠꮠસ⟴릤ꮠ⟴﵌산⟴릤સ
산
䨸ꮠ산 સ Bioresour. Technol. 牐牐 Ὠ
牐뀨뀨
ퟰ뀨 ꮠ갬산牨J. Biotechnol.,牐ὨퟰὨퟰퟰ
ퟰ ⟴䨸ꮠ䀸산
ꮠ � ⟴䀸산ꮠ
ꮠ ⟴䨸ꮠ䀸산牨산
산
苨ꮠ牨산
䀸䨸 Proceeding of International
Conference on Bioscience and Biotechnology, 쀔
﵌산ꮠ산갬산�갬䀸산산산鯈릤ퟰퟰઈퟰ ퟰퟰ