Studi eksperimental beton geopolimer yang memanfaatkan fly ash sebagai pengganit semen dan srat mat sebagai aditif

(1)

CURRICULUM VITAE

Nama : Nisa Latifah Gandina Tempat, Tanggal Lahir : Cirebon, 22 Januari 1992 Jenis kelamin : Perempuan

Agama : Islam

Status : Belum Nikah

Kewarganegaraan : Indonesia

Suku : Sunda

Tinggi/Berat Badan : 159/53 Golongan darah : B

Alamat : Jl. Bangbayang No. 3 /157c RT.05/RW.09 Bandung

40134

Email : Nishrabbit@yahoo.com

No. Telp/Hp : 022-21066808 / 082117581118

Riwayat Pendidikan : 2006-2009 : SMA Labschool UPI Bandung 2003-2006 : SMP Negri 35 Bandung 1997-2003 : SD Negri Coblong 3 Bandung


(2)

STUDI EKSPERIMENTAL BETON GEOPOLIMER YANG MEMANFAATKAN FLY ASH SEBAGAI PENGGANTI SEMEN DAN

SERAT MAT SEBAGAI ADITIF (Komunitas Bidang Ilmu : Rekayasa Struktur)

SKRIPSI

Diajukan untuk memenuhi salah satu syarat kelulusan pada Program Studi Strata I Pada Fakultas Teknik dan Ilmu Komputer Program Studi Teknik Sipil

NISA LATIFAH GANDINA 1.30.09.008

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK DAN ILMU KOMPUTER

UNIVERSITAS KOMPUTER INDONESIA BANDUNG


(3)

i KATA PENGANTAR

Puji syukur kehadirat Allah SWT, karena atas bimbinganNya maka penyusun dapat menyelesaikan penulisan skripsi ini dengan judul “Studi Eksperimental Beton Geopolimer yang Memanfaatkan Fly Ash Sebagai Pengganti Semen dan Serat Mat Sebagai Aditif”

Adapun skripsi ini diajukan sebagai salah satu syarat kelulusan pada Program Strata Satu (S1) pada Fakultas Teknik dan Ilmu Komputer Program Studi Teknik Sipil Universitas Komputer Indonesia.

Saya menyadari bahwa dalam penulisan skripsi yang telah saya susun ini jauh dari sempurna. Oleh sebab itu, segala kritik dan saran guna perbaikan sangatlah saya harapkan.

Dalam proses penyelesaian skripsi ini, banyak pihak yang telah memberikan masukan dan bantuan. Untuk itu penyusun mengucapkan terima kasih yang sebesar-besarnya kepada :

1. Yang tercinta Papap, Ibu, Mas Angga, Aa Kipkip dan keluarga.

2. Bapak Dr. Y. Djoko Setiyarto, ST., MT., selaku Ketua Program Studi Teknik Sipil UNIKOM sekaligus dosen pembimbing yang telah memberikan waktu luang di tengah-tengah kesibukannya untuk membimbingan serta memberikan evaluasi dengan sabarnya yang sangat berharga bagi penulis dan selaku dosen wali mahasiswa Teknik Sipil angkatan 2009.

3. Ibu Vitta Pratiwi, ST., MT., Bapak M. Donie Aulia, ST., MT., Bapak Yogi Jaelani, ST.,MT., Bapak M. Riza, ST., MT., Bapak Yatna Supriyatna, ST., MT. dan Ibu Arnita, ST. atas Bimbingan dan dorongan semangatnya.

4. Ibu Alice, selaku sekretariat Program Studi Teknik Sipil Universitas Komputer Indonesia.

5. Laboratorium Rekayasa Struktur ITB dan Teknisi yang telah


(4)

ii 6. Jeffwilson Andika Hartono yang telah membantu dan memberi

semangat selama pembuatan skripsi ini.

7. Teman-teman seperjuangan saya di Teknik Sipil angkatan 2009, Daniel, Yuda, Tunky, Cepi, Haki, Arya, Shandy, dan Rahmat, terimakasih karena telah menjadi inspirasi dan juga semua bantuan yang saya perlukan.

8. Sahabat saya Fegha, Gita, Norin, Ami, Agam, Fadil, dan Reza atas semua bantuan, dukungan, dan waktunya. Terimakasih ya!

9. Dr. Selly Iskandar, terimakasih buat dukungan morilnya.

10. Seluruh Mahasiswa Program Studi Teknik Sipil Universitas Komputer Indonesia. Terimakasih buat semua dukungannya.

Bandung, Juni 2013


(5)

iii DAFTAR ISI

Hal

KATA PENGANTAR ... Error! Bookmark not defined. DAFTAR ISI ... iii DAFTAR GAMBAR ... v DAFTAR TABEL ... vi BAB I PENDAHULUAN ... I-Error! Bookmark not defined. 1.1 Latar Belakang ... I-Error! Bookmark not defined. 1.2 Maksud dan Tujuan Penulisan ... I-Error! Bookmark not defined. 1.3 Batasan Masalah ... I-Error! Bookmark not defined. 1.4 Sistematika Penulisan ... I-Error! Bookmark not defined. 1.5 Manfaat Penulisan ... I-Error! Bookmark not defined. BAB II LANDASAN TEORI ... II-Error! Bookmark not defined. 2.1 Beton Konvensional ... II-Error! Bookmark not defined. 2.2 Riwayat Beton ... II-Error! Bookmark not defined. 2.3 Beton Geopolimer ... II-Error! Bookmark not defined. 2.4 Binder ... II-Error! Bookmark not defined.

2.4.1. Fly Ash ... II-Error! Bookmark not defined.

2.4.2 Alkaline Aktivator (Sodium Silikat dan Sodium Hidroksida) .. II-Error! Bookmark not defined.

2.5 Proses Curing ... II-Error! Bookmark not defined. 2.6 Daktilitas ... II-Error! Bookmark not defined. 2.7 Penelitian yang Sudah Pernah DilakukanII-Error! Bookmark not

defined.

2.7.1 Penelitian oleh Djuwantorohardjito dan B.V. Rangan (2005) . II-Error! Bookmark not defined.

2.7.2 Penelitian oleh Kosnatha dan Prasetio (2006)II-Error! Bookmark not defined.


(6)

iv

2.7.3 Penelitian oleh Djuwantoro Hardjito, Steenie E. Wallah, Dody M. J. Sumajouw, dan B. Vijaya Rangan (2004)II-Error! Bookmark not defined.

2.7.4 Penelitian oleh B.V. Rangan (2008) II-Error! Bookmark not defined.

2.7.5 Resume Hasil Studi Literatur ... II-Error! Bookmark not defined. BAB III METODE ANALISIS ... III-Error! Bookmark not defined. 3.1 Umum ... III-Error! Bookmark not defined. 3.2 Studi Literatur ... III-Error! Bookmark not defined. 3.3 Pembuatan Benda Uji ... III-Error! Bookmark not defined.

3.3.1 Binder Geopolimer ...III-Error! Bookmark not defined.

3.3.2 Beton Geopolimer ...III-Error! Bookmark not defined. 3.4 Slump Test ... III-Error! Bookmark not defined. 3.5 Curing ... III-Error! Bookmark not defined.

3.5.1 Di Oven (suhu 90°C) ...III-Error! Bookmark not defined.

3.5.2 Tidak di Oven (Suhu Ruangan) ...III-Error! Bookmark not defined. 3.6 Pengujian Kuat Tekan ... III-Error! Bookmark not defined. 3.7 Prosedur Pembuatan Benda Uji .... III-Error! Bookmark not defined.

3.7.1 Binder geopolimer Ukuran 50 x 100 mm2III-Error! Bookmark not defined.

3.7.2 Beton Geopolimer Ukuran 100x200 mm2III-Error! Bookmark not defined.

BAB IV HASIL PENGUJIAN DAN ANALISIS DATAIV-Error! Bookmark not defined.

4.1 Penentuan Komposisi Alkaline AktivatorIV-Error! Bookmark not defined.

4.2 Penamaan Benda Uji Binder dan Beton Geopolimer ... IV-Error! Bookmark not defined.

4.2.1 Penamaan Benda Uji Binder GeopolimerIV-Error! Bookmark not defined.

4.2.2 Penamaan Benda Uji Beton GeopolimerIV-Error! Bookmark not defined.


(7)

v 4.4 Penentuan Komposisi Beton GeopolimerIV-Error! Bookmark not

defined.

4.5 Slump Test ... IV-Error! Bookmark not defined. 4.6 Uji Kuat Tekan ... IV-Error! Bookmark not defined.

4.6.1 Uji Kuat Tekan Binder GeopolimerIV-Error! Bookmark not defined.

4.6.2 Uji Kuat Tekan Beton Geopolimer IV-Error! Bookmark not defined. 4.7 Pengaruh Penambahan Serat Mat . IV-Error! Bookmark not defined. BAB V KESIMPULAN DAN SARAN ... V-Error! Bookmark not defined. 5.1 Kesimpulan ... V-Error! Bookmark not defined. 5.2 Saran ... V-Error! Bookmark not defined. DAFTAR PUSTAKA ... Error! Bookmark not defined. LAMPIRAN-LAMPIRAN ... Error! Bookmark not defined.


(8)

vi DAFTAR GAMBAR

Hal Gambar II.1 Ikatan Polimerisasi yang terjadi pada beton geopolimer… II-3 Gambar II.2 Scanning Electron Microscopy (SEM) dari fly ash……… II-4 Gambar II.3 Scanning Microscopy (SEM) dari Beton Geopolymer

umur 28 hari………... II-6 Gambar II.4 Hubungan antara water/geopolymer solid (w/s) dan kuat

tekan……….. II-9

Gambar II.5 Hubungan umur beton dengan kuat tekan……… II-9 Gambar II.6 Perbandingan kekuatan mortar berdasarkan umur mortar

dan proses curing……… II-10 Gambar II.7 Hasil penelitian hubungan antara curing time dan kuat

tekan……… II-11

Gambar II.8 Hasil penelitian hubungan delay time curing dengan kuat

tekan……… II-11

Gambar III.1 Diagram Alir………... III-1 Gambar IV.1 Grafik Perbandingan Tes Kuat Tekan Binder

Geopolimer………. IV-6

Gambar IV.2 Grafik Perbandingan Tes Kuat Tekan Beton Geopolimer.. IV-10 Gambar IV.3 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton

G1,5-0,5 ………. IV-11

Gambar IV.4 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton

GF1,5-0,5 ………... IV-11 Gambar IV.5 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton

G1,5-1,5 ………. IV-12

Gambar IV.6 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton


(9)

vii DAFTAR TABEL

Hal Tabel II.1 Hubungan molaritas dan perbandingan sodium

hidroksida (NaOH) dan Sodium silikat terhadap kuat tekan beton……….

II-9 Tabel II.2 Hasil penelitian terhadap kandungan air di dalam beton

geopolimer dengan kuat tekan (Rangan, 2008)………. II-12 Tabel II.3 Hubungan alkaline ctivator / fly ash dengan kuat tekan

(rangan, 2008)……… II-12 Tabel II.4 Hasil Perbandingan Studi Literatur……… II-13 Tabel III.1 Jumlah Sampel Binder Uji Setiap Umur Binder

Geopolimer………. III-3 Tabel III.2 Jumlah Sampel Uji Kuat Tekan Beton Geopolimer

Setiap Umur hari yang di Oven………. III-4 Tabel III.3 Jumlah Sampel Uji Kuat Tekan Beton Geopolimer

Setiap Umur hari yang tidak di Oven……… III-4 Tabel IV.1 Kebutuhan Bahan dalam Pembuatan Binder

Geopolimer untuk Setiap Sampel……… IV-2 Tabel IV.2 Kebutuhan Bahan dalam Pembuatan Beton Geopolimer

untuk Setiap Sampel yang di Oven……… IV-3 Tabel IV.3 Kebutuhan Bahan dalam Pembuatan Beton Geopolimer

untuk Setiap Sampel yang Tidak di Oven……….. IV-3 Tabel IV.4 Tabel Hasil Pengujian Slump Beton Geopolimer……... IV-4 Tabel IV.5 Tabel Hasil Tes Kuat Tekan Binder Geopolimer

G1,5-0,5………. IV-4

Tabel IV.6 Tabel Hasil Tes Kuat Tekan Binder Geopolimer

G1,5-1,5.……… IV-5

Tabel IV.7 Hasil Tes Kuat Tekan Beton Geopolimer non Oven

GF1,5-1,5………. IV-6

Tabel IV.8 Hasil Tes Kuat Tekan Beton Geopolimer Oven

G1,5-0,5.……… IV-7

Tabel IV.9 Hasil Tes Kuat Tekan Beton Geopolimer Oven

G1,5-1,5.……… IV-7

Tabel IV.10 Hasil Tes Kuat Tekan Beton Geopolimer Oven

GF1,5-0,5.……… IV-8

Tabel IV.11 Hasil Uji Kuat Tekan Beton Geopolimer Oven

GF1,5-1,5………. IV-8

Tabel IV.12 Daktilitas Beton Geopolimer Rasio 0,5………... IV-9 Tabel IV.13 Daktilitas Beton Geopolimer Rasio 1,5………... IV-13 Tabel IV.14 Kuat Tekan Beton Geopolimer dengan penambahan

Serat Mat Rasio 0,5……….. IV-14 Tabel IV.15 Kuat Tekan Beton Geopolimer dengan penambahan


(10)

DAFTAR PUSTAKA

Davidovits, J (1991). Geopolymer : Inorganic Polymeric New Materials, Geopolymer Institute, France.

Davidovits, J (2004). Global Warming Impact On The Cement And Aggregates Industries, Geopolymer Institute, France.

Ekaputri et.all(2007).Sifat Mekanik Beton Geopolimer, Jurnal Pondasi Vol.13, Surabaya.

Fitrah Nur, Oscar (2009). Analisa Pengaruh Penambahan Tulangan Tekan Terhadap Daktilitas Kurvatur Balok Bertulang, Jurnal Rekayasa Sipil Vol.5. Padang.

Frantisek Skvara, dkk (2006). Concrete bash on fly ash geopolymer.

Hardjito, D., Wallah S.E., and Rangan, B.V.(2004), On The Development of Fly Ash Based Geopolymer Concrete.

Hardjito, D.and Rangan, B.V (2005), Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete, Perth, Australia. Rangan, B.V. (2008), Fly Ash Based Geopolymer Concrete, Curtin University. Setyarto, YD (2006). Catatan Kuliah, Universitas Katholik Parahyangan,

Bandung.

Sutanto, Erik, dkk (2005). Beton Geopolimer dan fly ash untuk beton struktural, UK.Petra, Surabaya.


(11)

I-1

BAB I

PENDAHULUAN

1.1 Latar Belakang

Beton merupakan salah satu jenis konstruksi yang paling banyak digunakan dalam dunia konstruksi. Semen portland sebagai pengikat merupakan bahan yang paling penting digunakan dalam pembuatan beton konvensional. Dengan pembangunan infrastruktur yang semakin hari semakin meningkat mengakibatkan permintaan jumlah semen yang meningkat pula. Akan tetapi, pada saat proses produksinya, terjadi emisi CO₂ ke udara yang besarnya sebanding dengan jumlah semen yang diproduksi (Davidovits, 1994), sehingga menyebabkan pencemaran udara. Hal inilah yang merupakan salah satu faktor pendorong untuk ditemukannya bahan alternatif lain yang bisa menggantikan posisi semen dalam campuran beton untuk mendapatkan beton yang ramah lingkungan.

Untuk mendapatkan beton ramah lingkungan yang ekonomis maka digunakan material alternatif dengan cara memanfaatkan limbah industri untuk mengganti penggunaan semen. Dalam penelitian ini, penulis melakukan eksperimen dengan membuat beton geopolimer.

Geopolimer adalah campuran beton di mana penggunaan material semen portland sebagai bahan pengikat digantikan oleh bahan lain seperti abu terbang (fly ash), abu kulit padi (rise husk ash), dan lain-lain yang banyak mengandung silika dan alumunium (Davidovits, 1997). Pada penelitian ini digunakan abu terbang (fly ash) sebagai pengganti material semen portland 100%.

Komposisi material beton geopolimer masih banyak dilakukan penelitiannya sehingga belum ada peraturan yang mengatur tentang mix desain yang tepat. Berdasarkan latar belakang tersebut, penulis mencoba untuk meneliti beton geopolimer agar mendapatkan komposisi mix desain yang tepat.


(12)

I-2 1.2 Maksud dan Tujuan Penulisan

Maksud dan tujuan dari penelitian ini adalah untuk mengetahui komposisi material beton geopolimer yang memiliki kuat tekan yang cukup untuk mendukung konstruksi, baik itu komposisi alkaline aktivator dan bahan tambahan (serat mat) dan diharapkan dengan penelitian ini dapat menambah wawasan masyarakat mengenai beton geopolimer.

1.3 Batasan Masalah

Dari penelitian ini penulis akan meneliti : a. Penggunaan molaritas NaOH 1,5M

b. Rasio perbandingan sodium silikat dengan sodium hidroksida 0,5 dan 1,5 c. Hanya menggunakan fly ash tipe F

d. Proses curing dengan cara di oven dan tidak di oven

e. Zat aditif yang digunakan adalah serat mat dengan berat 100gram

f. Binder dengan menggunakan silinder ukuran 5cm x 10cm dan beton dengan menggunakan silinder ukuran 10cm x 20cm.

g. Pengujian ini hanya mempertimbangkan pengujian kuat tekan saja.

1.4 Sistematika Penulisan

Dalam skripsi ini, sistematika pembahasan yang digunakan adalah sebagai berikut:

BAB I PENDAHULUAN

Berisikan tentang latar belakang, maksud dan tujuan penulisan, batasan masalah, sistematika penulisan, dan manfaat penulisan skripsi ini.

BAB II LANDASAN TEORI

Dijelaskan tentang teori-teori yang telah dipelajari oleh penulis yang merupakan dasar atau landasan teori untuk digunakan pada Bab III sebagai metode analisis.

BAB III METODE ANALISIS

Berisi tentang metode-metode yang digunakan penulis dari mulai pembuatan benda uji, perawatan benda uji dan pengujian benda uji.


(13)

I-3 BABIV HASIL PENGUJIAN DAN ANALISIS DATA

Akan disajikan tentang uraian pembahasan serata perhitungan analisis data yang didapatkan dari hasil penulisan pada Bab III

BAB V KESIMPULAN DAN SARAN

Akan membahas mengenai kesimpulan seluruh penulisan yang telah diuraikan terutama yang telah dijelaskan pada Bab III dan Bab IV. Kesimpulan yang dihasilkan akan bersifat khusus (untuk suatu kasus tertentu) dan dapat pula bersifat umum (berlaku untuk seluruh kasus). Selain itu, pada bab ini akan disajikan pula saran-saran dari penulis.

1.5 Manfaat Penulisan

Penulisan tugas akhir ini diharapkan dapat bermanfaat bagi para pengguna baik dari kalangan praktisi maupun para Civil Engineering agar dapat menjadi bahan pertimbangan untuk mengganti penggunaan semen dalam pembuatan beton dan dapat memanfaatkan limbah yang terbuang serta dapat menjaga lingkungan. Selain itu, penulisan tugas akhir ini diharapkan pula dapat memberikan manfaat bagi kalangan akademik (teoritis) untuk mengembangkan wawasan dan pengetahuan mengenai beton geopolimer.


(14)

II-1

BAB II

LANDASAN TEORI

2.1 Beton Konvensional

Beton adalah sebuah bahan bangunan komposit yang terbuat dari kombinasi agregat dan pengikat (semen). Beton mempunyai karakteristik tegangan hancur tekan yang tinggi serta tegangan hancur tarik yang rendah. Beton tidak dapat dipergunakan pada elemen konstruksi yang memikul momen lengkung atau tarikan, karena beton sangat lemah dalam menerima gaya tarik.

Beton memiliki kelebihan dan kekurangan antara lain sebagai berikut: Kelebihan Beton:

 Beton mampu menahan gaya tekan dengan baik

 Beton segar dapat dengan mudah dicetak sesuai dengan keinginan  Beton segar dapat segar dapat disemprotkan pada permukaan beton

lama yang retak maupun dapat diisikan kedalam retakan beton dalam proses perbaikan

 Beton segar dapat dipompakan sehingga memungkinkan untuk dituang

Kekurangan Beton:

 Beton dianggap tidak mampu menahan gaya tarik, sehingga mudah retak, oleh karena itu perlu di beri baja tulangan sebagai penahan gaya tarik

 Untuk mendapatkan beton kedap air secara sempurna, harus dilakukan dengan pengerjaan yang teliti

Beton bersifat getas (tidak daktail) sehingga harus dihitung dan teliti secara seksama agar setelah dikompositkan dengan baja tulangan menjadi bersifat daktail, terutama pada struktur tahan gempa


(15)

II-2 2.2 Riwayat Beton

Di zaman kuno blok-blok batu disusun tanpa bahan pengikat, sehingga untuk menjamin kestabilan struktur bentuknya tidak dapat direncanakan secara bebas. Lumpur (kadang-kadang dicampur dengan jerami) digunakan untuk mengikat blok-blok bata kering, sehingga hasilnya adalah struktur yang tidak tahan air karena bata dan lempung yang tidak dibakar akan menjadi lunak kembali bila terkena air. Di Babylonia Assyria kadang-kadang dipakai bitumen alami untuk mengikat batu atau bata menjadi satu kesatuan.

Selain baja, beton adalah bahan bangunan utama yang mendasari berkembangnya masyarakat modern sekarang ini. Hampir tidak ada aspek kehidupan sehari-hari yang tidak dipengaruhi secara langsung atau tidak langsung oleh beton. Gedung, jalan, jembatan jalan kereta api, pelabuhan, lapangan terbang, bangunan air, pusat pembangkit tenaga dan lain-lain adalah sebagian kecil contohnya (Setyarto YD, 2006).

2.3 Beton Geopolimer

Geopolimer adalah campuran beton di mana penggunaan material semen portland sebagai bahan pengikat digantikan oleh bahan lain seperti abu terbang (fly ash), abu kulit padi (rise husk ash), dan lain-lain yang banyak mengandung silika dan alumunium (Davidovits, 1997). Penggantian bahan dasar semen portland dianggap lebih ramah lingkungan dan lebih efektif dengan memanfaatkan bahan sisa limbah pabrik industri sehingga lebih peduli lingkungan. Geopolimer merupakan produk beton geosintetik dimana reaksi pengikatan yang terjadi adalah reaksi polimerisasi. Dalam reaksi polimerisasi, silika (Si) dan alumunium (Al) mempunyai peranan yang penting dalam ikatan polimerisasi.reaksi silika dan alumunium dengan alkaline akan menghasilkan SiO dan AlO4 seperti yang ditunjukkan pada gambar berikut :


(16)

II-3 Gambar II.1 Ikatan Polimerisasi yang Terjadi pada Beton Geopolimer

Suatu campuran beton dikatakan sebagai beton geopolymer jika memiliki sifat-sifat sebagai berikut :

a) Pada beton segar (fresh concrete)

Beton geopolimer dalam keadaan segar memiliki sifat sebagai berikut :  Memiliki setting time 1 jam pada suhu -20°C sampai 7-60 menit

pada suhu 20°C,

 Penyusutan selama setting kurang dari 0.05%

 Kehilangan massa dari beton basah menjadi beton kering kurang dari 0.1% (ASTM 4843)

b) Pada beton keras (hardened concrete)

Beton geopolimerdalam keadaan keras memiliki sifat sebagai berikut :  Memiliki kuat tekan lebih besar dari 90 Mpa pada umur 28 hari,  Memiliki kuat tarik sebesar 1-15 Mpa pada umur 28 hari,  Memiliki water absorption kurang dari 3%.

Dalam penggunaannya, beton geopolimer memiliki beberapa kelebihan dan kekurangan sebagai berikut :

a) Kelebihan beton geopolimer

 Tahan terhadap serangan asam sulfat,  Tahan terhadap reaksi silika-alkali,  Tahan terhadap api,

 Mempunyai rangkak dan susut yang kecil,  Dapat mengurangi polusi udara.


(17)

II-4  Proses pembuatan yang sedikit lebih rumit dibandingkan beton konvensional karena jenis material yang digunakan lebih banyak dari pada beton konvensional

 Belum ada perhitungan mix design yang pasti.

2.4 Binder

Binder adalah bahan pengikat dalam campuran beton yang terdiri dari fly ash dan alkaline aktivator yang berupa sodium silikat (Na2SiO3) dan sodium hidroksida (NaOH).

2.4.1. Fly Ash

Fly ash, biasa dikenal sebagai abu berbentuk serbuk, yang merupakan hasil sisa dari pembakaran abu batu bara pada pembangkit tenaga listrik, yang dipisahkan dari gas pembakaran melalui pengumpul mekanik atau elektrostatik. Fly ash terdiri dari sebagian besar partikel yang mempunyai diameter 1-150 mikrometer yang lolos dari ayakan 45 mikrometer. Hal ini menarik untuk dijadikan sebagai pengganti semen karena memiliki aksi pozzolanik dimana fly ash sendiri memiliki sedikit aksi semen. Bila ada kelembapan fly ash akan bereaksi dengan kalsium hidroksida pada temperatur tepat untuk membentuk komposisi semen. Seperti semen portland, fly ash terdiri dari kalsium oksida, Alumunium oksida, dan Silikon oksida tetapi jumlah kalsium oksida lebih sedikit.

Gambar II.2 Scanning Electron Microscopy (SEM) dari Fly Ash Sumber : Hardjito.D.,et.al. (2005)

Menurut klasifikasinya fly ash dapat dibedakan menjadi 3 jenis, yaitu (ACI, 1993) :


(18)

II-5 a. Kelas C

Fly ash yang mengandung CaO di atas 10%, dan abu terbang (fly ash) yang dihasilkan melalui pembakaran lignit atau batu bara dengan kadar karbon ± 60% atau sub bitumen.

 Kadar (SiO2 + Al2O3 + Fe2O3) > 50%

 Kadar Na2O mencapai 10%

 Memiliki sifat pozzolanik dan hidrolis. b. Kelas F

Fly ash yang mengandung CaO yang lebih kecil 10%, dan abu terbang (fly ash) yang dihasilkan dari pembakaran batu bara jenis anthrchacite pada suhu 1560°C. Abu terbang (fly ash) ini mempunyai sifat pozolan.

 Kadar (SiO2 + Al2O3 + Fe2O3) > 70%

 Kadar Na2O < 5%

 Memiliki sifat pozzolanik dan hidrolis yang lebih tinggi dari fly ash tipe C

c. Kelas N

 Pozzolan alam atau hasil pembakaran yang dapat digolongkan antara lain tanah diatomic, opaline chertz dan shales, tuff dan abu vulkanik, dimana biasa diproses melalui pembakaran atau tidak melalui proses pembakaran. Selain itu juga mempunyai sifat pozzolan yang baik.

Penggunaan fly ash dalam campuran beton memiliki beberapa keunggulan, yaitu (ACI, 1993) :

a) Pada beton segar

 Kehalusan dan bentuk partikel fly ash yang bulat dapat meningkatkan workability

 Mengurangi terjadinya bleeding dan segregasi. b) Pada beton keras


(19)

II-6  Meningkatkan kuat tekan beton setelah ± 52 hari,

 Meningkatkan durabilitas beton,

 Meningkatkan kepadatan (density) beton,  Mengurangi terjadinya penyusutan beton.

2.4.2 Alkaline Aktivator (Sodium Silikat dan Sodium Hidroksida)

Penggunaan alkaline aktivator dalam pembuatan geopolymer memiliki peranan penting sebagai salah satu bahan pengikat unsur alumunium dan silikat yang terkandung dalam fly ash sehingga terbentuk suatu ikatan polimerisasi dan mempercepat reaksi yang terjadi.

2.4.2.1Sodium Hidroksida (NaOH)

Sodium hidroksida berfungsi untuk mereaksikan unsur-unsur Al dan Si yang terkandung dalam fly ash sehingga dapat menghasilkan ikatan polimer yang kuat. Dalam campuran fly ash dan hidroksida yang diamati dalam ukuran mikrometer, terlihat adanya ikatan yang kurang kuat tetapi lebih padat dan tidak ada retakan seperti pada campuran sodium silikat dan fly ash, seperti pada gambar berikut:

Gambar II.3 Scanning Microscopy (SEM) dari Beton Geopolymer umur 28 hari Sumber : Frantisek skvara, dkk, Concrete bash on fly ash geopolymer 2.4.2.2 Sodium Silikat (Na2SiO3)

Sodium silikat dapat dibuat dengan 2 proses yaitu proses kering dan proses basah. Pada proses kering, pasir (SiO2) dicampur dengan sodium carbonate (Na2CO3)

atau dengan potassium carbonate (K2CO3) pada temperatur 1100-1200°C. Hasil


(20)

II-7 tekanan tinggi menjadi cairan yang bening dan agak kental. Sedangkan dalam proses pembuatan basah, pasir (SiO2) dicampur dengan sodium hidroxide (NaOH)

melalui proses filtrasi akan menghasilkan sodium silikat yang murni.

Sodium silikat terdapat dalam 2 bentuk, yaitu padatan dan larutan, untuk campuran beton lebih banyak digunakan dengan bentuk larutan. Sodium silikat atau yang biasa dikenal water glass, pada mulanya digunakan untuk membuat campuran sabun. Tetapi dalam perkembangannya sodium silikat dapat digunakan untuk berbagai macam keperluan, antara lain untuk bahan campuran semen, pengikat keramik, coating, campuran cat serta dalam beberapa keperluan industri, seperti kertas, serat, dan tekstil. Beberapa penelitian dapat membuktikan bahwa sodium silikat dapat digunakan untuk bahan campuran dalam beton (Hartono dan Sutanto, 2005). Dalam penelitian ini, sodium silikat digunakan sebagai salah satu bahan dari Alkaline aktivator.

Sodium silikat ini merupakan salah satu larutan alkali yang mempunyai peranan penting dalam proses polimerisasi karena sodium silikat mempunyai fungsi untuk mempercepat reaksi polimerisasi. Reaksi terjadi sangat cepat ketika larutan alkali banyak mengandung larutan silikat seperti sodium silikat ataupun potassium silikat dibandingkan reaksi yang terjadi akibat larutan alkali yang banyak mengandung larutan hidroksida.

2.5 Proses Curing

Agar memperoleh beton geopolimer berbahan dasar fly ash yang optimal, maka harus memperhatikan perawatan setelah beton geopolimer dicetak. Metode perawatan (curing) yang ada saat ini adalah dengan memberi panas dan kelengasan (Sanjaya dan Yuwono, 2006).

Pada beton geopolimer proses polimerisasi juga dapat dipercepat dengan pemberian panas sehingga dapat menaikkan temperatur, salah satunya dengan memasukkan benda uji ke dalam oven sehingga diperoleh hasil yang sangat signifikan. Untuk saat ini cara yang paling efektif meningkatkan kekuatan beton geopolimer adalah dengan menggunakan oven.


(21)

II-8 2.6 Daktilitas

Daktilitas merupakan kemampuan suatu material untuk mengalami respon inelastik yang dominan dalam memikul beban agar tidak terjadi kegagalan tiba-tiba. Secara matematis, nilai daktilitas (μ) didefinisikan sebagai perbandingan antara suatu parameter regangn ultimit (μu) dengan regangan pada saat terjadinya leleh pertama pada material yang ditinjau (μy), seperti yang diberikan dalam persamaan berikut :

y u

   

2.7 Penelitian yang Sudah Pernah Dilakukan

Untuk berbagai mix design yang sudah pernah dilakukan, kita dapat menentukan hasil paling optimal yang dapat dipergunakan dalam percobaan.

2.7.1 Penelitian oleh Djuwantorohardjito dan B.V. Rangan (2005)

Di dalam penelitian ini, literatur yang digunakan adalah Penelitian yang dilakukan Hardjito dan Rangan dengan penelitian yang berjudul Development and Properties of Low-Calcium Fly Ash-Based Geopolymer Concrete. Penelitian yang dilakukan Hardjito dan Rangan dilakukan dengan membuat sampel beton silinder berukuran 15 x 30 cm2 dan dilakukan curing selama 24 jam pada suhu 60°C dengan metode mamasukkan benda uji ke dalam oven kemudian dilakukan pengujian comprehessive stength atau kuat tekan beton pada umur beton 7 hari. Selain itu dapat diambil kesimpulan mix design yang dilakukan di dalam literatur dan hasil penelitian menunjukkan bahwa rasio sodium silikat : NaOH yang paling optimum adalah 2.5 dengan moralitas sodium hidroksida sebesar 12M, selain itu dapat diketahui bahwa water / geopolymer solid sangat mempengaruhi kekuatan beton dimana semakin besar water / geopolymer solid maka semakin kecil kuat tekannya, sedangkan umur beton tidak mempengaruhi pertambahan kekuatan seperti beton konvensional, agar lebih jelas dapat dilihat hasilnya di dalam tabel dan gambar berikut :


(22)

II-9 Tabel II.1 Hubungan Molaritas dan Perbandingan Sodium Hidroksida (NaOH) dan

Sodium Silikat Terhadap Kuat Tekan Beton

Mixture

Concentration of NaOH liquid

(in Molars)

Ratio of sodium silicate to NaOH

solution (by mass)

Comprehessive strength at 7 th day (Mpa) Cured for 24 hours at

60°C

1 8M 0.4 17

2 8M 2.5 57

3 14M 0.4 48

4 14M 2.5 64

Sumber : Hardjito dan Rangan (2005, p. 47)

Gambar II.4 Hubungan antara Water/Geopolymer Solid (w/s) dan Kuat Tekan

Gambar II.5 Hubungan Umur Beton dengan Kuat Tekan

2.7.2 Penelitian oleh Kosnatha dan Prasetio (2006)

Penelitian yang dilakukan oleh Konsantha dan Prasetio ini dilakukan dengan membuat mortar berbentuk silinder dengan diameter 5 cm dan tinggi 10 cm serta beton berbentuk silinder dengan diameter 15 cm dan tinggi 30 cm. Pada penelitian


(23)

II-10 dilakukan proses curing selama 24 jam dengan suhu 90°C dengan metode memasukkan benda uji ke dalam oven kemudian dilakukan pengujian comprehessive strength atau kuat tekan beton pada umur 7 hari. Dapat diambil kesimpulan mix design yang dilakukan di dalam literatur dan hasil penelitian yang sudah dilakukan menunjukkan bahwa kekuatan meningkat saat beton geopolimer di masukkan oven daripada dibiarkan dalam suhu ruangan, agar lebih memudahkan dipahami akan dijelaskan pada gambar berikut :

Gambar II.6 Perbandingan Kekuatan Mortar Berdasarkan Umur Mortar dan Proses Curing

Sumber : Kosnatha dan Prasetio (2006, p. 16)

2.7.3 Penelitian oleh Djuwantoro Hardjito, Steenie E. Wallah, Dody M.J. Sumajouw, dan B. Vijaya Rangan (2004)

Dalam penelitian ini digunakan literatur penelitian yang dilakukan oleh Djuwantoro Hardjito, Steenie E. Wallah, Doddy M.J. Sumajouw, dan B. Vijaya Rangan yang berjudul On The Development of Fly Ash Based Geopolymer Concrete.Penelitian beton geopolimer ini menggunakan sampel beton berbentuk silinder dengan ukuran 100 x 200 mm berbahan dasar fly ash kelas F dan dengan proses curing 60°C. Penelitian ini membandingkan komposisi campuran sodium silikat dan NaOH terhadap kekuatan beton, efek curing waktu dalam kekuatan beton, dan efek delay time setelah beton selesai di cetak dan sebelum beton dirawat terhadap peningkatan kekuatan beton. Selain itu dapat diambil kesimpulan mix design yang dilakukan di dalam literatur dan hasil penelitian yang sudah dilakukan menunjukkan bahwa peningkatan waktu curing lebih dari 60 jam tidak menambah kekuatan secara luar biasa dan waktu delay sebelum dioven tidak


(24)

II-11 mempengaruhi kekuatan beton, agar lebih mudah dipahami maka dapat dilihat hasilnya di dalam gambar berikut :

Gambar II.7 Hasil Penelitian Hubungan antara Curing Time dan Kuat Tekan Sumber : Hardjito et. al. (2004, p. 469)

Gambar II.8 Hasil Penelitian Hubungan Delay Time Curing dengan Kuat Tekan Sumber : Hardjito et. al. (2004, p. 470)

2.7.4 Penelitian oleh B.V. Rangan (2008)

Dalam penelitian ini digunakan literatur penelitian yang dilakukan oleh B.V Rangan dalam laporan penelitian GC4 Curtin University yang berjudul Fly Ash Based Geopolymer Concrete. Penelitian beton geopolimer ini menggunakan sampel beton berbentuk silinder dengan ukuran 100 x 200 mm2 berbahan dasar fly


(25)

II-12 ash kelas F dan dirawat selama 24 jam dengan suhu berbeda. Dari penelitian tersebut dapat dilihat bahwa jumlah air mempengaruhi tingkat kemudahan dikerjakannya campuran beton geopolimer berbahan dasar fly ash. Sedangkan jumlah air yang semakin banyak akan menurunkan kekuatan tekan beton. Perbandingan alkali dengan fly ash yang semakin besar dalam campuran memperlemah kekuatan beton itu sendiri. Untuk memperjelas dapat dilihat pada tabel berikut :

Tabel II.2 Hasil Penelitian Terhadap Kandungan Air di Dalam Beton Geopolimer dengan Kuat Tekan (Rangan, 2008)

Water-to-geopolymer solids

ratio, By mass

Workability

Design comprehessive strength (wet mixing time of 4

minutes steam curing at 60°C for 24 hours after casting),

MPa

0.16 Very Stiff 60

0.18 Stiff 50

0.2 Moderate 40

0.22 High 35

0.24 High 30

Sumber : Rangan (2008, p. 18)

Tabel II.3 Hubungan Alkaline Activator / Fly Ash dengan Kuat Tekan (Rangan, 2008)

Alkaline liquid/fly ash,

By mass

Water/geopolymer solids, By mass

Workability

Comprehessive strength,

Mpa

0.3 0.165 Stiff 58

0.35 0.19 Moderate 45

0.4 0.21 Moderate 37


(26)

II-13 2.7.5 Resume Hasil Studi Literatur

Dari studi literatur terdahulu yang telah dijelaskan di atas dapat dirangkum menjadi sebagai berikut : Tabel II.4 Hasil Perbandingan Studi Literatur

No. Nama Peneliti

Tipe Fly Ash Molaritas NaOH (Molar) Suhu Oven (°C) Rasio Perbandinga n

Ket. Hasil

1. Djuwantoro Hardjito dan

B.V. Rangan, 2005 Sample silinder 15cm x 30cm

Tipe F 8 & 14 60 0,4 – 2,5  Pengaruh

water/geopolymer solid terhadap kuat tekan beton geopolimer  Pengaruh umur

beton terhadap kuat tekan beton geopolimer.

 Rasio sodium silikat :NaOH yang paling optimum adalah 2,5 dengan molaritas NaOH sebesar 12M.  Water/geopolymer solid

sangat mempengaruhi kekuatan beton dimana semakin besar water maka semakin kecil kuat

tekannya.  Umur beton tidak

mempengaruhi pertambahan kekuatan seperti beton konvensional.

2. Kosnatha dan Prasetio,

2005

Sample silinder 15cm x 30cm

Tipe F dan Tipe C

8 90 2 - Kekuatan meningkat saat beton

geopolimer di masukkan oven daripada dibiarkan dalam suhu ruangan.

3. Djuwantoro Hardjito,

S.E. Wallah, Dody M.J.S, dan B.V. Rangan, 2004

Sample silinder 10cm x 20cm

Tipe F 8 - 14 60 - Membandingkan

komposisi campuran Na2SiO3:NaOH terhadap kekuatan beton, efek curing waktu, dan efek delay time

 Peningkatan curing lebih dari 60 jam tidak

menambah kekuatan secara luar biasa

 Waktu delay sebelum dioven tidak mempengaruhi


(27)

II-14 kekuatan beton

4. B.V. Rangan, 2008

Sample silinder 10cm x 20cm

Tipe F 8 60 -  Penelitian

terhadap kandungan air di dalam beton geopolimer dengan kuat tekan

 Hubungan alkaline aktivator/fly ash dengan kuat tekan

 Jumlah air mempengaruhi workability beton

geopolimer berbahan dasar fly ash

 Semakin banyak air, semakin banyak

mengurangi kekuatan tekan beton

 Perbandingan alkali dengan sly ash yang semakin besar dalam campuran

memperlemah kekuatan beton itu sendiri.


(28)

III-1

BAB III

METODE ANALISIS

3.1 Umum

Pada bab ini akan dibahas metode penelitian yang akan dilakukan untuk mengetahui prosedur pembuatan benda uji binder geopolimer dan beton geopolimer. Berikut disajikan diagram alir yang menjelaskan urutan-urutan langkah yang diperlukan untuk prosedur pembuatan benda uji binder geopolimer dan beton geopolimer


(29)

III-2 Selanjutnya akan dibahas langkah-langkah dari diagram alir di atas

3.2 Studi Literatur

Pada tahap ini penulis mengumpulkan berbagai teori mengenai definisi dan riwayat beton konvensional, beton geopolimer, material yang dipakai dalam campuran geopolimer, proses curing, serta beberapa studi literatur tentang beton geopolimer. Studi literatur pada studi ini disajikan pada Bab II.

3.3 Pembuatan Benda Uji

Pada proses pembuatan benda uji, penulis membuat 2 macam benda uji yaitu binder geopolimer dan beton geopolimer.

3.3.1 Binder Geopolimer

Untuk pembuatan binder geopolimer, material yang digunakan berupa fly ash tipe F dan alkaline aktivator (Sodium Silikat dan Sodium Hidroksida) dengan molaritas NaOH 1,5M dan rasio perbandingan Na2SiO3 dengan NaOH 0,5 dan

1,5.

3.3.2 Beton Geopolimer

Untuk pembuatan benda uji beton geopolimer, dilakukan mix design untuk material-material yang akan digunakan yaitu aggregat kasar, aggregat halus, aditif (serat mat), fly ash tipe F dan pencampur (Na2SiO3/NaOH). Dalam pembuatan

beton geopolimer ini digunakan molaritas NaOH 1,5M dan rasio perbandingan Na2SiO3 dengan NaOH 0,5 dan 1,5.

3.4 Slump Test


(30)

III-3 3.5 Curing

Pada penelitian ini untuk binder geopolimer dilakukan proses curing selama 24 jam dengan suhu 90°C dengan metode memasukkan benda uji ke dalam oven. Sedangkan untuk beton geopolimer dilakukan 2 proses curing yaitu dengan metode memasukkan benda uji ke dalam oven dan dibiarkan dalam suhu ruangan.

3.5.1 Di Oven (suhu 90°C)

Beton dan binder geopolimer yang telah dilepaskan dari cetakan dimasukkan kedalam oven yang bersuhu 90°C selama 24 jam, kemudian beton di simpan disuhu ruangan hingga uap panasnya hilang, lalu disimpan diwadah tertutup (seperti kardus) dan dibiarkan dalam suhu ruangan hingga pengetesan dilakukan.

3.5.2 Tidak di Oven (Suhu Ruangan)

Setelah dilepas dari cetakan, beton geopolimer ini kemudian dimasukkan kedalam kardus dan dibiarkan dalam suhu ruangan. Hal ini bertujuan untuk mengurangi kehilangan air / penguapan selama proses curing berlangsung hingga pengetesan dilakukan.

3.6 Pengujian Kuat Tekan

Pengujian kuat tekan binder geopolimer dilakukan di Laboratorium Rekayasa Struktur ITB menggunakan alat uji kuat tekan Ibertest berkapasitas 20 ton dengan 3 sampel disetiap umur hari pengujian. Jumlah sampel binder Geopolimer yang di uji dapat dilihat pada tabel berikut :

Tabel III.1 Jumlah Sampel Binder Uji Setiap Umur Binder Geopolimer

No. Beton Jumlah Sampel Tiap Umur Beton 3 hari (bh) 14 hari (bh) 28 hari (bh)

1. G1.5-0,5 3 3 3

2. G1,5-1,5 3 3 3

Total 6 6 6

Untuk pengujian kuat tekan beton geopolimer dilakukan di Laboratorium Rekayasa Struktur ITB menggunakan alat uji kuat tekan Ibertest berkapasitas 20


(31)

III-4 ton dengan 3 sampel disetiap umur hari pengujian. Jumlah sampel beton Geopolimer yang di uji dapat dilihat pada tabel berikut :

Tabel III.2 Jumlah Sampel Uji Kuat Tekan Beton Geopolimer Setiap Umur hari yang di Oven

No. Beton Jumlah Sampel Tiap Umur Beton 3 hari (bh) 14 hari (bh) 28 hari (bh)

1. GF1,5-0,5 3 3 3

2. GF15-1,5 3 3 3

3. G1,5-0,5 3 3 3

4. G1,5-1,5 3 3 3

Total 12 12 12

Tabel III.3 Jumlah Sampel Uji Kuat Tekan Beton Geopolimer Setiap Umur Hari yang Tidak di Oven

No. Beton Jumlah Sampel Tiap Umur Beton 3 hari (bh) 14 hari (bh) 28 hari (bh)

1. GF1,5-0,5 3 3 3

2. GF1,5-1,5 3 3 3

Total 6 6 6

3.7 Prosedur Pembuatan Benda Uji

3.7.1 Binder geopolimer Ukuran 50 x 100 mm2

1) Campur Sodium Hidroksida dengan air menjadi 1,5M dengan cara 2) Timbang Sodium Hidroksida, Sodium Silikat dan Fly Ash

3) Aduk semua bahan hingga merata

4) Binder geopolimer kemudian dicetak dalam cetakan berukuran 50 x 100 mm2 dan diratakan

5) Cetakan bisa dilepas setelah binder sudah mengeras. Biasanya dilakukan pada umur 24 jam. Setelah dilepas dari cetakan, binder geopolimer ini kemudian dimasukkan dalam oven hingga 24 jam, lalu dibiarkan hingga uap panas keluar dan setelah itu dimasukkan dalam wadah kedap air. Hal ini dilakukan hingga tiba waktu pengetesan-pengetesan selanjutnya.


(32)

III-5 3.7.2 Beton Geopolimer Ukuran 100x200 mm2

1) Campur Sodium Hidroksida dengan air hingga menjadi 1,5M 2) Timbang semua material yang akan digunakan

3) Aduk larutan Sodium Hidroksida, Sodium Silikat hingga tercampur rata 4) Campurkan agregat kasar, agregat halus, fly ash dan serat mat dan di aduk

hingga merata, lalu campurkan pula larutan Sodium Hidroksida dan Sodium Silikat, aduk hingga semua tercampur rata.

5) Masukkan adukan beton geopolimer ke dalam kerucut abram untuk mengetahui nilai slump beton geopolimer.

6) Beton geopolimer kemudian dicetak dalam cetakan silinder berukuran 100x200 mm2 dan diratakan

7) Untuk beton geopolimer yang akan di oven, cetakan bisa dilepas setelah beton sudah mengeras setelah 24 jam. Setelah dilepas dari cetakan, beton geopolimer ini kemudian dimasukkan dalam oven dengan temperatur 90°C selama 24 jam. Setelah di oven selama 24 jam, beton geopolimer disimpan dalam suhu ruangan sampai pengetesan-pengetesan dilakukan

Sedangkan, untuk beton geopolimer yang tidak di oven cetakan bisa dilepaskan setelah beton mengeras lalu beton disimpan dalam suhu ruangan dan ditutup dengan plastik, dimaksudkan agar mengurangi penguapan / kehilangan air selama proses curing berlangsung hingga pengetesan-pengetesan dilakukan.


(33)

IV-1

BAB IV

HASIL PENGUJIAN DAN ANALISIS DATA

4.1 Penentuan Komposisi Alkaline Aktivator

Pada studi ini alkaline aktivator yang digunakan berupa Sodium Silikat (Na2SiO3)

dan Sodium Hidroksida (NaOH). Nilai molaritas NaOH dibatasi sebesar 1,5M, Adapun cara mendapatkan molaritas NaOH 1,5M adalah sebagai berikut :

Diketahui :

Mr NaOH = 40 (berdasarkan tabel periodik) maka ; Mr NaOH x molaritas yang diinginkan = NaOH (gram) Contoh :

40 x 1,5M = 60 gram

Untuk mendapatkan 1,5 molar NaOH dalam bentuk cair, 60gram NaOH tersebut dicampurkan dengan air dan dimasukkan ke dalam tabung erlenmeyer hingga volume campuran di dalam erlenmeyer mencapai 1 liter.

Komposisi alkaline aktivator geopolimer sebagai salah satu bahan pengikat unsur alumunium dan silikat yang terkandung dalam fly ash akan membentuk suatu ikatan polimerisasi dan mempercepat reaksi yang terjadi.

4.2 Penamaan Benda Uji Binder dan Beton Geopolimer 4.2.1 Penamaan Benda Uji Binder Geopolimer

Untuk mempermudah mengenali benda uji, maka masing-masing benda uji diberi nama sebagai berikut:

 Binder G1,5-0,5 : binder yang menggunakan larutan Sodium Silikat dan Sodium Hidroksida 1,5M dengan perbandingan massa 0.5

 Binder G1,5-1,5 : binder yang menggunakan larutan Sodium Silikat dan Sodium Hidroksida 1,5M dengan perbandingan massa 1.5


(34)

IV-2 4.2.2 Penamaan Benda Uji Beton Geopolimer

Untuk penamaan benda uji beton Geopolimer adalah sebagai berikut :

 Beton GF1,5-0,5 : beton geopolimer yang menggunakan serat mat dan larutan Sodium Silikat dan Sodium Hidroksida 1,5M dengan perbandingan massa 0,5

 Beton GF1,5-1,5 : beton geopolimer yang menggunakan serat mat dan larutan Sodium Silikat dan Sodium Hidroksida 1,5M dengan perbandingan massa 1,5

 Beton G1,5-0,5 : beton geopolimer yang hanya menggunakan larutan Sodium Silikat dan Sodium Hidroksida 1,5M dengan perbandingan massa 0,5

 Beton G1,5-1,5 : beton geopolimer yang hanya menggunakan larutan Sodium Silikat dan Sodium Hidroksida 1,5M dengan perbandingan massa 1,5

Contoh :

4.3 Penentuan Komposisi Binder

Komposisi binder ditentukan sebanyak 80% fly ash dan 20% pencampur (Sodium Silikat dan Sodium Hidroksida). Jumlah pencampur ditentukan dengan molaritas NaOH 1,5 molar. Komposisi ini ditentukan berdasarkan literatur Ekaputri et.all (2007), dengan asumsi bahwa pada komposisi binder tersebut akan menghasilkan nilai kuat tekan beton geopolimer yang tinggi. Berikut adalah komposisi material binder geopolimer yang digunakan pada studi ini :

Tabel IV.1 Kebutuhan Bahan dalam Pembuatan Binder Geopolimer untuk Setiap Sampel

Binder Fly Ash (gram)

NaOH (gram)

Na2SiO3

(gram)

G1,5-0,5 500 50 25


(35)

IV-3 4.4 Penentuan Komposisi Beton Geopolimer

Komposisi beton geopolimer ditentukan sebanyak 80% aggregat dan 20% binder (fly ash + pencampur). Material aggregat yang digunakan berupa aggregat kasar, aggregat halus dan aditif (serat mat), selanjutnya untuk pencampur digunakan material berupa 74% fly ash dan 26% pencampur (Sodium Silikat dan Sodium Hidroksida). Jumlah alkaline aktivator ditentukan dengan molaritas NaOH 1,5 molar. Komposisi ini ditentukan berdasarkan literatur Ekaputri et.all (2007), dengan asumsi bahwa pada komposisi binder tersebut akan menghasilkan nilai kuat tekan beton geopolimer yang tinggi. Berikut adalah komposisi material beton geopolimer yang digunakan pada studi ini :

Tabel IV.2 Kebutuhan Bahan dalam Pembuatan Beton Geopolimer untuk Setiap Sampel yang di Oven

Beton Fly Ash (gram)

NaOH (gram)

Na2SiO3

(gram) Agr. Kasar (gr) Agr. Halus (gr) Serat Fiber (gr)

GF1,5-0,5 1500 150 75 3000 1500 100

GF1,5-1,5 1500 150 225 3000 1500 100

G1,5-0,5 1500 150 75 3000 1500 -

G1,5-1,5 1500 150 225 3000 1500 -

Tabel IV.3 Kebutuhan Bahan dalam Pembuatan Beton Geopolimer untuk Setiap Sampel yang Tidak di Oven

Beton Fly Ash (gram)

NaOH (gram)

Na2SiO3

(gram) Agr. Kasar (gr) Agr. Halus (gr) Serat Fiber (gr)

GF1,5-0,5 1500 150 75 3000 1500 100

GF1,5-1,5 1500 150 225 3000 1500 100 4.5 Slump Test

Pengujian slump pada penelitian ini dilakukan di Laboratorium Rekayasa Struktur Teknik Sipil Unikom, dengan menggunakan alat yang bernama Kerucut Abrams. Pengujian ini digunakan terhadap beton segar yang mewakili campuran beton. Hasil dalam pengujian ini digunakan dalam pekerjaan perencanaan campuran beton dan pengendalian mutu beton pada pelaksanaan pembetonan. Nilai Slump adalah selisih ketinggian antara kerucut tes slump dengan beton yang diuji. Berikut adalah nilai hasil slump test pada studi ini :


(36)

IV-4 Tabel IV.4 Tabel Hasil Pengujian Slump Beton Geopolimer

Curing Kode Jenis Benda Uji

Nilai Slump (cm)

Oven GF1,5-0,5 3

Oven GF1,5-1,5 2,7

Oven G1,5-0,5 3,6

Oven G1,5-1,5 3,2

Non Oven GF1,5-0,5 3

Non Oven GF1,5-1,5 2,8

Dari tabel IV.7 dapat dilihat bahwa seluruh beton geopolimer memiliki nilai slump yang cukup rendah. Hal ini menyebabkan beton geopolimer cukup sulit untuk dicetak atau tidak workability. Diperkirakan, nilai slump yang kecil pada beton geopolimer disebabkan oleh waktu pengikatan awal dari pasta geopolimer yang terlalu cepat.

4.6 Uji Kuat Tekan

4.6.1 Uji Kuat Tekan Binder Geopolimer

Pengujian kuat tekan binder geopolimer dilaksanakan di Laboratorium Rekayasa Struktur Teknik Sipil ITB dengan menggunakan alat Ibertest berkapasitas 20 ton. Berikut adalah tabel dan grafik hasil analisis data kuat tekan binder goepolimer yang telah di uji di laboratorium :

Tabel IV.5 Tabel Hasil Tes Kuat Tekan Binder Geopolimer G1,5-0,5 Identifikasi Tanggal Tanggal Umur Berat

Luas

Bidang Beban Kekuatan Kekuatan

Benda Uji Di Cor Di Test Tekan Maks Tekan Tekan Rata-rata

(Hari) (kg) (cm2) (kg) (kg/cm2) (kg/cm2)

G1.5-0,5 18/06/13 21/06/13 3 0,35 19,63 1.019 51,92

66,16 G1.5-0,5 18/06/13 21/06/13 3 0,35 19,63 1.555 79,20

G1.5-0,5 18/06/13 21/06/13 3 0,33 19,63 1.323 67,36 G1.5-0,5 18/06/13 03/07/13 15 0,33 19,63 1.456 74,13

77,60 G1.5-0,5 18/06/13 03/07/13 15 0,33 19,63 1.438 73,21

G1.5-0,5 18/06/13 03/07/13 15 0,34 19,63 1.678 85,46 G1.5-0,5 18/06/13 16/07/13 28 0,33 19,63 2.058 104,83

104,35 G1.5-0,5 18/06/13 16/07/13 28 0,00 19,63 2.141 109,02

G1.5-0,5 18/06/13 16/07/13 28 0,33 19,63 1.948 99,22

Berdasarkan hasil pengujian kuat tekan binder geopolimer dengan molaritas 1.5M dan ratio 0.5 diatas, dapat diketahui bahwa kuat tekan binder geopolimer


(37)

G1,5-IV-5 0,5 setelah umur 15 hari mengalami peningkatan kuat tekan yang cukup signifikan.

Untuk binder geopolimer dengan molaritas 1.5 M dan ratio 1.5 hasil kuat tekan binder Geopolimer adalah sebagai berikut :

Tabel IV.6 Tabel Hasil Tes Kuat Tekan Binder Geopolimer G1,5-1,5 Identifikasi Tanggal Tanggal Umur Berat

Luas

Bidang Beban Kekuatan Kekuatan

Benda Uji Beton Beton Tekan Maks Tekan Rata-rata

Di Cor Di Test (Hari) (kg) (cm2) (kg) (kg/cm2) (kg/cm2)

G1,5-1,5 18/06/13 21/06/13 3 0,33 19,63 937 47,74

45,14 G1,5-1,5 18/06/13 21/06/13 3 0,33 19,63 817 41,64

G1,5-1,5 18/06/13 21/06/13 3 0,33 19,63 904 46,05 G1,5-1,5 18/06/13 03/07/13 15 0,32 19,63 762 38,85

39,70 G1,5-1,5 18/06/13 03/07/13 15 0,31 19,63 904 46,07

G1,5-1,5 18/06/13 03/07/13 15 0,32 19,63 671 34,19 G1,5-1,5 18/06/13 16/07/13 28 0,32 19,63 937 47,76

43,58 G1,5-1,5 18/06/13 16/07/13 28 0,32 19,63 861 43,85

G1,5-1,5 18/06/13 16/07/13 28 0,31 19,63 768 39,11

Berdasarkan hasil pengujian diatas, dapat diketahui bahwa kuat tekan binder geopolimer G1,5-1,5 setelah umur 15 hari mengalami penurunan kuat tekan yang tidak signifikan. Adapun contoh perhitungan kuat tekan dan luas bidang tekan adalah sebagai berikut :

Contoh perhitungan :

Kekuatan Tekanan σ’b Luas Bidang Tekan

2 / 11 , 39 63 , 19 768

' kg cm

Ao P

 

 Ao = 0,25 x π x (D²)

Ao = 0,25 x 3,1415 x (5²) Ao = 19,22 cm²

Grafik perbandingan kuat tekan binder geopolimer untuk setiap perubahan ratio alkaline activator adalah sebagai berikut :


(38)

IV-6 Gambar IV.1 Grafik Perbandingan Tes Kuat Tekan Binder Geopolimer

Berdasarkan pada tabel dan grafik di atas dapat disimpulkan, bahwa kuat tekan binder geopolimer mengalami kenaikan dari umur 3 hari sampai umur 28 hari. Untuk binder dengan rasio Sodium Silikat dan Sodium Hidroksida 0,5 menghasilkan kuat tekan yang lebih besar dibandingkan binder dengan rasio Sodium Silikat dan Sodium Hidroksida 1,5.

4.6.2 Uji Kuat Tekan Beton Geopolimer

Pengujian kuat tekan beton geopolimer dilaksanakan di Laboratorium Rekayasa Struktur Teknik Sipil ITB dengan menggunakan alat Ibertest berkapasitas 20 ton. Berikut adalah tabel dan grafik hasil analisis data kuat tekan beton goepolimer yang telah di uji di laboratorium :

Tabel IV.6 Hasil Tes Kuat Tekan Beton Geopolimer non Oven GF1,5-0,5

No. Identifikasi Tanggal Tanggal Umur Berat

Luas

Bidang Beban Kekuatan Kekuatan

Benda Uji Beton Beton Tekan Maks Tekan Rata-rata

Di Cor Di Test (Hari) (kg) (cm2) (kg) (kg/cm2) (kg/cm2)

1 NO GF1,5-0,5 19/06/13 21/06/13 2 4,17 78,54 1.552 19,76

20,38 2 NO GF1,5-0,5 19/06/13 21/06/13 2 4,18 78,54 1.714 21,82

3 NO GF1,5-0,5 19/06/13 21/06/13 2 4,16 78,54 1.536 19,55 4 NO GF1,5-0,5 19/06/13 03/07/13 14 3,97 78,54 6.992 89,03

93,01 5 NO GF1,5-0,5 19/06/13 03/07/13 14 3,95 78,54 7.393 94,14

6 NO GF1,5-0,5 19/06/13 03/07/13 14 3,95 78,54 7.528 95,86 7 NO GF1,5-0,5 19/06/13 17/07/13 28 4,16 78,54 7.041 89,65

103,71 8 NO GF1,5-0,5 19/06/13 17/07/13 28 4,15 78,54 7.929 100,95

9 NO GF1,5-0,5 19/06/13 17/07/13 28 4,17 78,54 9.466 120,52

Berdasarkan hasil pengujian, dapat diketahui bahwa kuat tekan beton geopolimer dengan curing di oven GF1,5-0,5 setelah umur 3hari mengalami peningkatan kuat tekan yang signifikan dan terus meningkat hingga umur 28 hari.

0,00 20,00 40,00 60,00 80,00 100,00 120,00

0 3 6 9 12 15 18 21 24 27 30

K u a t T e ka n (kg /cm 2) Umur Hari G1,5-0,5 G1,5-1,5


(39)

IV-7 Untuk beton geopolimer dengan metode curing di oven dengan molaritas 1.5 M dan ratio 1.5 serta penambahan serat mat hasil kuat tekan beton Geopolimer adalah sebagai berikut :

Tabel IV.7 Hasil Tes Kuat Tekan Beton Geopolimer non Oven GF1,5-1,5 No. Identifikasi Tanggal Tanggal

Umur Berat

Luas Bidang

Tekan

Beban Kekuatan Kekuatan

Benda Uji Beton Beton Maks Tekan Rata-rata

Di Cor Di Test (Hari) (kg) (cm2) (kg) (kg/cm2) (kg/cm2)

1 NO GF1,5-1,5 20/06/13 24/06/13 4 4,20 78,54 3.097 39,43

38,13 2 NO GF1,5-1,5 20/06/13 24/06/13 4 4,14 78,54 2.565 32,66

3 NO GF1,5-1,5 20/06/13 24/06/13 4 4,20 78,54 3.322 42,30 4 NO GF1,5-1,5 20/06/13 04/07/13 14 4,08 78,54 4.261 54,25

58,99 5 NO GF1,5-1,5 20/06/13 04/07/13 14 4,08 78,54 4.710 59,97

6 NO GF1,5-1,5 20/06/13 04/07/13 14 4,10 78,54 4.927 62,74 7 NO GF1,5-1,5 20/06/13 18/07/13 28 4,16 78,54 5.659 72,06

70,50 8 NO GF1,5-1,5 20/06/13 18/07/13 28 4,16 78,54 6.053 77,07

9 NO GF1,5-1,5 20/06/13 18/07/13 28 4,19 78,54 4.898 62,37

Berdasarkan hasil pengujian, dapat diketahui bahwa kuat tekan beton geopolimer dengan curing tidak di oven GF1,5-1,5 setelah umur 3 hari mengalami peningkatan kuat tekan yang cukup signifikan dan terus meningkat hingga umur 28 hari.

Untuk beton geopolimer dengan metode curing di oven dengan molaritas 1.5 M dan ratio 0.5 tanpa penambahan serat mat hasil kuat tekan beton Geopolimer adalah sebagai berikut :

Tabel IV.8 Hasil Tes Kuat Tekan Beton Geopolimer Oven G1,5-0,5 No. Identifikasi Tanggal Tanggal

Umur Berat

Luas

Bidang Beban Kekuatan Kekuatan

Benda Uji Beton Beton Tekan Maks Tekan Rata-rata

Di Cor Di Test (Hari) (kg) (cm2) (kg) (kg/cm2) (kg/cm2)

1 O G1,5-0,5 24/06/13 27/06/13 3 4,03 78,54 4.242 54,01

58,78 2 O G1,5-0,5 24/06/13 27/06/13 3 3,94 78,54 4.467 56,87

3 O G1,5-0,5 24/06/13 27/06/13 3 3,99 78,54 5.140 65,44 4 O G1,5-0,5 24/06/13 08/07/13 14 4,10 78,54 5.344 68,05

62,08 5 O G1,5-0,5 24/06/13 08/07/13 14 4,09 78,54 4.048 51,54

6 O G1,5-0,5 24/06/13 08/07/13 14 4,05 78,54 5.234 66,64 7 O G1,5-0,5 24/06/13 22/07/13 28 4,17 78,54 6.263 79,74

74,90 8 O G1,5-0,5 24/06/13 22/07/13 28 4,03 78,54 5.829 74,22

9 O G1,5-0,5 24/06/13 22/07/13 28 4,15 78,54 5.555 70,73

Berdasarkan hasil pengujian, dapat diketahui bahwa kuat tekan beton geopolimer dengan curing di oven G1,5-0,5 setelah umur 3 hari mengalami peningkatan kuat tekan yang cukup signifikan dan terus meningkat hingga umur 28 hari.


(40)

IV-8 Untuk beton geopolimer dengan metode curing di oven dengan molaritas 1.5 M dan ratio 1.5 tanpa penambahan serat mat hasil kuat tekan beton Geopolimer adalah sebagai berikut :

Tabel IV.9 Hasil Tes Kuat Tekan Beton Geopolimer Oven G1,5-1,5

No. Identifikasi Tanggal Tanggal Umur Berat

Luas

Bidang Beban

Maks Kekuatan Tekan

Kekuatan

Benda Uji Beton Beton Tekan Rata-rata

Di Cor Di Test (Hari) (kg) (cm2) (kg) (kg/cm2) (kg/cm2)

1 O G1,5-1,5 05/07/13 08/07/13 3 3,97 78,54 1.608 20,48

18,91 2 O G1,5-1,5 05/07/13 08/07/13 3 3,97 78,54 1.692 21,54

3 O G1,5-1,5 05/07/13 08/07/13 3 3,99 78,54 1.156 14,72 4 O G1,5-1,5 05/07/13 19/07/13 14 3,90 78,54 1.781 22,67

20,84 5 O G1,5-1,5 05/07/13 19/07/13 14 3,88 78,54 1.819 23,16

6 O G1,5-1,5 05/07/13 19/07/13 14 3,91 78,54 1.310 16,68 7 O G1,5-1,5 05/07/13 02/08/13 28 3,80 78,54 1.729 22,01

24,50 8 O G1,5-1,5 05/07/13 02/08/13 28 3,75 78,54 1.797 22,88

9 O G1,5-1,5 05/07/13 02/08/13 28 3,75 78,54 2.245 28,59

Berdasarkan hasil pengujian, dapat diketahui bahwa kuat tekan beton geopolimer dengan curing di oven G1,5-1,5 setelah umur 3 hari mengalami peningkatan kuat tekan yang cukup signifikan dan terus meningkat hingga umur 28 hari.

Untuk beton geopolimer dengan metode curing di oven dengan molaritas 1.5 M dan ratio 0.5 serta penambahan serat mat hasil kuat tekan beton Geopolimer adalah sebagai berikut :

Tabel IV.10 Hasil Tes Kuat Tekan Beton Geopolimer Oven GF1,5-0,5

No. Identifikasi Tanggal Tanggal Umur Berat

Luas

Bidang Beban Kekuatan Kekuatan

Benda Uji Beton Beton Tekan Maks Tekan Rata-rata

Di Cor Di Test (Hari) (kg) (cm2) (kg) (kg/cm2) (kg/cm2)

1 O GF12-0,5 01/07/13 04/07/13 3 4,92 78,54 4.569 58,17

61,51 2 O GF12-0,5 01/07/13 04/07/13 3 4,00 78,54 4.661 59,35

3 O GF12-0,5 01/07/13 04/07/13 3 4,07 78,54 5.263 67,02 4 O GF12-0,5 01/07/13 15/07/13 14 3,90 78,54 5.125 65,26

69,58 5 O GF12-0,5 01/07/13 15/07/13 14 3,95 78,54 5.280 67,23

6 O GF12-0,5 01/07/13 15/07/13 14 4,02 78,54 5.988 76,25 7 O GF12-0,5 01/07/13 29/07/13 28 3,88 78,54 6.312 80,37

78,19 8 O GF12-0,5 01/07/13 29/07/13 28 3,94 78,54 5.524 70,33

9 O GF12-0,5 01/07/13 29/07/13 28 3,96 78,54 6.588 83,88

Berdasarkan hasil pengujian, dapat diketahui bahwa kuat tekan beton geopolimer dengan curing di oven GF1,5-0,5 setelah umur 3 hari mengalami peningkatan kuat tekan yang cukup signifikan dan terus meningkat hingga umur 28 hari.


(41)

IV-9 Untuk beton geopolimer dengan metode curing di oven dengan molaritas 1.5 M dan ratio 1.5 serta penambahan serat mat hasil kuat tekan beton Geopolimer adalah sebagai berikut :

Tabel IV.11 Hasil Uji Kuat Tekan Beton Geopolimer Oven GF1,5-1,5

No. Identifikasi Tanggal Tanggal Umur Berat

Luas

Bidang Beban Kekuatan Kekuatan

Benda Uji Beton Beton Tekan Maks Tekan Rata-rata

Di Cor Di Test (Hari) (kg) (cm2

) (kg) (kg/cm2

) (kg/cm2

) 1 O GF12-1,5 02/07/13 05/07/13 3 4,01 78,54 2.543 32,38

32,88

2 O GF12-1,5 02/07/13 05/07/13 3 4,00 78,54 2.386 30,38 3 O GF12-1,5 02/07/13 05/07/13 3 3,90 78,54 2.819 35,89 4 O GF12-1,5 02/07/13 16/07/13 14 3,98 78,54 3.632 46,25

46,77

5 O GF12-1,5 02/07/13 16/07/13 14 3,99 78,54 3.772 48,03 6 O GF12-1,5 02/07/13 16/07/13 14 3,91 78,54 3.615 46,03 7 O GF12-1,5 02/07/13 30/07/13 28 3,85 78,54 2.909 37,04

42,27

8 O GF12-1,5 02/07/13 30/07/13 28 3,82 78,54 3.237 41,21 9 O GF12-1,5 02/07/13 30/07/13 28 3,82 78,54 3.814 48,57

Berdasarkan hasil pengujian, dapat diketahui bahwa kuat tekan beton geopolimer dengan curing di oven GF1,5-1,5 setelah umur 3 hari mengalami peningkatan kuat tekan yang cukup signifikan dan terus meningkat hingga umur 28 hari. Adapun contoh perhitungan kuat tekan dan luas bidang tekan adalah sebagai berikut : Contoh Perhitungan:

Kekuatan Tekanan σ’b Luas Bidang Tekan

2 / 88 , 83 54 , 78 6588

' kg cm

Ao P

 

 Ao = 0,25 x π x (D²)

Ao = 0,25 x 3,1415 x (10²) Ao = 78,54 cm²


(42)

IV-10 Gambar IV.2 Grafik Perbandingan Tes Kuat Tekan Beton Geopolimer

Berdasarkan tabel dan grafik di atas, beton dengan proses curing dioven awalnya menghasilkan kuat tekan yang tinggi, tetapi pada saat pengujian umur 14 hari, kenaikan kuat tekannya tidak terlalu signifikan. Sedangkan beton dengan proses curing yang tidak dioven awalnya menghasilkan kuat tekan yang lebih rendah tetapi pada saat pengujian umur 14 hari kenaikannya cukup signifikan. Beton dengan rasio Sodium Silikat dan Sodium Hidroksida 0,5 menghasilkan kuat tekan yang lebih tinggi dibandingkan beton dengan rasio Sodium Silikat dan Sodium Hidroksida 1,5. Hasil tersebut juga menunjukkan bahwa hasil kuat tekan beton geopolimer lebih tinggi dibandingkan hasil kuat tekan binder geopolimer. Itu semua dipengaruhi oleh adanya perbedaan kemampuan untuk mengikat agregat kasar dan agregat halus yang ditambahkan dalam campuran beton geopolimer.

4.7 Pengaruh Penambahan Serat Mat

Berdasarkan penelitian yang dilakukan dapat diperoleh hasil yang lain, yaitu daktilitas. Berdasarkan kurva beban-perpendekan dari uji kuat tekan terhadap sampel beton geopolimer dengan serat mat dan tanpa serat mat dengan proses curing oven, dapat dihitung nilai daktilitas dari masing-masing sampel. Hasil perhitungan menujukkan beton dengan serat mat memiliki nilai daktilitas yang lebih tinggi dibandingkan dengan beton tanpa serat mat. Berikut ini adalah kurva beban-perpendekan dari uji kuat tekan terhadap sampel beton geopolimer G1,5-0,5 :

0,00 20,00 40,00 60,00

80,00

100,00 120,00

0 3 6 9 12 15 18 21 24 27 30

K

u

a

t

T

e

ka

n

(kg

/cm

2)

Umur Hari

NO GF1,5-0,5 NO GF1,5-1,5 O G1,5-0,5 O G1,5-1,5 O GF1,5-0,5 O GF1,5-1,5


(43)

IV-11 Gambar IV.3 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton G1,5-0,5

Berikut ini adalah kurva beban-perpendekan dari uji kuat tekan terhadap sampel beton geopolimer GF1,5-0,5 :

Gambar IV.4 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton GF1,5-0,5

Berdasarkan kurva di atas, maka dihasilkan nilai persentase peningkatan daktilitas seperti tabel berikut :


(44)

IV-12 Tabel IV.12 Daktilitas Beton Geopolimer Rasio 0,5

Komposisi Daktilitas

28 hari Rata-rata

G1,5-O,5

2,3348

2,4334 2,793

2,1726 GF1,5-0,5

2,1888

2,5073 2,3359

2,9979

Peningkatan Daktilitas (%) 3,0369

Berdasarkan hasil dari Tabel IV.12, pengaruh penambahan serat mat dalam campuran beton geopolimer dengan rasio 0,5, menunjukkan beton dengan penambahan serat mat menghasilkan nilai daktilitas yang lebih tinggi dibandingkan beton tanpa penambahan serat mat.

Berikut ini adalah kurva beban-perpendekan dari uji kuat tekan terhadap sampel beton geopolimer G1,5-1,5 :

Gambar IV.5 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton G1,5-1,5

Berikut ini adalah kurva beban-perpendekan dari uji kuat tekan terhadap sampel beton geopolimer GF1,5-1,5 :


(45)

IV-13 Gambar IV.6 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton G1,5-1,5

Berdasarkan kurva di atas, maka dihasilkan nilai persentase peningkatan daktilitas seperti tabel berikut :

Tabel IV.13 Daktilitas Beton Geopolimer Rasio 1,5

Komposisi Daktilitas

28 hari (%) Rata-rata (%)

G1,5-1,5

2,6649

2,5243 2,8684

2,0397 GF1,5-1,5

3,5698

2,7107 2,3987

2,1636

Peningkatan Daktilitas (%) 7,3842

Berdasarkan hasil dari tabel IV.12, pengaruh penambahan serat mat dalam campuran beton geopolimer dengan rasio 1,5 menunjukkan beton dengan penambahan serat mat menghasilkan nilai daktilitas yang lebih tinggi dibandingkan beton tanpa penambahan serat mat. Bila dilihat dari persentase Tabel IV.12 mendapatkan nilai peningkatan daktilitas 3,0369% dan Tabel IV.13 mendapatkan nilai peningkatan daktilitas 7,3842%. Hal tersebut menunjukkan bahwa nilai peningkatan daktilitas dengan penambahan serat mat tidak signifikan karena nilai peningkatan daktilitas ini terjadi pada level material. Jika


(46)

IV-14 diaplikasikan pada level elemen / penampang maupun struktur, nilai ini hanya memberikan pengaruh daktilitas yang sangat kecil.

Berikut adalah contoh perhitungan daktilitas :

Daktilitas leleh 1  Fraktur (dibagi oleh tegangan sisa)

3348 , 2 0439 , 0 1025 , 0 % 60

2  

  leleh  2870 , 2 0439 , 0 1004 , 0 % 70

2  

  leleh  2141 , 2 0439 , 0 0972 , 0 % 80

2  

  

leleh

Berdasarkan hasil perhitungan di atas, dapat disimpulkan bahwa nilai daktilitas untuk beton geopolimer pada tegangan sisa 60% dengan penambahan serat mat memiliki nilai daktilitas yang lebih tinggi. Contoh besarnya peningkatan daktilitas dapat dihitung dengan persamaan berikut :

% 100 %    Mat Serat Non Daktilitas Mat Serat Non Daktilitas Mat Serat Daktilitas Daktilitas Kenaikan % 3842 , 7 % 100 5243 , 2 5243 , 2 7107 , 2

%KenaikanDaktilitas   

Peningkatan terhadap kuat tekan

Untuk melihat pengaruh penambahan serat mat terhadap peningkatan kuat tekan pada beton geopolimer, dapat dilihat pada Tabel IV.14 dan Tabel IV.15 berikut ini :

Tabel IV.14 Kuat Tekan Beton Geopolimer dengan penambahan Serat Mat Rasio 0,5

Komposisi Kuat Tekan

28 hari Rata-rata

G1,5-0,5 79,74 74,90 74,22 70,73 GF1,5-0,5 80,37 78,19 70,33 83,88 Peningkatan Kuat Tekan

(%)


(47)

IV-15 Tabel IV.15 Kuat Tekan Beton Geopolimer dengan penambahan Serat Mat Rasio 1,5

Komposisi Kuat Tekan

28 hari Rata-rata

G1,5-1,5 22,01 24,50 22,88 28,59 GF1,5-1,5 37,04 42,27 41,21 48,57 Peningkatan Kuat Tekan

(%)

72,53

Hasil penelitian menunjukkan bahwa beton dengan penambahan serat mat rasio 0,5 menghasilkan peningkatan kuat tekan sebesar 4,3925% dan beton tanpa penambahan serat mat rasio 1,5 menghasilkan peningkatan kuat tekan sebesar 72,53%. Berdasarkan penelitian ini, tidak dapat ditarik kesimpulan bahwa dengan penambahan serat mat akan mempengaruhi kuat tekan beton geopolimer, karena kenaikannya tidak sebanding dan tidak menunjukkan korelasi yang jelas.

Berikut adalah contoh perhitungan persentase peningkatan kuat tekan : % 100 %    Mat Serat Non Mat Serat Non Mat Serat KuatTekan Kenaikan % 53 , 72 % 100 50 , 24 50 , 24 72 , 42


(48)

V-1 BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian yang telah dilakukan, maka dapat disimpulkan sebagai berikut:

1. Binder dan beton geopolimer dengan molaritas NaOH 1,5 M dan rasio perbandingan Na2SiO3 terhadap NaOH sebesar 0,5 menghasilkan kuat

tekan yang lebih tinggi dibandingkan dengan molaritas NaOH 1,5 M dan rasio perbandingan Na2SiO3 terhadap NaOH sebesar 1,5.

2. Proses curing pada beton yang memiliki molaritas dan rasio yang sama menghasilkan kuat tekan yang lebih tinggi untuk proses curing dengan metode non oven dibandingkan dengan proses curing oven.

3. Uji slump untuk beton geopolimer menghasilkan nilai slump yang cukup rendah. Hal ini menyebabkan beton geopolimer cukup sulit untuk dicetak atau tidak workability. Diperkirakan, nilai slump yang kecil pada beton geopolimer disebabkan oleh waktu pengikatan awal dari pasta geopolimer yang terlalu cepat.

4. Beton geopolimer dengan penambahan serat mat dalam campurannya memiliki nilai daktilitas yang lebih tinggi dibandingkan dengan beton geopolimer tanpa penambahan serat mat dalam campurannya. Tetapi nilai peningkatannya tidak signifikan dan hanya memberikan nilai daktilitas yang sangat kecil.

5. Hasil Kesmpulan ini hanya dikhususkan pada penelitian yang dilakukan. Berlaku pada jenis material, metode, dan sampel benda uji yang dilakukan.


(49)

V-2 5.2 Saran

1. Sebaiknya dilakukan uji binder untuk mendapatkan molaritas dan rasio perbandingan Na2SiO3 terhadap NaOH yang optimum. Nilai optimum

akan diperoleh dengan melakukan virabilitas terhadap molaritas dan rasio perbandingan Na2SiO3 terhadap NaOH di rentang batas tertentu.

2. Setelah mendapatkan molaritas dan rasio perbandingan Na2SiO3 terhadap

NaOH yang optimum, maka sampel benda uji dapat dibuat dengan menggunakan nilai tersebut dan tidak perlu di variasikan lagi, dengan demikian variasi dapat dilakukan terhadap persentase jumlah serat mat yang ditambahkan maupun terhadap variabel lain yang nanti akan ditinjau pada penelitian selanjutnya.

3. Sebelum melakukan percobaan sebaiknya melakukan mix design untuk beton konvensional, sehingga dapat diketahui perbedaan kuat tekannya.


(1)

Tabel IV.12 Daktilitas Beton Geopolimer Rasio 0,5

Komposisi Daktilitas

28 hari Rata-rata G1,5-O,5

2,3348

2,4334 2,793

2,1726 GF1,5-0,5

2,1888

2,5073 2,3359

2,9979

Peningkatan Daktilitas (%) 3,0369

Berdasarkan hasil dari Tabel IV.12, pengaruh penambahan serat mat dalam campuran beton geopolimer dengan rasio 0,5, menunjukkan beton dengan penambahan serat mat menghasilkan nilai daktilitas yang lebih tinggi dibandingkan beton tanpa penambahan serat mat.

Berikut ini adalah kurva beban-perpendekan dari uji kuat tekan terhadap sampel beton geopolimer G1,5-1,5 :

Gambar IV.5 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton G1,5-1,5 Berikut ini adalah kurva beban-perpendekan dari uji kuat tekan terhadap sampel beton geopolimer GF1,5-1,5 :


(2)

Gambar IV.6 Grafik Beban – Perpendekan dari Uji Kuat Tekan Beton G1,5-1,5 Berdasarkan kurva di atas, maka dihasilkan nilai persentase peningkatan daktilitas seperti tabel berikut :

Tabel IV.13 Daktilitas Beton Geopolimer Rasio 1,5

Komposisi Daktilitas

28 hari (%) Rata-rata (%) G1,5-1,5

2,6649

2,5243 2,8684

2,0397 GF1,5-1,5

3,5698

2,7107 2,3987

2,1636

Peningkatan Daktilitas (%) 7,3842

Berdasarkan hasil dari tabel IV.12, pengaruh penambahan serat mat dalam campuran beton geopolimer dengan rasio 1,5 menunjukkan beton dengan penambahan serat mat menghasilkan nilai daktilitas yang lebih tinggi dibandingkan beton tanpa penambahan serat mat. Bila dilihat dari persentase Tabel IV.12 mendapatkan nilai peningkatan daktilitas 3,0369% dan Tabel IV.13 mendapatkan nilai peningkatan daktilitas 7,3842%. Hal tersebut menunjukkan bahwa nilai peningkatan daktilitas dengan penambahan serat mat tidak signifikan karena nilai peningkatan daktilitas ini terjadi pada level material. Jika


(3)

diaplikasikan pada level elemen / penampang maupun struktur, nilai ini hanya memberikan pengaruh daktilitas yang sangat kecil.

Berikut adalah contoh perhitungan daktilitas :

Daktilitas leleh 1  Fraktur (dibagi oleh tegangan sisa) 3348 , 2 0439 , 0 1025 , 0 % 60

2  

  leleh  2870 , 2 0439 , 0 1004 , 0 % 70

2  

  leleh  2141 , 2 0439 , 0 0972 , 0 % 80

2  

  

leleh

Berdasarkan hasil perhitungan di atas, dapat disimpulkan bahwa nilai daktilitas untuk beton geopolimer pada tegangan sisa 60% dengan penambahan serat mat memiliki nilai daktilitas yang lebih tinggi. Contoh besarnya peningkatan daktilitas dapat dihitung dengan persamaan berikut :

% 100 %    Mat Serat Non Daktilitas Mat Serat Non Daktilitas Mat Serat Daktilitas Daktilitas Kenaikan % 3842 , 7 % 100 5243 , 2 5243 , 2 7107 , 2

%KenaikanDaktilitas   

Peningkatan terhadap kuat tekan

Untuk melihat pengaruh penambahan serat mat terhadap peningkatan kuat tekan pada beton geopolimer, dapat dilihat pada Tabel IV.14 dan Tabel IV.15 berikut ini :

Tabel IV.14 Kuat Tekan Beton Geopolimer dengan penambahan Serat Mat Rasio 0,5

Komposisi Kuat Tekan

28 hari Rata-rata G1,5-0,5 79,74 74,90 74,22 70,73 GF1,5-0,5 80,37 78,19 70,33 83,88 Peningkatan Kuat Tekan

(%)


(4)

Tabel IV.15 Kuat Tekan Beton Geopolimer dengan penambahan Serat Mat Rasio 1,5

Komposisi Kuat Tekan

28 hari Rata-rata G1,5-1,5

22,01

24,50 22,88

28,59 GF1,5-1,5

37,04

42,27 41,21

48,57 Peningkatan Kuat Tekan

(%)

72,53

Hasil penelitian menunjukkan bahwa beton dengan penambahan serat mat rasio 0,5 menghasilkan peningkatan kuat tekan sebesar 4,3925% dan beton tanpa penambahan serat mat rasio 1,5 menghasilkan peningkatan kuat tekan sebesar 72,53%. Berdasarkan penelitian ini, tidak dapat ditarik kesimpulan bahwa dengan penambahan serat mat akan mempengaruhi kuat tekan beton geopolimer, karena kenaikannya tidak sebanding dan tidak menunjukkan korelasi yang jelas.

Berikut adalah contoh perhitungan persentase peningkatan kuat tekan : %

100

%   

Mat Serat Non

Mat Serat Non Mat Serat KuatTekan

Kenaikan

% 53 , 72 % 100 50

, 24

50 , 24 72 , 42


(5)

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari hasil penelitian yang telah dilakukan, maka dapat disimpulkan sebagai berikut:

1. Binder dan beton geopolimer dengan molaritas NaOH 1,5 M dan rasio perbandingan Na2SiO3 terhadap NaOH sebesar 0,5 menghasilkan kuat tekan yang lebih tinggi dibandingkan dengan molaritas NaOH 1,5 M dan rasio perbandingan Na2SiO3 terhadap NaOH sebesar 1,5.

2. Proses curing pada beton yang memiliki molaritas dan rasio yang sama menghasilkan kuat tekan yang lebih tinggi untuk proses curing dengan metode non oven dibandingkan dengan proses curing oven.

3. Uji slump untuk beton geopolimer menghasilkan nilai slump yang cukup rendah. Hal ini menyebabkan beton geopolimer cukup sulit untuk dicetak atau tidak workability. Diperkirakan, nilai slump yang kecil pada beton geopolimer disebabkan oleh waktu pengikatan awal dari pasta geopolimer yang terlalu cepat.

4. Beton geopolimer dengan penambahan serat mat dalam campurannya memiliki nilai daktilitas yang lebih tinggi dibandingkan dengan beton geopolimer tanpa penambahan serat mat dalam campurannya. Tetapi nilai peningkatannya tidak signifikan dan hanya memberikan nilai daktilitas yang sangat kecil.

5. Hasil Kesmpulan ini hanya dikhususkan pada penelitian yang dilakukan. Berlaku pada jenis material, metode, dan sampel benda uji yang dilakukan.


(6)

5.2 Saran

1. Sebaiknya dilakukan uji binder untuk mendapatkan molaritas dan rasio perbandingan Na2SiO3 terhadap NaOH yang optimum. Nilai optimum akan diperoleh dengan melakukan virabilitas terhadap molaritas dan rasio perbandingan Na2SiO3 terhadap NaOH di rentang batas tertentu.

2. Setelah mendapatkan molaritas dan rasio perbandingan Na2SiO3 terhadap NaOH yang optimum, maka sampel benda uji dapat dibuat dengan menggunakan nilai tersebut dan tidak perlu di variasikan lagi, dengan demikian variasi dapat dilakukan terhadap persentase jumlah serat mat yang ditambahkan maupun terhadap variabel lain yang nanti akan ditinjau pada penelitian selanjutnya.

3. Sebelum melakukan percobaan sebaiknya melakukan mix design untuk beton konvensional, sehingga dapat diketahui perbedaan kuat tekannya. 4. Perlu diperhatikan lebih lanjut tentang penentuan molaritas NaOH