Penentuan Rute Optimum dalam Supply Chain Network dengan Algoritma Ant Colony Untuk Kota dan Kabupaten Bogor

1

PENENTUAN RUTE OPTIMUM DALAM SUPPLY CHAIN
NETWORK DENGAN ALGORITMA ANT COLONY UNTUK
KOTA DAN KABUPATEN BOGOR

INDRI WIDYASTUTI

DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2012

2

PENENTUAN RUTE OPTIMUM DALAM SUPPLY CHAIN
NETWORK DENGAN ALGORITMA ANT COLONY UNTUK
KOTA DAN KABUPATEN BOGOR

INDRI WIDYASTUTI


Skripsi
sebagai salah satu syarat untuk memperoleh gelar
Sarjana Komputer pada
Departemen Ilmu Komputer

DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT PERTANIAN BOGOR
BOGOR
2012

ABSTRACT
INDRI WIDYASTUTI. Penentuan Rute Optimum dalam Supply Chain Network dengan
Algoritma Ant Colony Untuk Kota dan Kabupaten Bogor. Dibimbing oleh SONY HARTONO
WIJAYA.
Persaingan antarperusahaan semakin marak terjadi seiring berkembangnya teknologi dan
permintaan pasar. Agar produk suatu perusahaan dapat bertahan dipasaran, diperlukan suatu
manajemen yang dapat mengatur informasi dari produsen ke konsumen dengan efektif dan efisien.
Pada penelitian ini, menitikberatkan cara pendistribusian produk melalui jalur dengan jarak

terpendek, yaitu memanfaatkan Algoritma Ant Colony untuk memperoleh rute pendistribusian
dengan jarak terpendek. Algortima ini bekerja pada sebuah graf berbobot jarak dan berarah sesuai
lajur lalu lintas. Data yang digunakan pada penelitian ini adalah data sistem jalan Kota dan
Kabupaten Bogor wilayah Barat. Sistem ini menggunakan Google Maps untuk merepresentasikan
rute hasil dari Algoritma Ant Colony.
Penelitian ini berhasil mengimplementasikan Algoritma Ant Colony pada sebuah sistem untuk
mencari rute optimum pendistribusian. Hasil dari sistem ini berupa rute optimum dengan akurasi
sebesar 92%.

Keywords : Algoritma Ant Colony, graf terboboti, rute pendistribusian, rute terpendek

ABSTRACT
INDRI WIDYASTUTI. Determining Optimal Route in Supply Chain Network with Ant Colony
Algorithm for Bogor City and Regency. Supervised by SONY HARTONO WIJAYA.
Competition among companies rises along with the development of technology and market
demand. In order to keep a product resist in the market, a management which is able to manage
information from manufacturer to consumer effectively and efficiently is needed. This research is
emphasizing the manner of distributing the product through the shortest route, that is the use of
Ant Colony Algorithm to obtain the shortest route of distribution. This algorithm operates on a
weighted graph distance and directional appropriate traffic lane. Data which were used in this

research were the data of system of Bogor City and Regency. This system uses Google Maps to
represent the route as the result of Ant Colony Algorithm.
This research successfully implement a system using Ant Colony Algorithm to find the optimum
route distribution. The result from this system is a optimum route with an accuracy of 92%.
Keywords: Ant Colony Algorithm, distribution route, the shortest route, weighted graph

Judul Skripsi
Nama
NIM

: Penentuan Rute Optimum dalam Supply Chain Network dengan Algoritma Ant
Colony Untuk Kota dan Kabupaten Bogor
: Indri Widyastuti
: G64080044

Menyetujui:
Pembimbing,

Sony Hartono Wijaya, S.Kom, M.Kom
NIP. 19810809 200812 1 002


Mengetahui:
Ketua Departemen,

Dr. Ir. Agus Buono, M.Si, M.Kom
NIP. 19660702 199302 1 001

Tanggal Lulus:

Penguji :
1. Toto Haryanto, S.Kom, M.Si
2. Dr. Wisnu Ananta Kusuma, S.T, M.T

KATA PENGANTAR
Puji dan syukur penulis panjatkan kepada Tuhan Yang Maha Esa yang telah memberikan
rahmat dan karunia-Nya sehingga skripsi ini dapat diselesaikan. Skripsi ini merupakan hasil
penelitian yang dilakukan dari bulan Februari sampai bulan Juli 2012 dengan bidang kajian
Penentuan Rute Optimum dalam Supply Chain Network dengan Algoritma Ant Colony Untuk
Kota dan Kabupaten Bogor.
Penulis mengucapkan terima kasih kepada semua pihak yang telah memberikan bantuan,

bimbingan, dan dorongan kepada penulis selama menyelesaikan tugas akhir ini, antara lain:
1
2

3
4
5
6
7

Kedua orang tua tercinta, Bapak Sunardi, S.Pd dan Ibunda Anis Maryati, S.Pd yang selalu
memberikan kasih sayang, doa, dan dukungan moral.
Adik-adik tercinta, Taufik Rahmad Ramadhan, R. Bakhrun Adi Nugroho, dan Amin
Probowati Mustikasari yang selalu menjadi motivasi penulis untuk segera menyelesaikan
tugas akhir.
Bapak Sony Hartono Wijaya, S.Kom, M.Kom selaku pembimbing atas ilmu, waktu,
bimbingan, arahan, dan nasihat yang selalu diberikan selama pengerjaan tugas akhir ini.
Bapak Hendra Rahmawan selaku pembimbing akademik yang telah meluangkan waktunya
untuk mendengarkan keluh kesah penulis.
Bapak Toto Haryanto, S.Kom, M.Si dan Bapak Dr. Wisnu Ananta Kusuma, S.T, M.T

selaku dosen penguji yang telah memberikan ide dan saran kepada penulis.
Muhammad Ulul Albab dan rekan-rekan Ilkom 45 yang telah banyak membantu penulis
selama menjalani waktu kuliah di departemen Ilmu Komputer IPB.
Departemen Ilmu Komputer, staf, dan dosen yang telah banyak membantu baik selama
penelitian maupun pada masa perkuliahan.

Penulis menyadari bahwa karya tulis ini masih jauh dari sempurna karena keterbatasan
pengalaman dan pengetahuan yang dimiliki penulis. Segala kesempurnaan hanya milik Tuhan
Yang Maha Esa, semoga hasil penelitian ini dapat bermanfaat, Amin.

Bogor, September 2012

Indri Widyastuti

RIWAYAT HIDUP
Penulis dilahirkan di Sukoharjo pada tanggal 15 Januari 1990 sebagai putri pertama dari
empat bersaudara, dari pasangan Sunardi, S.Pd dan Anis Maryati, S.Pd. Pada tahun 2008, penulis
menyelesaikan pendidikan Sekolah Menengah Atas (SMA) di SMA Negeri 1 Sragen. Pada tahun
yang sama, penulis diterima menjadi mahasiswa S1 Institut Pertanian Bogor (IPB) melalui jalur
Undangan Seleksi Masuk IPB (USMI) dan diterima sebagai mahasiswa Departemen Ilmu

Komputer. Pada tahun 2010-2011, penulis menjabat sebagai sekertaris divisi Marketing and
Relationship di Himpunan Mahasiwa Ilmu Komputer (HIMALKOM). Pada tahun 2011, penulis
melaksanakan Praktik Kerja Lapangan di Divisi Pengembangan dan Pemeliharaan Aplikasi (PPA)
Bank Indonesia dan berhasil menyelesaikan interface dari website kerjasama antara Bank
Indonesia dan Kementerian Keuangan.

DAFTAR ISI
Halaman
DAFTAR TABEL ........................................................................................................................ vi
DAFTAR GAMBAR .................................................................................................................... vi
DAFTAR LAMPIRAN ................................................................................................................ vi
PENDAHULUAN
Latar Belakang ................................................................................................................... 1
Tujuan ................................................................................................................................ 1
Ruang Lingkup ................................................................................................................... 1
TINJAUAN PUSTAKA ................................................................................................................ 1
Supply Chain Management ................................................................................................. 1
Graf .................................................................................................................................... 2
Algoritma Ant Colony ......................................................................................................... 2
METODE PENELITIAN

Pendefinisian Masalah ........................................................................................................ 4
Studi Pustaka ...................................................................................................................... 4
Pembentukan Data .............................................................................................................. 4
Pengembangan Sistem ........................................................................................................ 4
Pengujian dan Analisis Sistem ............................................................................................ 5
HASIL DAN PEMBAHASAN
Pendefinisian Masalah ........................................................................................................ 5
Pembentukan Data .............................................................................................................. 5
Pengembangan Sistem ........................................................................................................ 6
Pengujian dan Analisis Sistem ............................................................................................ 9
SIMPULAN DAN SARAN
Simpulan .......................................................................................................................... 10
Saran ................................................................................................................................ 10
DAFTAR PUSTAKA .................................................................................................................. 10
LAMPIRAN ................................................................................................................................ 11

v

DAFTAR TABEL
Halaman

1 Representasi tingkah laku semut dalam Algoritma Ant Colony.................................................... 2
2 Nilai parameter dengan rata-rata solusi jarak ........................................................................... 7
3 Nilai parameter dengan rata-rata solusi jarak ........................................................................... 7
4 Nilai parameter dengan rata-rata solusi jarak........................................................................... 8
5 Nilai parameter dengan rata-rata solusi jarak............................................................................ 8
6 Nilai parameter m dengan rata-rata solusi jarak ........................................................................... 8
7 Nilai parameter
dengan rata-rata solusi jarak .................................................................... 9
8 Akurasi hasil pengujian rute optimum ....................................................................................... 10

DAFTAR GAMBAR
Halaman
1 Graf berarah. .............................................................................................................................. 2
2 Koloni semut. ............................................................................................................................ 2
3 Metode penelitian. ..................................................................................................................... 4
4 Pembentukan node dan edge. ..................................................................................................... 5
5 Tampilan awal sistem pencarian rute ......................................................................................... 6
6 Hubungan parameter dengan rata-rata solusi jarak. ................................................................. 7
7 Hubungan parameter
dengan rata-rata solusi jarak. ............................................................... 7

8 Hubungan parameter dengan rata-rata solusi jarak. ................................................................ 8
9 Hubungan parameter dengan rata-rata solusi jarak. ................................................................. 8
10 Hubungan parameter m dengan rata-rata solusi jarak. .............................................................. 8
11 Hubungan parameter m = 10, m = 25, m = 50, dan m = 100 dengan waktu eksekusi. ............... 9
12 Hubungan parameter
dengan rata-rata solusi jarak. ........................................................ 9
13 Hubungan antara waktu eksekusi program dengan nilai parameter
. ................................ 9

DAFTAR LAMPIRAN
Halaman
1 Diagram Alur Algoritma Ant Colony ....................................................................................... 12
2 Data node ................................................................................................................................ 13
3 Data edge................................................................................................................................. 14
4 Alur pemanggilan fungsi .......................................................................................................... 18
5 Hasil pengujian Nilai ............................................................................................................ 20
6 Hasil pengujian Nilai ............................................................................................................ 22
7 Hasil pengujian Nilai ........................................................................................................... 24
8 Hasil pengujian nilai ............................................................................................................. 25
9 Hasil pengujian nilai ............................................................................................................ 26

10 Hasil pengujian nilai
..................................................................................................... 29
11 Pengujian rute optimum .......................................................................................................... 31
12 Tampilan representasi rute optimum pada Google Maps ......................................................... 33

vi

1

PENDAHULUAN
Latar Belakang
Persaingan
antarperusahaan
semakin
marak
terjadi
seiring
berkembangnya
teknologi dan permintaan pasar. Suatu
perusahaan harus bisa bersaing agar
produknya tetap bertahan dipasaran. Salah
satu cara agar produk suatu perusahaan bisa
bertahan di pasaran adalah dengan melakukan
manajemen pemasaran dan pendistribusian
dengan baik. Sehingga dibutuhkan manajemen
perusahaan yang dapat menjalankan proses
bisnis dari hulu hingga hilir secara efektif dan
efisien.
Perusahaan
tersebut
harus
mengintegrasikan antara arus informasi
barang dan jasa mulai dari pemasok sampai ke
konsumen sehingga dapat
menambah
keuntungan dari perusahaan. Proses integrasi
ini sering disebut dengan manajemen rantai
pasok (supply chain management).
Salah satu faktor yang dalam supply chain
management yang merupakan faktor utama
dalam pemasaran produk adalah supply chain
network. Supply chain network dibagi menjadi
dua bagian, yaitu lokasi dan jalur produksi.
Penentuan lokasi produksi berpengaruh dalam
pelayanan terhadap konsumen dan pemasaran
produk. Untuk penentuan jalur produksi yang
tepat dapat meminimalkan waktu distribusi
dan jarak tempuh.
Pada
penelitian
sebelumnya
telah
dilakukan pencarian rute optimum daerah
Bogor menggunakan Algoritma Genetika
(Marwantoni
2009).
Penelitian
ini
mengoptimumkan waktu tempuh dari titik asal
ke titik tujuan. Ada pula penelitian
sebelumnya tentang penentuan lokasi dan
jalur distribusi daerah Bogor menggunakan
Algoritma Djikstra (Priasa 2008). Penelitian
ini menentukan lokasi, dimana lokasi tersebut
paling optimum untuk mejangkau setiap
tujuan pada Kota Bogor. Perbedaan dari kedua
Algoritma Genetika dan Algoritma Djikstra
adalah Algoritma Genetika merupakan salah
satu metode heuristik. Sedangkan Algoritma
Dijkstra
adalah
salah
satu
metode
konvensional. Metode konvensional dihitung
dengan
perhitungan
matematis
biasa,
sedangkan metode heuristik dihitung dengan
menggunakan sistem pendekatan. Algoritma
Ant Colony salah satu dari metode heuristik,
dengan perhitungan pendekatan untuk
mendapatkan nilai yang mendekati optimum.
Kelebihan dari Algoritma Ant Colony antara
lain: dapat memberikan alternatif jawaban,
memberikan
positive
feedback
dalam

menentukan solusi dengan cepat, yaitu
meninggalkan feromon pada jalur yang
dilalui, yang disebut dengan feromon adalah
zat kimia yang berasal dari kelenjar endokrin
dan digunakan oleh makhluk hidup untuk
mengenali sesama jenis. Kekurangan dari
Algoritma Ant Colony, yaitu analisis secara
teoritik lebih sulit daripada eksperimen, waktu
konvergensi tidak pasti, namun pasti
konvergen, probabilitas dalam memilih suatu
titik berubah-ubah sesuai siklus.
Penelitian ini merancang supply chain
network yang berfokus pada penentuan jalur
distribusi untuk mendapatkan rute optimum
dengan jarak tempuh terpendek dan waktu
tempuh tercepat. Penelitian ini menggunakan
Algoritma Ant Colony. Hasil dari perancangan
ini diimplementasikan dalam bentuk website
yang dapat memudahkan perusahaan dalam
pengaksesannya.
Tujuan
Tujuan dari penelitian ini adalah
merancang supply chain network untuk
menentukan rute pendistribusian yang
optimum dengan menggunakan Algoritma Ant
Colony.
Ruang Lingkup
Ruang lingkup penelitian ini adalah:
 Data yang digunakan adalah data dari
penelitian sebelumnya oleh Marwantoni,
yaitu daerah Kota Bogor dan beberapa
tambahan daerah Kabupaten Bogor
wilayah Barat.
 Sistem dibuat untuk untuk memberikan
rute distribusi dari tempat produksi ke satu
tempat tujuan.

TINJAUAN PUSTAKA
Supply Chain Management
Supply Chain adalah jaringan perusahaanperusahaan yang secara bersama-sama bekerja
untuk menciptakan dan menghantarkan suatu
produk ke tangan pemakai akhir. Perusahaanperusahaan tersebut termasuk supplier, pabrik,
distributor, toko atau ritel, serta perusahaan
pendukung seperti jasa logistik. Ada 3 macam
hal yang harus dikelola dalam supply chain
yaitu:
1 Aliran barang dari hulu ke hilir contohnya
bahan baku yang dikirim dari supplier ke
pabrik, setelah produksi selesai dikirim ke

2

distributor, pengecer, kemudian ke
pemakai akhir.
2 Aliran uang dan sejenisnya yang mengalir
dari hilir ke hulu.
3 Aliran informasi yang bisa terjadi dari
hulu ke hilir atau sebaliknya.
Sedangkan supply chain management atau
manajemen rantai pasok adalah metode, alat
atau pendekatan pengelolaan dari pasokan
bahan baku, produksi barang, maupun
pengiriman barang sampai ke konsumen untuk
menciptakan pelayanan yang lebih baik dan
efisien sehingga dapat memuaskan permintaan
pasar
(Ayers
2001).
Supply
chain
management tidak hanya berorientasi pada
urusan internal melainkan juga eksternal
perusahaan yang menyangkut hubungan
dengan perusahaan-perusahaan partner. Jadi,
dengan kata lain supply chain management
(SCM) merupakan integrasi proses-proses
bisnis kunci dari pengguna akhir sampai ke
pemasok awal yang menyediakan produk,
jasa, dan informasi yang memberikan nilai
tambah untuk pelanggan dan pihak-pihak
terkait lainnya.

Gambar 1 Graf berarah.
Algoritma Ant Colony
Algoritma Ant Colony adalah algoritma
yang diadopsi dari perilaku koloni semut.
Secara alamiah koloni semut mampu
menemukan rute terpendek dalam perjalanan
dari sarang ke tempat-tempat sumber makanan
(Dorigo & Stutzle 2004). Sebagai ilustrasi
koloni semut dalam pencarian rute terpendek
dapat dilihat pada Gambar 2.

Graf
Graf digunakan untuk merepresentasikan
objek-objek diskrit dan hubungan antara
objek-objek tersebut. Graf G merupakan
pasangan himpunan tidak kosong dari V(G)
yang disebut dengan verteks atau node dan
himpunan E(G) yang menghubungkan antara
dua node yang disebut dengan himpunan
edge (Chartrand & Ollerman 1993).
Graf G = (V, E), yang dalam hal ini:
V = himpunan tidak-kosong dari simpulsimpul (vertices)
= { v1 , v2 , ... , vn }
E = himpunan
sisi
(edges)
yang
menghubungkan sepasang simpul
= {e1 , e2 , ... , en }
Berdasarkan orientasi arah pada sisi, maka
secara umum graf dibedakan atas 2 jenis:
 Graf tak-berarah (undirected graph)
Graf yang sisinya tidak mempunyai
orientasi arah disebut graf tak-berarah.
 Graf berarah (directed graph atau digraph)
Graf yang setiap sisinya diberikan
orientasi arah disebut sebagai graf berarah.
Graf berarah dalat dilihat pada Gambar 1.

Gambar 2 Koloni semut.
Tabel 1 merupakan representasi koloni
semut dalam dunia nyata dan saat
diimplemntasikan pada Algoritma Ant Colony.
Tabel 1 Representasi tingkah laku semut
dalam Algoritma Ant Colony
Algoritma Ant
Kenyataan
Colony
Habitat alami

Graf

Sarang dan makanan

Node pada graf; asal
dan tujuan

Koloni semut

Agents

Visibilitas
Feromon

Feromon buatan;

Perilaku mencari
makanan

Perjalanan
secara
acak melaui graf

3

Beberapa langkah untuk menentukan jalur
terpendek, yaitu:
Langkah 1:
a Inisialisasi parameter-parameter algoritma.
Parameter – parameter tersebut adalah:

Langkah 4:

 Intensitas jejak semut antarnode dan
perub h nny ( ij).
 Banyaknya node (n) dan jarak
antarnode (dij).
 Tetapan pengendali intensitas jejak
semut (α).
 Tetapan pengendali visibilitas (β).
 Visibilitas antarnode = atau ( ).

1 Perhitungan panjang rute setiap semut.
Perhitungan panjang rute tertutup (length
closed tour) atau
setiap semut dilakukan
setelah satu siklus diselesaikan oleh semua
semut. Perhitungan dilakukan berdasarkan
masing-masing dengan Persamaan 2
berikut:

 Banyaknya semut (m).
 Tetapan penguapan jejak semut () .
 Jumlah siklus maksimum (Nmax).

dengan dij adalah jarak antara node i ke node
j.

b Inisialisasi node pertama pada setiap
semut.
Langkah 2:
Inisialisasi kota pertama setiap semut
dalam Langkah 1 harus diisikan sebagai
elemen pertama tabulis. Hasil dari langkah ini
adalah terisinya elemen pertama tabulis semut
dengan indeks node tertentu, yang berarti
bahwa setiap tabuk (1)
bisa berisi
indeks kota awal sebagaimana hasil
inisialisasi pada Langkah 1.
Langkah 3
Penyusunan rute kunjungan setiap semut
ke setiap node. Koloni semut yang sudah
berada di sebuah kota, akan mulai melakukan
perjalanan dari kota pertama sebagai node asal
dan salah satu node-node lainnya sebagai
node tujuan. Kemudian dari node kedua
masing-masing,
koloni
semut
akan
melanjutkan perjalanan dengan memilih salah
satu dari node-node yang tidak terdapat pada
tabuk sebagai node tujuan selanjutnya.
Perjalanan koloni semut berlangsung terus
menerus sampai menemukan kota tujuan atau
bila sudah terjadi kekonvergenan. Jika s
menyatakan indeks urutan kunjungan, node
asal dinyatakan sebagai tabuk (s) dan nodenode lainnya dinyatakan sebagai { N- tabuk },
maka Persamaan 1 digunakan untuk
menentukan
node
tujuan
digunakan
persamaan probabilitas node
untuk
dikunjungi sebagai berikut:
p

untuk j
{ N- tabuk } dan p = 0 untuk j
lainnya. Dengan i sebagai indeks node asal
dan j sebagai indeks node yang akan dituju.
Indeks k adalah nomor dari semut.

α



β
α

-

β

(1)

∑n

bu

(2)

bu

2 Pencarian rute terpendek.
Setelah
setiap semut dihitung, maka
didapat harga minimal panjang rute setiap
siklus atau
n .
Langkah 5
1 Perhitungan perubahan harga intensitas
feromon semut antarkota.
Koloni semut akan meninggalkan jejakjejak kaki pada lintasan antarkota yang
dilaluinya. Adanya penguapan dan perbedaan
jumlah semut yang lewat, menyebabkan
kemungkinan terjadinya perubahan harga
intensitas jejak kaki semut antar-node.
Persamaan 3 untuk penguapan feromon
adalah:
ij =

(1- )

(3)

ij

Persamaan 4 digunakan untuk menghitung
perubahan feromon karena banyaknya semut
yang melewati suatu edge adalah:
{

e e

bu
nny

(4)

dengan
adalah perubahan harga
intensitas feromon semut antar-node setiap
semut yang dihitung.
adalah panjang rute
tertutup dari semut k.
2 Perhitungan harga intensitas jejak kaki
semut antar-node untuk siklus selanjutnya.
Harga intensitas jejak kaki semut antar
kota pada semua lintasan antar kota ada
kemungkinan
berubah karena
adanya
penguapan dan perbedaan jumlah semut yang
melewati. Untuk siklus selanjutnya, semut
yang melewati lintasan tersebut harga
intensitasnya telah berubah. Harga intensitas

4

jejak kaki semut antar kota untuk siklus
selanjutnya dihitung dengan Persamaan 5:
ij

ij(lama)

+

(5)

ij

adalah penentuan rute optimum dalam supply
chain network menggunakan Algoritma Ant
Colony.
Studi Pustaka

Langkah 6
Pengosongan tabulis, dan ulangi langkah 2
jika diperlukan. Tabulis perlu dikosongkan
untuk diisi lagi dengan urutan kota yang baru
pada siklus selanjutnya, jika jumlah siklus
maksimum belum tercapai atau belum terjadi
konvergensi. Algoritma diulang lagi dari
langkah 2 dengan harga parameter intensitas
jejak kaki semut antar node yang sudah
diperbaharui.
Alur dari Algoritma Ant Colony diatas
dapat dilihat pada Lampiran 1.

METODE PENELITIAN
Penelitian ini akan dilakukan dalam
beberapa tahapan. Gambar 3 menunjukan
metode yang digunakan dalam penelitian ini.
Mulai

Pendefinisian
Masalah

Studi Pustaka

Pembentukan
Data

Pengembangan
Sistem

Data

Sistem Ant
Colony
Pengujian dan
Analisis Sistem

Dokumentasi

Selesai

Gambar 3 Metode penelitian.
Pendefinisian Masalah
Tahap ini menentukan permasalahan yang
dapat dipecahkan melalui penelitian ini.
Masalah yang diambil untuk penelitian ini

Tahap studi pustaka, merupakan tahapan
dimana pengumpulan informasi dan literatur
yang berkaitan dengan penelitian terkait.
Literatur yang didapat berupa jurnal, buku,
dan artikel yang berkaitan dengan Algoritma
Ant Colony dalam pencarian rute optimum.
Pembentukan Data
Penelitian kali ini menggunakan data peta
jalan Kota dan beberapa persimpangan di
Kabupaten Bogor Barat. Penggunaan data
tersebut dalam penelitian ini dengan
mengubahnya dalam bentuk graf. Komponen
dalam
graf
berupa
node,
yang
merepresentasikan persimpangan jalan atau
tempat, dan edge yang merepresentasikan ruas
jalan yang menghubungkan dua atau lebih
persimpangan. Setelah graf terbentuk, data
yang dibutuhkan selanjutnya adalah data jarak
dan waktu antar-node. Semua data yang
digunakan dalam penelitian ini didapatkan
dari penelitian Marwantoni (2009), dengan
beberapa tambahan data node, yaitu tempat
jual beli (pasar dan supermarket).
Sistem ini akan merepresentasikan graf
yang telah dibentuk menggunakan Google
Maps, sehingga membutuhkan data tambahan
lainnya berupa latitude dan longitude dari
setiap node, dan menambahkan encoded line
dan level. Data latitude dan longitude
diperoleh secara manual dengan bantuan
website
http://itouchmap.com/latlong.html,
sedangkan data encode line dan level
didapatkan
dengan
bantuan
website
https://developers.google.com/maps/document
ation/utilities/polylineutility.
Pengembangan Sistem
Tahap pengembangan sistem mengikuti
alur dari Algoritma Ant Colony, yaitu
initialisasi parameter, menentukan node
selanjutnya yang akan dituju dengan
menggunakan probabilitas, menghitung jarak
tempuh, dan memperbarui feromon.
1 Initialisasi parameter.
Parameter yang diinisialisasi adalah
αβ
dan
. Nilai awal untuk
masing-masing parameter yang digunakan
adalah 0 = 0.5, α 1, β 0.99, m = 100, dan
Nmax. = 500 (Khan 2004).

5

2 Menentukan node selanjutnya yang akan
dituju.
Pemilihan
node
selanjutnya
yang
dilakukan oleh semut berdasarkan bilangan
random (0,1) kemudian dibandingkan dengan
nilai
probabilitas
dari
edge
yang
menghubungkan current node dengan node
yang akan dituju. Semut akan memilih edge
dengan nilai probabilitas yang lebih besar
dibandingkan dengan bilangan random. Semut
akan berhenti melakukan perjalanan jika telah
sampai pada node tujuan.
3 Menghitung jarak tempuh.
Algoritma Ant Colony menggunakan
agents semut buatan yang memiliki memori
untuk menyimpan node-node yang pernah
dilaluinya, yang disebut dengan tabulis. Jarak
akan dihitung jika semut telah menyelesaikan
tur dari asal sampai ke tujuan. Jarak ini
disebut dengan
, untuk menghitung
menggunakan Persamaan 2. Jika satu siklus
telah diselesaikan oleh setiap semut, maka
didapatkan
n , merupakan rute minimum
dari setiap siklus. Rute yang paling pendek
dari setiap siklus merupakan solusi yang akan
diberikan kepada user.
4 Memperbarui feromon.
Proses ini dilakukan setiap satu siklus
selesai dilakukan oleh semua semut.
Memperbarui feromon dibagi menjadi dua
proses, evaporasi dan deposit. Evaporasi
merupakan
penguapan
feromon
yang
disebabkan oleh jarak yang ditempuh untuk
melalui satu rute terlalu jauh sehingga
feromon yang ditinggalkan intensitasnya
berkurang.
Sedangkan deposit
adalah
penambahan intensitas feromon pada suatu
rute. Semakin pendek jarak tempuh suatu rute,
maka semut akan semakin sering melewati
rute tersebut, sehingga penambahan feromon
pada rute tersebut akan lebih besar.

 Perangkat keras: Processor Intel Core 2
Duo P7350, DDRAM 2GB, Harddisk 320
GB.
 Perangkat lunak: Windows 7 Ultimate,
XAMPP 1.7.7, PHP 5.3.8, Notepad++
Pengujian dan Analisis Sistem
Proses pengujian sistem terhadap rute
distribuasi optimum yang dihasilkan oleh
sistem. Input yang digunakan menggambil 5
buah sampel secara acak, yaitu 5 buah node
asal dan 5 buah node tujuan. Setiap input
diulang sebanyak 10 kali. Perhitungan akurasi
untuk setiap sampel dengan cara:
ur



bern
y n



ben r
u

HASIL DAN PEMBAHASAN
Pendefinisian Masalah
Penentuan rute optimum dalam Supply
Chain Network dapat didapat dari penggunaan
Algoritma Ant Colony, yang terintegrasi
dalam Sistem Informasi Rute Optimum Kota
Bogor dan Kabupaten Bogor wilayah Barat.
Pembentukan Data
Pembentukan node dan edge dapat dilihat
pada Gambar 4. Dari Gambar 4, node 1
merupakan titik persimpangan dua jalan, yaitu
Jalan Mawar dan Jalan Doktor Semeru,
sedangkan node 2
merupakan titik
persimpangan Jalan Doktor Semeru dan Jalan
Mawar. Edge merupakan penghubung antarnode, dalam Gambar 4 edge yang
menghubungkan node 1 dan node 2 adalah
Jalan Doktor Semeru.

Penentuan Nilai Parameter
Penentuan
nilai
parameter
dalam
dilakukan dengan mengubah nilai parameter
pada Algoritma Ant Colony yang digunakan,
yaitu α β
dan
. Node yang
digunakan untuk pengujian adalah Node 21
sebagai node awal dan node 24 sebagai node
tujuan.
Lingkungan Pengambangan Sistem
Implementasi dari sistem ini menggunakan
bahasa pemrograman PHP dan DBMS
MySQL. Spesifikasi perangkat keras dan
perangkat lunak komputer yang digunakan
dalam penelitian ini sebagai berikut:

1

2

Gambar 4 Pembentukan node dan edge.
(http://maps.google.com)

6

Untuk node pasar atau supermarket
dibentuk dengan meletakkan titik pasar atau
supermarket pada titik persimpangan terdekat.
Setelah mendapatkan data node dan edge, data
tambahan lainnya adalah latitude dan
longitude untuk setiap node, dan encoded line
dan levelnya untuk setiap edge. Contoh data
lengkap yang digunakan untuk sistem ini
adalah:

Tujuan dari pembuatan fungsi cariRute()
adalah menyimpan node yang dihasilkan dari
subfungsi cariNextNode() ke dalam
tabulis. Node-node yang berada dalam tabulis
inilah yang menjadi rute dari perjalanan
semut, dan sekaligus menyimpan jarak
tempuh dari rute yang dihasilkan. Selanjutnya
fungsi cariRute()mengecek apakah rute
yang dihasilkan sampai ke tujuan atau tidak.

 Node
Id node
Nama node
Keterangan node

 Fungsi Perubahan Feromon
Fungsi UpdatePheromon() ini dibuat
untuk melakukan update feromon yang terdiri
dari evaporasi dan deposit. Perhitungan dari
fungsi ini mengimplementasikan Persamaan 3
untuk evaporasi dan Persamaan 4 dan 5 untuk
deposit feromon. Update feromon dilakukan
jika setiap satu siklus selesai dilakukan.

Latitude
Longitude
 Edge
Nama edge
Keterangan edge
Node awal
Node akhir
Jarak (meter)
Waktu (detik)
Encoded line
Level

=1
= Node 1
= Jalan Padjajaran –
Jalan Otto
Iskandardinata
= -6.601411
= 106.805222
= E8
= Jalan Pangrango
=3
= 34
= 79
=5
= ppfg@eh{jSUv@Nv
@
= BBBBBB

Data node selengkapnya dapat dilihat pada
Lampiran 2. Sedangkan data edge dapat
dilihat pada Lampiran 3.

Setelah semua fungsi terbentuk, dilakukan
pemanggilan fungsi berdasarkan pada alur
algoritma, sehingga menghasilkan sebuah rute
dengan jarak tempuh yang optimum. Alur dari
pemanggilan fungsi dapat dilihat pada
Lampiran 4. Rute optimum dari hasil sistem
Algeritma Ant Colony ini disimpan dalam
sebuah array bernama ruteMin. Array
inilah yang diimplementasikan pada Google
Maps untuk divisualisasikan. Tampilan untuk
halaman awal dari sistem ini dapat dilihat
pada Gambar 5.

Pengembangan Sistem
Pengembangan sistem dilakukan sesuai
dengan alur dari algoritma Ant Colony,
kemudian dilanjutkan dengan pengintegrasian
hasil sistem Algoritma Ant Colony pada
Google Maps. Berdasarkan pada alur
algoritma Ant Colony, pengembangan sistem
dibagi menjadi 3 fungsi, yaitu:
 Fungsi Mencari Probabilitas
Fungsi cariProbability() ini dibuat
untuk mencari peluang setiap node yang
dipilih
oleh
semut.
Fungsi
ini
mengimplementasikan Persamaan 1 dalam
menghitung
peluangnya.
Hasil
dari
perhitungan peluang di simpan sebagai
informasi tambahan pada edge yang
menghubungkan antar-node.
 Fungsi Mencari Rute
Fungsi cariRute()
ini
memiliki
subfungsi yang bertujuan untuk mencari nodenode selanjutnya yang dipilih oleh semut
dalam menentukan rute terpendek, yaitu
fungsi cariNextNode(), hasil dari subfungsi
ini digunakan pada fungsi cariRute().

Gambar 5 Tampilan awal sistem pencarian rute
optimum.
Penentuan Nilai Parameter
Proses
penentuan
nilai
parameter
dilakukan membandingkan rata-rata solusi
jarak yang dihasilkan oleh sistem. Pengolahan
dilakukan pada komputer dengan spesifikasi:
 Processor AMD Phemon II X2 550
 DDRAM 4GB
 Harddisk 250 GB
 Sistem Operasi Windows 7 Professional
Proses ini bertujuan menentukan nilai
parameter-parameter yang paling optimal,

7

yang terdiri atas pengujian parameter α
dengan variasi nilai 0, 0.5, 1, 2, dan 5.
Parameter dengan variasi nilai 0, 0.5, 1, 2,
dan 5. Parameter
dengan variasi nilai
0.000005, 0.5, 5. Parameter dengan variasi
nilai 0.1, 0.5, 0.9. Parameter dengan variasi
nilai 1, 2, 5, 10, 25, 50, 100, dan parameter
dengan nilai variasi 5, 10, 100, 500
(Doringo dan Stutzle 2004). Setiap nilai
parameter diuji sebanyak 10 kali perulangan.

Nilai parameter yang diuji adalah 0. 0.5,
1, 2, dan 5. Sedangkan untuk nilai parameter
yang lainnya seperti α
dan
dianggap tetap, secara berurutan yaitu 0.5, 0.5,
0.1, 5, dan 10. Sama seperti halnya pengujian
, setiap nilai dalam parameter
diulang
sebanyak 10 kali. Hasil pengujian dapat
dilihat pada Lampiran 6. Nilai parameter
dan rata-rata hasil uji masing-masing nilai
dapat dilihat pada Tabel 3.

Dalam menentukan parameter optimal ,
nilai parameter Algoritma Ant Colony yang
terdiri atas β
dan
nilainya
tetap, secara berurut yaitu 0.5, 0.5, 0.1, 5, dan
10. Hasil Pengujian dapat dilihat pada
Lampiran 5. Parameter
yang optimal
didapatkan dengan memilih nilai
yang
menghasilkan rata-rata solusi jarak yang
paling kecil, karena semakin kecil rata-rata
solusi jarak, menujukkan nilai
tersebut
sering menghasilkan solusi jarak yang
minimum. Rata-rata solusi jarak yang
dihasilkan oleh setiap parameter
dapat
dilihat pada Tabel 2.

Tabel 3 Nilai parameter
dengan rata-rata
solusi jarak
Rata-rata solusi jarak
Nilai
(meter)
0
3916.5
0.5
3939
1
4306.6
2
4579.5
5
5346

Tabel 2 Nilai parameter
dengan rata-rata
solusi jarak
Rata-rata solusi jarak
Nilai
(meter)
0
4025.1
0.5
4003.8
1
3873
2
3988.4
5
4029
Pada Gambar 6 dapat dilihat grafik
hubungan nilai parameter dengan rata-rata
solusi jarak.
Gambar 6

Hubungan parameter

Pada Gambar 7 menunjukkan hubungan
parameter dengan nilai rata-rata solusi jarak.
Dari Gambar 7 dapat dilihat semakin besar
nilai , menghasilkan solusi jarak yang jauh
dari minimum, bahkan mendekati solusi jarak
yang maksimum. Nilai = 0 memiliki ratarata yang kecil dibandingkan
= 0.5,
sehingga untuk nilai optimal parameter
memilih nilai yang memiliki rata-rata jarak
yang minimum, yaitu saat = 0. Karena pada
saat 10 kali percobaan = 0 hanya melakukan
kesalahan 1 kali dalam menghasilkan jarak
minimum, sedangkan
= 0.5 melakukan
kesalahan
sebanyak
4
kali
dalam
menghasilkan jarak minimum.

dengan

Gambar 7 Hubungan parameter
rata-rata solusi jarak.
rata-rata solusi jarak.
Dari Gambar 6 dapat dilihat nilai
parameter = 1 memiliki rata-rata solusi jarak
paling kecil. Dengan demikian, saat
= 1
cenderung
menghasilkan
solusi
yang
mendekati optimum.

dengan

Nilai parameter
yang diuji adalah
0.000005, 0.5, dan 5. Sedangkan nilai
parameter yang lain seperti α β
dan
dianggap tetap, secara berurutan
nilainya adalah 0.5, 0.5, 0.1, 5, 10. Hasil
pengujian ini dapat dilihat pada Lampiran 7.
Nilai parameter dan rata-rata hasil uji dapat
dilihat pada Tabel 4.

8

Tabel 4 Nilai parameter
dengan rata-rata
solusi jarak
Rata-rata solusi jarak
Nilai
(meter)
0.000005
3962.9
0.5
3946.5
5
3961.5

parameter yang lain dianggap tetap, yaitu
0.5, = 0.5,
= 0.5, = 0.1, dan
10.

=
=

Pada Gambar 8 dapat dilihat hubungan
antara nilai
dengan rata-rata solusi jarak.
Dari Gambar 8 dapat dilihat bahwa dari ketiga
nilai yang diujikan, = 0.5 memiliki ratarata solusi jarak yang paling kecil
dibandingkan nilai yang lainnya.
Gambar 9

Hubungan parameter
rata-rata solusi jarak.

dengan

Hasil pengujian dapat dilihat pada
Lampiran 9. Pada Tabel 6 menunjukkan nilai
parameter m dan rata-rata solusi jarak.

Gambar 8

Hubungan parameter
rata-rata solusi jarak.

dengan

Nilai parameter yang diuji adalah 0.1,
0.5, dan 0.9. sedangkan nilai parameter yang
α β
dan
dianggap tetap, secara
terurut nilainya adalah 0.5, 0.5, 0.5, 5, dan 10.
Hasil pengujian parameter dapat dilihat pada
Lampiran 8. Nilai parameter dan rata-rata
hasil uji dalat dilihat pada Tabel 5.
Tabel 5 Nilai parameter
dengan rata-rata
solusi jarak
Rata-rata solusi jarak
Nilai
(meter)
0.1
4058.8
0.5
4037.1
0.9
3947.2

Tabel 6 Nilai parameter m dengan rata-rata
solusi jarak
Rata-rata solusi jarak
Nilai m
(meter)
1
5872.9
2
4725.3
5
4307.1
10
4061.1
25
3992.2
50
3924
100
3909
Pada Gambar 10 menunjukkan hubungan
parameter m dengan rata-rata solusi jarak.
Semakin besar jumlah semut, makan semakin
sering mendapatkan nilai solusi yang
optimum. Pada Gambar 10 juga menunjukkan
hanya nilai m = 10, m = 25, m = 100, dan m =
500 yang memiliki selisih yang kecil
antarrata-rata solusi jarak. Sehingga perlu
melihat waktu eksekusi dari keempat nilai
parameter m tersebut untuk menentukan nilai
parameter mana yang paling optimal.

Pada Gambar 9 menunjukkan hubungan
parameter
dengan rata-rata solusi jarak.
Pada nilai = 0.9 memiliki rata-rata paling
rendah, sebesar 3947.2 meter, karena pada
saat pengujian nilai
= 0.9 sering
menghasilkan solusi jarak yang optimum dan
mendekati optimum. Sehingga nilai untuk
parameter yang optimal adalah saat = 0.9.
Selanjutnya pengujian terhadap parameter
m dan Nmax. Parameter ini berpengaruh
terhadap lamanya waktu pemrosesan dan
kekonsistenan dalam mendapatkan solusi
optimal. Nilai parameter m yang diujikan
adalah 1, 2, 5, 10, 25, 50, 100, dengan nilai

Gambar 10 Hubungan parameter m dengan
rata-rata solusi jarak.

9

Waktu eksekusi dari keempat nilai
parameter m terdapat pada Gambar 11. Dari
Gambar 11 didapatkan nilai parameter m yang
paling optimal untuk sistem ini adalah saat m
= 10.

Gambar 11 Hubungan parameter m = 10, m =
25, m = 50, dan m = 100 dengan
waktu eksekusi.
Parameter terakhir yang diuji adalah
Nmax. Nilai parameter yang diujikan adalah
5, 10, 100, 500. Dan nilai parameter lainnya
dianggap tetap, yaitu = 0.5, = 0.5,
=
0.5, = 0.1, dan m = 5. Kriteria berhenti dari
Algoritma Ant Colony apabila jumlah siklus
dilakukan oleh koloni semut sama dengan
. Hasil pengujian dapt dilihat pada
Lampiran 10. Tabel 7 menunjukkan nilai
parameter
dan hasil rata-rata solusi
jarak.
Tabel 7 Nilai parameter
dengan ratarata solusi jarak
Rata-rata solusi jarak
Nilai
(meter)
5
3909
10
3909
50
3909
100
3909
Hubungan parameter
dengan nilai
rata-rata solusi jumlah dapat dilihat pada
Gambar 12.

Dari Gambar 12 dapat dilihat bahwa
semua nilai
menghasilkan solusi jarak
yang seragam. Oleh sebab itu, hubungan ini
belum bisa digunakan untuk menentukan
parameter optimum dan
. Penentuan
parameter optimum
menggunakan
waktu eksekusi program. Gambar 13
menunjukkan hubungan antara waktu
eksekusi program dengan nilai parameter
. Semakin besar nilai parameter
maka membutuhkan waktu eksekusi yang
lebih lama.
Hasil pengujian menujukkan bahwa
parameter
yang optimal adalah 5,
karena hanya membutuhkan waktu 436
milidetik sistem ini dapat menghasilkan rute
optimum.

Gambar 13 Hubungan antara waktu eksekusi
program dengan nilai parameter
.
Hasil pengujian parameter α β
didapat nilai optimum sebagai berikut:
1,
,
5, dan
0.9. Sedangkan
untuk parameter
didapat nilai 10 semut,
karena dengan 10 semut menghasilkan nilai
optimum yang konsisten. Parameter
didapat nilai 5 siklus, Karena dengan 5 siklus
sudah menghasilkan nilai optimum yang
konsisten dan waktu eksekusi program yang
cukup cepat.
Pengujian dan Analisis Sistem

Gambar 12

Hubungan parameter
dengan rata-rata solusi jarak.

Pengujian rute optimum dilakukan dengan
mengambil asal dan tujuan sebanyak 5
sampel secara acak, kemudian setiap sampel
dilakukan perulangan sebanyak 10 kali. Hasil
dari pengujian dapat dilihat pada Lampiran
11. Tampilan hasil dari representasi rute
optimum ke dalam Google Maps dapat dilihat
pada Lampiran 12. Rata-rata akurasi
pengujian rute optimum dapat dilihat pada
Tabel 8.

10

Tabel 8 Akurasi hasil pengujian rute optimum
Sampel
Sampel 1
Sampel 2
Sampel 3
Sampel 4
Sampel 5

Akurasi
100%
100%
100%
60%
100%

Pada Tabel 8 dapat dilihat ada satu sampel
yang berakurasi rendah, yaitu Sampel 4
dengan akurasi 60%. Hal ini disebabkan oleh
saat
penentuan parameter m lebih
menitikberatkan pada aspek kecepatan
pemrosesan algoritma daripada aspek
kekonsistenan dalam menghasilkan solusi,
yaitu dengan memilih nilai parameter m yang
memiliki waktu pemrosesan paling kecil,
namun mendekati stabil dalam menghasilkan
solusi rute optimum. Sehingga sistem masih
menghasilkan dua solusi jarak, yaitu 2982
meter dan 3001 meter, dengan selisih jarak
sebesar 19 meter. Jarak 19 meter ini bila
dilihat dalam dunia nyata tidak begitu
signifikan.
Namun, secara keseluruhan sistem ini
dapat menentukan rute dengan jarak terpendek
dengan akurasi 92%.

SIMPULAN DAN SARAN
Simpulan
Berdasarkan hasil penelitian didapatkan
beberapa kesimpulan, yaitu:
 Perancangan supply chain network dalam
menentukan rute optimum dapat dilakukan
menggunakan Algoritma Ant Colony dan
dapat direpresentasikan dalam Google
Maps.
 Nilai parameter yang digunakan pada
penelitian ini untuk mendapatkan jarak
yang minimum adalah
1,
,
5, dan
0.9, m = 10, dan Nmax
= 5.
 Pencarian rute optimum menggunakan
Algoritma Ant Colony pada sistem ini
memiliki akurasi sebesar 92%
Saran
Beberapa saran yang dapat dilakukan
untuk penelitian selanjutnya antara lain:


Mengembangkan sistem ini dengan
mengakomodasikan masalah kepadatan
lalu lintas dengan membedakan antara
waktu sibuk dan waktu tidak sibuk.



Mengembangkan sistem ini agar memiliki
waktu komputasi yang lebih cepat dan
akurasi
solusi
yang
lebih
baik
menggunakan algoritma Multi Agents Ant
Colony Optimization.

DAFTAR PUSTAKA
Ayers B. 2001. Handbook of Supply Chain
Management. USA: St. Lucie Press.
Chartrand G, Oellermann OR. 1993. Applied
and Algoritmic Graph Theory. New
Jersey: McGraw-Hill.
Dorigo M, Stutzle T. 2004. Ant Colony
Optimization. Massachusetts Institute of
Technology: USA.
Khan Md M R. 2004. Ant System to Find the
Shortest Path. Di dalam : 3rd International
Conference on Electrical & Computer
Engineering ICECE; Dhaka, 28-30
Desember 2004. Bangladesh.
Marwantoni D. 2009. Penentuan Rute
Optimum Jalur Distribusi dalam Supply
Chain Network Menggunakan Algoritme
Genetika [skripsi].
Bogor: Institut
Pertanian Bogor.
Priasa A. 2008. Perancangan supply chain
network untuk penentuan lokasi produksi
dan jalur distribusi [skripsi]. Bogor:
Fakultas
Matematika
dan
Ilmu
Pengetahuan Alam, Institut Pertanian
Bogor.

11

LAMPIRAN

12

Lampiran 1 Diagram Alur Algoritma Ant Colony
mulai

Inisialisasi parameter

i=0

i < jumlahSemut

Tidak

Menghitung jarak tempuh
terbaik

Ya
Menetukan titik selanjutnya
dengan persamaan 1

Menghitung jarak tempuh dengan
persamaan 2

Mencatat jarak tempuh
terbaik

Mengubah pheromon dengan
persamaan 3, 4, dan 5

selesai

13

Lampiran 2 Data node
Id
Node
1
2

Node 1
Node 2

3

Node 3

4
5
6
7
8
9
10
11
12
13
14
15
16

Node 4
Node 5
Node 6
Node 7
Node 8
Node 9
Node 10
Node 11
Node 12
Node 13
Node 14
Node 15
Node 16

17

Node 17

18
19
20
21
22
23
24
25
26

Node 18
Node 19
Node 20
Node 21
Node 22
Node 23
Node 24
Node 25
Node 26

27

Node 27

28

Node 28

29

Node 29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Node 30
Node 31
Node 32
Node 33
Node 34
Node 35
Node 36
Node 37
Node 38
Node 39
Node 40
Node 41
Node 42
Node 43
Node 44
Node 45
Node 46
Node 47
Node 48

Nama Node

Keterangan Node

Latitude

Longitude

Jalan Padjajaran - Jalan Otto Iskandardinata
Jalan Padjajaran - Jalan Jalak Harupat
Jalan Padjajaran - Jalan Pangrango - Jalan
Lodaya I
Jalan Padjajaran - Jalan Salak - Jalan Lodaya II
Jalan Salak - Jalan Jalak Harupat
Jalan Padjajdran - Tol Jagorawi
Jalan Otto Iskandardinata - Jalan Bangka
Jalan Otto Iskandardinata - Jalan Roda
Jalan Padjajaran - Jalan Sambu
Jalan Bangka - Jalan Sambu
Pasar Bogor
Jalan Roda - Jalan Surya Kencana
Jalan Ir. H. Juanda - Jalan Paledang
Jalan Ir. H. Juanda - Jalan Kapten Muslihat
Jalan Ir. H. Juanda - Jalan Gedong Sawah I
Jalan Paledang - Jalan Kapten Muslihat
Jalan Veteran - Jalan Merdeka - Jalan Kapten
Muslihat
Plaza Jembatan Merah
Jalan Perintis Kemerdekaan - Jalan Dr. Semeru
Jalan Merdeka - Jalan Dr. Semeru
Jalan Kapten Muslihat - Jalan Raja Permas
Pasar Anyar
Jalan M.A. Salamun - Jalan Merdeka
Jalan Ahmad Yani - Jalan Padjajaran
Jalan Mandalawangi - Jalan Pangrango
Jalan Pangrango I - Jalan Jarak Harupat
Jalan Ir. H. Juanda - Jalan Jalak Harupat - Jalan
Sudirman
Jalan Pengadilan - Jalan Sudirman
Jalan Ahmad Yani - Jalan Sudirman - Jalan RE
Martadinata
Jalan RE Martadinata - Jalan Merdeka
Jalan Raja Permas - Jalan Dewi Sartika
Jalan Dewi Sartika - Jalan M.A. Salamun
Jalan Pangrango - Jalan Salak
Jalan Pangrango - Jalan Pangrango I
Jalan Kapten Muslihat - Jalan Dewi Sartika
Jalan Pengadilan - Jalan Dewi Sartika
Jalan Raja Permas
Jalan Perintis Kemerdekaan
Jalan Perintis Kemerdekaan - Jalan Merdeka
Jalan Mandalawangi - Jalan Padjajaran
Jalan Gedong Sawah I - Jalan Dewi Sartika
Jalan Sawo Jajar - Jalan Sudirman
Jalan Merdeka - Jalan Mawar
Jalan Ahmad Yani - Jalan Dadali
Pasar Gunung Batu
Bogor Trade Mall
Pasar Ciampea
Pasar Cibereum

-6.601411
-6.595422

106.805222
106.804192

1
1

-6.592246

106.804665

1

-6.588643
-6.592693
-6.604523
-6.601689
-6.602776
-6.606719
-6.60527
-6.603181
-6.609938
-6.601369
-6.596765
-6.594548
-6.595891

106.804962
106.801849
106.806961
106.804359
106.799835
106.808479
106.805244
106.798759
106.804443
106.795006
106.79361
106.79464
106.789665

1
1
1
1
1
1
1
2
1
1
1
1
1

-6.595635

106.788437

1

-6.59555
-6.590967
-6.59231
-6.596104
-6.590796
-6.59044
-6.568718
-6.590967
-6.59361

106.787605
106.786446
106.787735
106.79084
106.79174
106.787827
106.809113
106.802963
106.802856

3
1
1
1
2
1
1
1
1

-6.593141

106.797112

1

-6.591969

106.797112

1

-6.581146

106.79673

1

-6.582958
-6.593802
-6.590754
-6.589374
-6.592224
-6.596296
-6.592011
-6.593658
-6.593317
-6.593317
-6.591073
-6.5941
-6.588665
-6.589496
-6.569017
-6.584527
-6.604342
-6550228
-6575341

106.787743
106.792023
106.79258
106.801865
106.804108
106.791512
106.792496
106.791222
106.786652
106.787849
106.804466
106.792023
106.796875
106.787605
106.805534
106.778053
106.796700
106.694016
106. 740105

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
3
2
2

Tipe

14

Lampiran 3 Data edge

15

Lanjutan

16

Lanjutan

17

Lanjutan

18
Lampiran 4 Alur pemanggilan fungsi

Pencarian dengan
Algoritma Ant
Colony

Mulai

j=0

Tidak

Inisialisasi parameter

j < jumlahSemut
Ya

Menempatkan semua
semut pada node awal

Pencarian rute semut

Memasukkan node awal
pada tabulist masingmasing semut

Tidak
Rute!=0
Ya

jarakMin = 10000000000
Rute=0

Tidak
Rute[jarak]