Solved Problems on Limits and Continuity

  3

  2

  2 x x + + x

  1 x 3 x

  2 − lim lim

  3

  2 x

  →∞ x 2 x 3 x 5 x

  2 → + + + x

  2

  2

  2

  2

  2

  lim x x 1 x x

  1

  lim x 1 x 1 + + − − −

  • − −

  →∞ x x

  →∞

  2 x sin 3 x

  ( )

  lim lim

  → x

  6 x x 2 x + + − x 2

  1 x2 3 x

  1 2

  sin x ( ) lim

  sin sin x x

  ( ( ) ) x sin x ( ) x lim

  → x

  • x 2sin x

  tan x ( ) ( )

  lim e

  lim

  • x 2 sin x

  1 sin x x 1 x → + x 2 + − − + 2 π ( ) ( )

  2 Where y tan x is continuous? = ( )

  ) " + * ∞

    ∞ ∞ − ∞ &

  1 ∞

  Where f sin is continuous? φ =

  ( )  2  ∞ −

  1  φ  2 % # xx

  How must f 0 be determined so that f x , x 0, = ≠

  ( ) ( ) x

  1 ∞

  " % & = = ∞ ∞ × ( ) = −∞ is continuous at x = 0 ?

  % ∞

  Which of the following functions have removable singularities at the indicated points ? 2 ! " # $ % x − 2 x − 8 x

  1 % % &

  a) f x = , x = − 2, b) g x = , x =

  1 ( ) ( )

  • x 2 x

  1  

  1 % ' & & %

  c) h t t sin , t = =

  ( )     t x # $ ' (( " % &

  Show that the equation sin x = e has many solutions. ∞

  ( )

  . ! " ! #

  • & . ! ( )( − ) = − *

  % % " ! " # % &

  ! $ −

  ( )( )

  • − = & % & = +  → → − −

  2

  1

  • # ! % ! , " # &

  & ( ) = ( )

  • − + +
    • 1 % &

  ( )( )

  • ) "
  • − − =

   

  ( ) = " ( ) =   ( ) = &  

  ( ) ( + − − ) = =  →

  • →∞
  • − + + 3 ) .

  ( ) ' ( / ' ( 0

  = - & →

  ' ( 1 & !

  !

  3

  2 x 3 x

  2 −

  • 2

  1

  • x x x

  lim

  4

  

4

lim x

  2 →

  3

  2 x

  2 − x →∞ x 3 x + + + 5 x

  2

  2 x 1 x

  2 x 3 x 2 − −

  − ( )( )

  

5

5 Rewrite x 1.

  • = = −

  x 2 x

  2 − −

  2 x 3 x

  2

  1

  1

  1 −

  2

  1 Hence lim lim x

  1

1. + +

  • 3
  • = − =

  3 x x x

  ( )

  1 x → 2 x → 2 + + x x x x

  • 2

  2 − 1.

  3 2 = → x →∞ x 3 x 5 x

  2

  3

  5

  2

  • 1

  2

  3 x x x

  • − − −
  • − −
  • >− − − =
  • − &mi>− − + + −
  • − &minu
  • − − −
  • − −
  • 2 2<

  6 7 # % ! !

  • − − −
  • = =
  • − − + + + − −
  • >− −
  • − − =
  • − + + − + + −

  • = →
  • − −

  x x x x x →∞

  • − − = =

  3

  1

  2

  1

  3

  1

  4

  2

  3

  1

  1

  x x x x x x x x x x x x x x x x

  ( ) ( )( ) =

  2

  2

  1

  3

  2

  3

  2

  2

  1

  1 x

  2 x x x x x x

  6

  4 →

  2 lim

  1

  1

  3

  1 x

  x x x x x

  5 ( ) ( ) ( )

  ( )

  2

  2

  1

  2

  1 Since lim 1, we conclude that lim .

  1 Rewrite

  x x x x x 6 7 # % !

  !

  

4

( ) sin 3

  6 x x x

  →

  

5

( ) ( ) sin 3 sin 3

  6

  1

  2

  3 x x x x

  = ( ) sin Use the fact that lim

  1.

  α α α

  → =

  ( ) ( ) sin 3 sin 3

  4 x

  1

  1

  2

  3

  1

  2

  1

  3

  1

  1

  3

  3

  1

  x x x x x x x x x x x x x x x x x x

  ( ) →

  2

  2

  1

  1

  1

  1

  1

  1

  1

  1

  2

  1

  1

  1

  ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 2 2 2 2

  1

  1

  x x x x x x x x x x

  6

  2

  2

  2

  1

  x x x x x x x x

  1

  →∞

  !

  4

  2

  2 lim

  1

  1 x x x

  5 ( )( ) 2 2 2 2 2 2 2 2

  1

  1

  1

  1

  1

  1

  1

  1

  2

  2 Hence lim

  1 1 lim 0.

  1

  1

  x x x x x x x x x x x x x

  ( ) 2 2 2 2 2 2 2 2

  1

  1

  1

  1

  1

  1

  1

  1

  x x x x x x x x x x x x x x x x

  2

  2

  2

  1

  1

  1

  2

  1

  x x x x x x

  →∞ →∞

  !

  

4

  2

  2

  lim

  1

  1

  x x x x x

  →∞

  

5

( ) ( ) 2 2 2 2 2 2

  1

  1

  2

  • − − +
  • 2 2<>− − +
  • &minu
  • − − + + + + − +
  • 2 2 2 2 2 2 2 2<
  • − + + + + − + = =
  • − − +
  • 2 2 2 2 2 2 2 2 2

      → → = =

    • − + = →
    • 2
    • 2

        2 1 x 9 '#(:# → &amp; 7 # % !

        ( ) ( )

        1 2 sin 2 sin 1 sin

        1 2 sin 1 sin

        2 sin 2 sin 1 sin

        ( ) ( ) ( )

        ( ) ( ) ( )

        ( ) ( )

        ( ) ( )

        6 ( ) ( ) ( ) ( )

        x x x x x x x x x x x x x x x x x x x x

        x x x x x x x x x x x x x x x x x x x x

        1

        1 2 sin 1 sin 1 2 sin 1 sin

        1 2 sin 2 sin 1 sin

        2 sin 2 sin 1 sin

        ( ) ( ) ( )

        ( ) ( ) ( )

        1 sin 2 sin

        !

      • − − +
      • 2 2 2 sin lim x x
      • − − +
      • 2 2 2 sin lim

          ( ) ( ) ( ) ( )

          → × → =

          1 x x x x x x x x x x x x

          2

          1 sin sin sin

          1 2 2sin 1 sin

            = − + + 2 2 sin

           

          6 ( ) ( ) ( )

          4 ( ) ( ) ( )

          1 sin 2 sin x x x x x x x x x x x x x x x x

          1 2 sin 2sin 1 sin

          2 sin 2 sin 1 sin

          ( ) ( )

          ( ) ( ) ( )

          ( ) ( )

          5 ' 8 ( ( ) ( ) ( )

          →

          ( ) ( ) ( ) ( ) ( )

          1 x x x x x x x

          5 ( ) ( ) ( )

          Hence lim 1. sin x

          x x x x x x

          sin sin sin sin sin 1 sin x

          ( ) ( ) ( ) ( ) ( ) ( )

          = = =

          α → →

          α α α

          x x x

          1. In the above, that fact was applied first by substituting sin . sin sin

          6 + !

          sin since lim

          ( ) ( ) ( )

          5 ( ) ( )

          x x

          sin sin lim x

          4 ( ) ( )

          !

          → = →

          

        4

        ( )

          2 sin 1 sin

          2

          →

          4 ( ) ( ) ( )

          6 + !

          → = →

          x x x x x x x x

          1 sin sin

          sin sin

          2

          ( )

          2

          ( )

          ( ) ( )

          

        5

        ( )

          →

          x x x x

          sin lim sin

          2

        • =
        • − &minu
        • − − +
        • − + = − + +
        • 2 2 2 2 2 2<
        • − +
        • − − + + + + − +
        • 2 2 2 2 2 2 2 2<
        • − +  
        • >− + =
        • − &minu
        • 3 2 2.
        • − + = − + +
        • 2 2 2 2 2 2 2 2

            " tan x

            ( ) Where the function y tan x is continuous?

            4 lim e

            

          4

          = ( ) π x → +

            2

            

          5

            5 sin x

            ( ) The function y tan x is continuous whenever cos x 0.

            = ( ) = ( ) ≠ cos x

            ( ) π For &lt; &lt; x , tan x &lt; 0 and lim tan x = −∞ .

            π ( ) ( ) π

            π 2 x Hence y tan x is continuous at x n , n .

          → + = ( ) ≠ + π ∈

          2 tan x

            2 ( )

            Hence lim e = 0. x π → + 2

             1  Where the function f = sin is continuous?

            4 ( ) φ  2 

            4 How must f 0 be determined so that the function ( )

            −

            1  φ  2 xx

            f x = , x ≠ 0, is continuous at x = 0 ?

            ( )  1  x

            1

          5 The function f sin is continuous at all points

            φ =   ( ) 2

            φ

            1  −  where it takes finite values.

            

          5

           

            1

            1 Condition for continuity of a function f at a point x is: If φ 1, is not finite, and sin is undefined.

            = ± 2  2  φ − 1  φ − 1  lim f x = f x . Hence f 0 must satisfy f 0 = lim f x . x x x ( ) ( ) ( ) ( ) ( )

            

            → →

            1

            1 If φ 1, is finite, and sin is defined and also finite.

            ≠ ± 2  2  2 φ − 1  φ − 1  x x

            1

            xx ( )

            Hence f 0 = lim = lim = lim x = 0.

            ( ) x x x → → →

              x

            1 x

            1

            1 − −

            Hence sin   is continuous for φ ≠ ± 2 1.

             φ − 1 

            Show that the equation sin e has inifinitely many solutions. x

            &lt; = + &gt; = +

            x = ( ) Observe that 0 e 1 for 0, and that sin 1 , .

            2 n x x n n

            π π  

            &lt; &lt; &lt; + = − ∈    

            ( ) ( ) Hence f 0 for if is an odd negative number

            2 and f 0 for if is an even negative number.

            2 x x n n x x n n

            π π π π

            

          4

            

          5

          ( ) ( ) ( ) sin e f sin e 0. x x x x x

            = ⇔ = − =

          ;!

          3 ) $ ! % ! % &amp; &amp; &amp;

            " " ! &amp; ( )

          • − = = −

            We conclude that every interval 2 ,

          • ∈ &lt;

            2 1 , and 0, contains

            2

            2 a solution of the original equation. Hence there are infinitely many solutions. n n n n

            π π π π  

            6 % 7 % ( )

                2 6 %

            a) f ,

            ( ) ( )

            A number for which an expression f either is undefined or infinite is called a of the function f . The singularity is said to be , if f can be defi

            singularity removab ned in such a way le that x x x

            the function f becomes continous at . x x =

            4 ( ) ( ) ( ) 2 Which of the following functions have removable singularities at the indicated points ?

            2

            8

            2

              = =

            2

            1

            b) g ,

            1

            1

            1

            c) h sin , x x x x x x x x x t t t t

            − − = = −

               