Is oxidative coupling the royal road for the valorization of methane to olefines?

Unifying Concepts in Catalysis

Cluster of Excellence

Is oxidative coupling the royal road
for the valorization of methane to olefines?

R. Schomäcker, V. Fleischer, S. Parishan, J. Sauer, M. Baldowski,
K. Kwarpien, A. Thomas, S. Mavlyankariev, R. Horn, A. Trunschke,
P. Schwach, R. Schlögl, Y.Cui, N. Nilius, H.J. Freund, F. Rosowski
U. Simon, M. Yildiz, O. Görke, H. Godini, G. Wozny
Presentation at „Changing Landscape…“-Workshop,
Washington, DC, March 7-8, 2016

The Scenario

Working hypothesis

Oxidative coupling of methane is economically viable, if:

- added value is high

- methane is not wasted
- energy demand is appropriate
- capital expenditure is reasonable

Pioneering work
G.F. Keller, M.M. Bhasin,

J. Catal. 1982, 73, 9

catalyst

M. Hinsen, M. Baerns,

Chem. Z. 1983, 107, 223

catalyst

A.C. Jones, J.J. Leonardo et al., US patent 4 443644, 1984

periodic feed


strategy
160
140

papers

120
100
Reihe1

80
60
40
20
0
1985

1990


1995

2000

2005

2010

year
U. Zavyalova, M. Holen, R. Schlögl, M. Baerms, ChemCatChem, 2011, 3, 1935

Milestone 1: The Lunsford Mechanism of OCM
methane activation
2CH 4
2CH 3  2[ Li  O  ]H

2[ Li  O  ]
catalyst
regeneration


1
O2
2

. Lunsford
mechanism

[ Li  O 2 ]



[ Li VO ]

product
formation
C 2 H 6  H 2O



Optimal loading for initial activity: 0.5 wt% Li/MgO




No stable Li/MgO-catalyst



Still active after Li-Loss



No selectivity

J. H. Lunsford, Angew. Chem. 1995, 107, 1059 – 1070;
Angew. Chem. Int. Ed. Engl. 1995, 34, 970 – 980

Milestone 2: The first kinetic model

Z. Stansch, L. Mleczko, M.B. ,
Ind. Eng. Chem. Res. 1997, 36, 2568


LaO2O3 (27at%)/CaO

Milestone 3: Mn-doped Na2WO4/SiO2
X.Fang et al, J. Mol. Catal. (China), 6 (1992) 427
X CH4

D.J. Wang, M.P. Rosynek, J.H. Lunsford, J. Catal.
155 (1995) 390

S C2

Y C2

Na2WO4/SIO2

0.11

0.75


0.08

MnOx/SiO2

0.16

0.34

0.07

Na2WO4/Mn/
SiO2

0.37

0.65

0.24

Z. Jiang, H. Gong, S. Li, Stud. Surf. Sci. Catal. 112 (1997)

481

200 g batches with spray drying technology
H. Liu, X. Wang, D. Yang, R. Gao, Z. Wang, J.
Yang, J. Nat. Gas. Chem. 17 (2008) 59

U. Simon, O. Görke, A. Bertold, S. Arndt, R. Schomäcker,
H. Schubert, Chem. Eng. J.168 (2011) 1352-1359

Milestone 4: OCM at La2O3
CH4

COx

[1]

O2

[1]
650 °C


O2EPR

[2,3]

CO2
[6]
[8]

EA = 39 kcal/mol
CH4 CH3

10 kcal/mol

[4,7]

O-

XPS EPR


LaxFeyO3

CH4

CH3

[4,5]

O22-

La2O2CO3

CH3

CH4

EPR
?

O2- [7]


XPS

EPR XPS

IR

increase selectivity!

LaxCeyOz

[1] C. Louis, T.L. Chang, M. Kermarec, T. Le Van, J.M. Tatibuët, M. Che, Colloids Surfaces A Physicochem. Eng. Asp. 72 (1993) 217
[2] T. Levan, M. Che, J.M. Tatibouet, M. Kermarec, J. Catal. 142 (1993) 18
[3] J.-L. Dubois, M. Bisiaux, H. Mimoun, C.J. Cameron, Chem. Soc. Japan Chemistry (1990) 967
[4] M.S. Palmer, M. Neurock, M.M. Olken, J. Am. Chem. Soc. 124 (2002) 8452
[5] C. Lin, K.D. Campbell, J. Wang, J.H. Lunsford, J. Phys. Chem. 90 (1986) 534
[6] Y. Sekine, K. Tanaka, M. Matsukata, E. Kikuchi, Energy and Fuels 23 (2009) 613
[7] C. Au, T. Zhou, W. Lai, C. Ng, Catal. Letters 49 (1997) 53
[8] V.J. Ferreira, P. Tavares, J.L. Figueiredo, J.L. Faria, Catal. Commun. 42 (2013) 50
[9] S. Gadewar, S.A. Sardar, P. Grosso, A. Zhang, V. Julka, P. Stolmanov, Continuous Process for Converting Natural Gas to Liquid
Hydrocarbons, U.S. Patent US8921625B2, 2014 (Siluria Technologies)

Milestone 5: unconventional approaches

Who is who in OCM

Author

Publications*

Citations*

M. Baerns
J.H. Lunsford
V.R. Chaudhary
J.R.H. Ross
K. Fujimoto
J.B. Moffat
C. Mirodatos
A.G. Anshitz

47
43
36
36
33
31
29
25

1323
1696
926
666
728
528
334
261

* Web of Science, 25.7.2014

The UNICAT concept
Multi scale approach for atomic to plant level
Model studies for understanding complexity
Feasibility studies in mini-plant

* table adopted from E. V. Kondratenko, M. Baerns
Handbook of Heterogeneous Catalysis, Vol. 6, Ch. 13.17, 2008

Multi scale approach to OCM
G. Wozny
R. Schlögl

M. Kraume

H.J. Freund
T. Risse

H. Schubert

R. Horn

A. Thomas

R. Schomäcker

M. Driess

J. Sauer
M. Scheffler

Mechanism of Oxidative Coupling of Methane
2 CH4 + O2 → C2H4 + 2 H2O (+ CO2)
+ O2

COx

O2ad
*

CH3

O2ad
*

O

+ CH 3

+ O2

+ O2

CH4

O2

COx

+ CH 3
C2H6

C2H6

C2H5

O

O

C2H4

Origin of low selectivity
- OCM is initiated by oxygen activation (AFM, DFT, Model catalysts)
- Selective and inselective oxygen species at all catalysts (TAP, TPSR)
- Electron donors (dopants, defects) cause oxygen dissociation (AFM, Model catalyst)
- Formation of methyl radicals at selective oxygen species (Kinetics, KIE, Model cat.)
- Combustion of methane at inselective species (Kinetics, KIE)
- Parallel gas phase combustion at increased oxygen partial pressure (Profile R.)
K. Kwapien, J.Paier, J. Sauer, M. Geske, U. Zavyalowa, R. Horn, P. Schwach, A. Trunschke, R. Schlögl, Angew. Chem. Int, Ed. 2014, 53, 11-6
Y. Cui, X. Shao, M. Baldofski, J. Sauer, N. Nilius, H.J. Freund, Angew.Chem.Int.Ed. 2013, 52, 11385
B. Beck, V. Fleischer, S. Arndt, M. G. Hevia, A. Urakawa, P. Hugo, R. Schomäcker Catalysis Today 2014, 228, 212–218

The Puzzle of Information
How to get started?

Searching for more pieces?
Joining central pieces?

A simple example

2

A simple example

2

Experiments in a TAP reactor

In collaboration with J. Perez-Ramires, ICIQ, Taragona, now ETH Zurich

Pump-probe experiments in a TAP reactor
- Increasing delay of CH4
leads to decrease of CO2
and C2H6 stays constant
- weakly adsorbed oxygen
leads to total oxidation
* + O2
*O2
- strongly adsorbed oxygen
is responsible for methyl
radical formation
*+O
*O
- smaller ratio between
weakly and strongly
adsorbed oxygen at
Mn/Na2WO4/SiO2

Dynamic experiment

750 °C, 30 nml/min, 1g catalyst
S(C2) = 0.89

• C2 Selectivity unexpacted
high in dynamic experiments
at constant temperature

• less oxygen species on the
catalyst surface than in
steady state exp.

2

Characteristics of MgO prior to reaction
S-MgO

C-MgO

SG-MgO

Mg oxidation

Ultra pure commercial MgO

Sol-gel synthesis

HT-MgO

MW-MgO

Hydrothermal post treatment

Hydrothermal post treatment
in microwave autoclave

Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,
Schwach, Trunschke, Schlögl, Angew. Chem. Int. Ed., 2014, 53, 8774

2

Deactivation of C-MgO
t = 230 h

t=0h

t=6h

t = 25 h

t = 66 h

Rate of methane consumption decreases with decreasing number of
monoatomic steps observed with CO as probe molecule by IR

P. Schwach, M. G. Willinger, A. Trunschke, R. Schlögl ,
Angewandte Chemie International Edition 2013, 52, 11381–11384

Structure sensitivity of MgO during reaction
Eley-Rideal mechanism





Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,
Schwach, Trunschke, Schlögl, Angew. Chem. Int. Ed., 2014, 53, 8774

CH4 adsorbes and is activated
O2 leads to methyl radical formation
Superoxide identified by EPR

Mechanism of OCM at MgO

Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,
Schwach, Trunschke, Schlögl, Angew. Chem. Int. Ed., 2014, 53, 8774
Baldowski, Sauer, unpublished

Energy, Gibbs free energy (kJ/mol)

Mechanism of OCM at MgO
CH3−/H+

18
121

O2
ads

+ O2

TS
28
272

Int-1a

Int-1b
O2 −

24
254

4
136

~O2
10
217

d(O-O)/d(Mg-O)

~O2

122/215

1013 K, 0.1 MPa
Kwapien, Paier, Sauer, Geske, Zavyalova, Horn,
Schwach, Trunschke, Schlögl, Angew. Chem. Int. Ed., 2014, 53, 8774
Baldowski, Sauer, unpublished

127/227

Int-2

-5
224

− CH3

135/253

Mo-doped CaO films on Mo(001)

Mechanism:
•Mo-donors in CaO transfer charges
into O2 molecules bound to surface
• Formation of pre-disscoiated O2species
• Final dissociation via electron
tunneling from STM tip
Experimental evidence:
• Work function increase after O2 dosage
only in the case of doped films

• no O2 adsorption at 300 K for pristine
CaO
Y. Cui, X. Shao, M. Baldofski, J. Sauer, N. Nilius, H.J. Freund,
Angew.Chem.Int.Ed. 2013, 52, 11385

Mo-doped CaO films on Mo(001)

O-O

O2

8.0nm

8.0nm

As dosed O2: Molecular species

After dissociation with STM tip

(scanning below 2.5 V sample bias)

(electron injection with 3.0 eV energy)

Y. Cui, X. Shao, M. Baldofski, J. Sauer, N. Nilius, H.J. Freund,
Angew.Chem.Int.Ed. 2013, 52, 11385

Doping of MgO with Fe

P. Schwach, M. Willinger, A. Trunschle, R. Schlögl
Angew.Chem.Int.Ed. 2013, 52, 11381

OCM on MgO
CH3

O2- [Mg2+, HO-]

O2
CH4
[Mg2+,
CH3
H2O

58
180

O2-

CH3

CH4

O- [Mg2+, HO-]

CH4

HO2- [Mg2+, HO-]

Fe doping [2] or
N2O as oxidant [3]
increase selectivity

]
-7
114

133
241

COx

CH3

103
226

114
119

[Mg2+, O22- ]
CH4

COx

H2O

CH3

EA 0K [kJ/mol]
Gibbs Free Energy, 1013 K, 0.1 MPa
[1] K. Kwapien, J. Paier, J. Sauer, M. Geske, U. Zavyalova, R. Horn, P. Schwach, A. Trunschke, R. Schlögl, Angew. Chemie - Int. Ed. 53 (2014) 8774
[2] P. Schwach, M.G. Willinger, A. Trunschke, R. Schlögl, Angew. Chemie - Int. Ed. 52 (2013) 11381
[3] H. Yamamoto, H.Y. Chu, M.T. Xu, C.L. Shi, J.H. Lunsford, 142 (1993) 325

Bi-metallic Na2WO4 /Mn/SiO2 catalysts for OCM

• Provides/stores
lattice oxygen
• Works without gas
phase oxygen
• Deep oxidation
catalyst for methane

How does it
work?
• Selective OCM
catalysts
• Needs oxygen
source to form
methyl radicals

OCM in transient
experiments

Support variation for MnxOy/Na2WO4/SiO2
pre-catalyst

silica support

commercial

nanostructured
(SBA-15)

catalyst

Impregnation

Calcination

Na2WO4 · 2 H2O
Mn(ac)2 ·4 H2O

750°C

Up-scaling of catalyst synthesis

M. Yildiz, Y. Aksu, U. Simon, K. Kailasam, O. Goerke, F. Rosowski,
R. Schomäcker, A. Thomas, S. Arndt Chem. Commun. 2014, 50, 14440

Support variation for MnxOy/Na2WO4/SiO2
Distribution of
Mn-Na2WO4 on
commercial

Green - W
Red - Mn

nanostructured
(SBA-15)
silica supports
M. Yildiz, U. Simon, T. Otremba, K. Kailasam, Y. Aksu, A. Thomas, R. Schomäcker, S. Arndt Catalysis Today 2014, 228, 5-14
H.R. Godini, A. Gili, O. Görke, S. Arndt, U. Simon, A. Thomas, R. Schomäcker, G. Wozny, Catalysis Today, 2014, DOI
10.1016/j.cattod.2014.01,005

Support variation for MnxOy/Na2WO4/SiO2

X

X

Mn-Na2WO4/SBA-15

X

Mn-Na2WO4/commercial silica

Testing in lab scale reactor at 750 °C (C2-Yield= 12 %)
In mini-plant membrane reactor at 810 °C (C2-Yield= 23 %)
M. Yildiz, Y. Aksu, U. Simon, K. Kailasam, O. Goerke, F. Rosowski,
R. Schomäcker, A. Thomas, S. Arndt Chem. Commun. 2014, 50, 14440

Dynamic Experiments
• At reaction temperature the
catalyst is oxidized by air
• Reactor is purged with Helium
to remove oxygen in gas phase
and weakly adsorbed one
• Defined amount of methane is
dosed into the reactor
• Reaction mixture is analysed
by mass spectroscopy

 Catalyst activity can be
analyzed without gas phase
oxidation reactions

pulse

Molefraction (%)

Repetitive dynamic experiments



Repetitive methane pulses
allow to study the available
amount of oxygen

Na2WO4 (5%)/Mn(2%)@Quartz
O (µmol/gcat)

20.5

Na2WO4 (5%)/Mn(2%)@SBA15
68.9

OCM at Na2WO4/Mn/SiO2
• Infeasibility of various spectroscopic techniques
• mechanism proposed by analogy to other systems

CH4 COx CH4
[1]

O2

O2,ads

O2-

cus

H2O

CH3

COx

HO2-

Mn doping [2]
increases activity
and selectivity

OCH4

CH3

COx

CH3

O22-

[1] B. Beck, V. Fleischer, S. Arndt, M.G. Hevia, A. Urakawa, P. Hugo, R. Schomäcker, Catal. Today 228 (2014) 212
[2] S. Ji, T. Xiao, S. Li, C. Xu, R. Hou, K.S. Coleman, M.L.H. Green, Appl. Catal. 225 (2002) 271

H2O

Network of surface reactions at MnxOy/Na2WO4/SiO2

OCM in a mini-plant reactor
Fluidized Bed Reactor

+

Isothermal reaction

- Sensitive to free gas volume

Reactor performance

2%Mn-2.2%Na2WO4/SiO2 catalyst, particle size 250-450 μm
Bed height: 10 cm, CH4:O2 = 1.7 to 10,
Feed Flow rate: 0.1 l/min – 40 l/min, 45 37
g catalyst

OCM membrane reactor set-up

Alumina

Performance indicators of the membrane reactor
2%Mn-5%Na2WO4/SiO2 catalyst (4 g), average particle size 250-450 μm

Contours were made by using 40 experimental data

Reactor concept: Chemical looping
Operation steps:
1. O2 is dosed to oxidize
the catalyst
2. Reactor is purged with
inert gas to remove gas
phase oxygen
3. CH4 dosage to perform
OCM
4. Purge with He to remove
unconverted methane

Continuous operation
Early pulses

Late pulses

Early pulses

Late pulses

Looping
XCH4

0.28

SC2

0.78

Y

0.22

STY

83
with diluent

µmol(C2)
/g*h

Steady State
XCH4

0.29

SC2

0.63

Y

0.18

STY
µmol(C2)
/g*h

2 g catalyst, 1 ml CH4 pulse, 1 ml O2 pulse, 775 °C, 30 nml/min

529

Continuous operation

800°C

2 g catalyst, 1 ml CH4 pulse, 1 ml O2 pulse, 30 nml/min

Economic Analysis
Simulations with Aspen Plus & Aspen Process Economic Analyzer v8.8

Production capacity is one million tonnes per year
Ethylene price 947 Euro/tone

1. Case I (OCM Reaction Unit + CO2 separation Unit+Demethanizer
Unit+C2-Splitter Unit)
2. Case II (OCM Reaction Unit + CO2 separation Unit + Demethanizer
Unit + C2-Splitter Unit + Ethane Dehydrogenation Unit)
3. Case III (OCM Reaction Unit + C2H4 adsorption/Desorption Unit +
C2-Splitter Unit + Ethane Dehydrogenation Unit)

OCM to Ethylene (Case I)
Amine scrubbing (30%wt MEA)
Energy needed: 8 GJ/t-CO2
Energy cost associated: 14.3 €/t-CO2

OCM reactor: Mn-Na2WO4/SiO2 catalyst
Membrane reactor (40% conv. & 62% sel.)