Analisis struktur 2

INTRODUCTION: STRUCTURAL ANALYSIS
!
!
!

Deflected Shape of Structures
Method of Consistent Deformations
Maxwell’s Theorem of Reciprocal
Displacement

1

Deflection Diagrams and the Elastic Curve
fixed support

P

∆=0
θ=0

-M


P
roller or rocker
support

∆=0

θ
inflection point

+M
-M
2

P

θ
pined support

∆=0


-M

3

inflection point
• Fixed-connected joint
P

fixed-connected
joint

inflection point

Moment diagram

4

• Pined-connected joint


pined-connected
joint

P

Moment diagram

5

P

inflection point

Moment diagram

6

P1
A


B

C

D

P2
M
+M
x
-M

inflection point

7

P1

P2
+M


x

-M

inflection point

8

Method of Consistent Deformations
Beam 1 DOF
P
MA
Ax = 0

A

A

=


Ay

B

C
P

RB

B

C

∆´B

+
fBB x R
B
A


C
∆´B + fBB RB = ∆B = 0

B

1
9

Beam 2 DOF

Compatibility Equations.
w

∆´1 + f11R1 + f12R2 = ∆1 = 0

3

∆´2 + f21R1 + f22R2 = ∆2 = 0
4


1

5

2

=

0

w
∆´1

∆´1
∆´2

∆´2

+


f11 f12 R1
f12 f22 R
2

=

∆1 0
∆2

+
f21

f11

f12

+

1


×R1

f22

×R2

1
10

Beam 3 DOF

Compatibility Equations.

P1
1

w

P2


θ´1 + f11M1 + f12R2 + f13R3 = θ1 = 0

6

=

∆´2 + f21M1 + f22R2 + f23R3 = ∆2 = 0

4

2

3

P1

5

w

∆´3 + f31M1 + f32R2 + f33R3 = ∆3 = 0

P2

0
∆´2
1

f21

+

f11

θ´1

∆´3
f31
×M1

f11 f12 f13 M1

∆´2

f21 f22 f23 R
2
+
f31 f32 f33 R

∆´3

3

θ1 0
=

∆2 0
∆3

+

f12 f22

θ´1

f32
×R2

f13

f23

+

1

f33
×R3
1

11

Compatibility Equation for n span.

Equilibrium Equations

∆´1 + f11R1 + f12R2 + f13R3 = ∆ 1
∆´2 + f21R1 + f22R2 + f23R3 = ∆2

Fixed-end force matrix

∆´n + fn1R1 + fn2R2 + fnnRn = ∆n

[Q] = [K][D] + [Qf]

If ∆1 = ∆2=……= ∆n = 0 ;
∆ ´1

f11 f12

f13 R1

0

∆´2

f21 f22

f23 R
2 =

0

f n1 f n2

fn n R
n

0

∆´ n

+

Stiffness matrix
Solve for displacement [D];

[D] = [K]-1[Q] - [Qf]

or
[∆´] + [f][R] = 0
[R] = - [f]-1[∆´]

kij =

1
f ij

[fij] = Flexibility matrix dependent on
1
,
EI

1
1
,
EA GJ

12

Maxwell’s Theorem of reciprocal displacements
1=i
A

2=j
EI

1

B
f11 = fii

f21 = fji
f ij = ∫ mi M j

dx
EI

= ∫ mi m j

dx
EI

f ji = ∫ m j M i

dx
EI

= ∫ m j mi

dx
EI

Mi = mi

1

A

B

f22 = fjj
f12 = fij
Mj = mj

f ij = f ji

13

Example 1
Determine the reaction at all supports and the displacement at C.

50 kN
B

C

A
6m

6m

14

SOLUTION
• Principle of superposition

50 kN

MA
C

A
6m

6m

RB

=

RA

B

50 kN

∆´B
+
fBB x RB
Compatibility equation : ∆ ' B + f BB RB = 0

-----(1)

1 kN
15

• Use conjugate beam in obtaining ∆´B and fBB
50 kN

A

B
Real beam

300 kN•m
∆´B
50 kN

6m

6m
9000/EI
6 + (2/3)6 = 10 m
Conjugate beam
900/EI

300 /EI

900/EI

∆´B = M´B = -9000/EI ,
fBB

12 kN•m
1 kN
12 /EI

Real beam

1 kN

72/EI
(2/3)12 = 8 m

576/EI
Conjugate beam
fBB = M´´B = 576/EI,

72/EI

16

• Substitute ∆´B and fBB in Eq. (1)

+ ↑: −

9000 576
+(
) RB = 0
EI
EI
RB = +15.63 kN,

(same direction as 1 kN)

50 kN
300 kN•m
∆´B
50 kN

+
fBB x RB = 15.63 kN

1 kN

=

12 kN•m

1 kN

50 kN
34.37 kN•m A
34.37 kN

C

B
15.63 kN

17

Use conjugate beam in obtaining the displacement
50 kN
6m

113 kN•m

6m

C
∆C

A

B

Real Beam

15.6 kN

34.4 kN

93.6

M
(kN•m)

x (m)
3.28 m

6m

12 m

93.6/EI

-113

Conjugate Beam
-113/EI
281
223
776
( 2) −
(6 ) = −
M 'C =
EI
EI
EI
∆ C = M 'C = −

776
,↓
EI

281/(EI)

223/(EI)

M´C

V´C 2 m

4m

223/(EI)

18

Example 2
Determine the reaction at all supports and the displacement at C. Take E = 200
GPa and I = 5(106) mm4

10 kN
3EI

2EI
B

A
4m

C

2m

2m

19

10 kN
3EI

2EI
B

A
4m

C

2m

2m

=
10 kN

∆´B

+
fBB x R
B
1 kN
Compatibility equation:
∆´B + fBBRB = ∆B = 0
20

• Use conjugate beam in obtaining ∆´B

10 kN

3EI

40 kN•m

2EI
B

A
4m

C

2m

Real Beam

2m

10 kN
10

V (kN)

10
+
x (m)

M
(kN•m)

x (m)
40
177.7/EI
Conjugate Beam

40/3EI = 13.33/EI

26.66/EI
∆´B = M´B = 177.7/EI

21

• Use conjugate beam for fBB
3EI
8 kN•m

2EI
B Real Beam
1 kN

A
1 kN

4m

C
2m

2m

V (kN)

x (m)

-1

-1

8
4
M
(kN•m)
2.67
EI

8
=
3EI

+
x (m)
4/(3EI)=1.33EI

4/(2EI)=2EI
60.44/EI

fBB = M´B = 60.44/EI

12/EI

Conjugate Beam
22

10 kN
3EI

2EI
B

A
C

4m

2m

2m

=
10 kN

∆´B
+
fBB x R
B
1 kN
Compatibility. equation:
∆´B + fBBRB = ∆B = 0
− 177.7 60.44
+(
) RB = 0
EI
EI
RB = +2.941 kN,
(same direction as 1 kN)

+ ↑: −

23

• The quantitative shear and moment diagram and the qualitative deflected curve
10 kN
16.48 kN•m
3EI
2EI
B
A
∆C
C
2.94 kN
4m
2m
2m
7.06 kN

7.06
+

V (kN)

x (m)

-2.94

-2.94

11.76
M
(kN•m)

2.33 m

+

x (m)

1.67 m
-16.48
24

• Use the conjugate beam for find ∆C
3EI

16.48 kN•m

10 kN
2EI

C

A

B

∆C
2m

4m

7.059 kN

2.335 m

11.76
3EI

2m

Real beam

2.941 kN

11.76
2EI
Conjugate beam

16.48
3EI

1.665 m
3.263
EI
M´C=

3.263
6.413
−18.85
(0.555) −
(3.222) =
,↓
EI
EI
EI

(1.665)/3=0.555 m
6.413
−18.85
EI
∆C = M 'C =
= −18.85 mm, ↓
(
200
×
5
)
1.665+(2/3)(2.335) = 3.222 m
25

Example 3
Draw the quantitative Shear and moment diagram and the qualitative deflected
curve for the beam shown below.EI is constant. Neglect the effects of axial load.

5 kN/m
A

B
4m

4m

26

SOLUTION
• Principle of superposition
5 kN/m

θA

4m

4m

θB

B

=

A

5 kN/m

θ´B

+

θ´A
1 kN•m

αBA

+

αAA

×MA

αAB
Compatibility equations:

1 kN•m × M
B

αBB

θ A = 0 = θ ' A + f AA M A + f AB M B

− − − (1)

θ B = 0 = θ 'B + f BA M A + f BB M B

− − − ( 2)

27

• Use formula provided in obtaining θ´A, θ´B, αAA, αBA, αBB, αAB
5 kN/m

θ´A

θ´B
4m

4m

3wL3 3(5)(8) 3 60
θ 'A =
=
=
EI
128 EI
128EI
7 wL3
7(5)(8) 3 46.67
θ 'B =
=
=
EI
384 EI
384 EI

1 kN•m

1 kN•m

αAA

αBA

αAB

8m

8m

αBB

α AA =

M o L 1(8) 2.667
=
=
3EI 3EI
EI

α BB =

M o L 1(8) 2.667
=
=
EI
3EI 3EI

α BA =

M o L 1(8) 1.333
=
=
EI
6 EI 6 EI

α AB =

M o L 1(8) 1.333
=
=
EI
6 EI 6 EI

Note: Maxwell’s theorem of reciprocal displacement, αAB = αBA

28

• Use conjugate beam for αAA, αBA, αBB, αAB
1 kN•m

Real Beam

αAA
(1/8)

Real Beam

αAB

αBA
(1/8)

8m

1 kN•m

αBB

(1/8)

(1/8)

8m
4/EI

4/EI

1/EI

1/EI

Conjugate Beam
2.67/EI

Conjugate Beam
1.33/EI

1.33/EI

2.67/EI

α AA = V ' A =

− 2.667
EI

α AB = V ' A =

− 1.333
EI

α BA = V 'B =

1.333
EI

α BB = V ' B =

2.667
EI

29

5 kN/m
θA

B

θB

4m

Compatibility equation
+

=

4m
5 kN/m

+

θ 'B =

46.67
EI

46.67 1.333
2.667
+(
)M A + (
)M B = 0
EI
EI
EI

Solve simultaneous equations,
×MA

α AA

60 2.667
1.333
+(
)M A + (
)M B = 0
EI
EI
EI

+

60
θ 'A =
EI
1 kN•m

2.667
=
EI

+

A

α BA = V 'B =

1.333
EI

MA = -18.33 kN•m,

+

MB = -8.335 kN•m,

+

1 kN•m
×MB

α AB =

1.333
EI

α BB =

2.667
EI

30

MA = -18.33 kN•m,
MB = -8.335 kN•m,
5 kN/m
18.33 kN•m

A
RA

B
4m

4m

8.335 kN•m

RB

+ ΣMA = 0: 18.33 − 20( 2) + RB (8) − 8.355 = 0
3.753
+ ΣFy = 0: R A + RB − 20 = 0

RB = 3.753 kN,
Ra = 16.25 kN,

31

• Quantitative shear and bending diagram and qualitative deflected curve
5 kN/m
18.33 kN•m

A

B
4m

16.25 kN

4m

8.36 kN•m

3.75 kN

16.25
V
diagram
3.25 m

M
diagram

8.08

-3.75

6.67
-8.36

-18.33

Deflected
Curve
32

Example 4
Determine the reactions at the supports for the beam shown and draw the
quantitative shear and moment diagram and the qualitative deflected curve.
EI is constant.

2 kN/m
C
A

4m

B

4m

33

• Principle of superposition
2 kN/m
C
A

4m

B

4m

Compatibility equations:
∆ 'B + f 'BB RB + f 'CB RC = 0 − − − (1)

2 kN/m
C
A

4m

B

∆'B

∆'C

4m

f 'CB

f 'BB

C

× RB

1 kN

A
4m

B

4m
f 'CC

f 'BC

A

∆ 'C + f 'BC RB + f 'CC RC = 0 − − − (2)

4m

B

× RC

4m

C

1 kN

34

• Solve equation
2 kN/m
C
A

4m

B

Compatibility equations:

4m



2 kN/m
B



C
A

∆'B = −
f 'BB =

A

64
EI

21.33
EI

149.33 53.33
170.67
+
RB +
RC = 0 − −(2)
EI
EI
EI

∆'C = −

RB = 3.71 kN , ↑
× RB

RC = −0.29 kN , ↓

1 kN
53.33
f ' BC =
EI

A

149.33
EI
53.33
f 'CB =
EI
C

64 21.33
53.33
+
RB +
RC = 0 − −(1)
EI
EI
EI

f 'CC =

C

170.67
EI

1 kN

× RC

35

• Diagram
M A = 8(2) + 0.29(8) − 3.71(4)
= 3.48 kN • m

2 kN/m
C

A

4m

B

4m

Ay = 8 + 0.29 − 3.71 = 4.58 kN 3.71 kN

0.29 kN

V (kN)
4.58
0.29
2.29 m

x (m)

-3.42

M (kN•m)
1.76
x (m)
-3.48

-1.16

Deflected shape
x (m)
Point of inflection

36

Example 5
Draw the quantitative Shear and moment diagram and the qualitative deflected
curve for the beam shown below.
(a) The support at B does not settle
(b) The support at B settles 5 mm.
Take E = 200 GPa, I = 60(106) mm4.
16 kN
B

A
2m

2m

C

4m

37

SOLUTION
• Principle of superposition

16 kN
B

A

C
∆B = 5 mm

2m

16 kN

4m

=

2m

+

∆´B
fBB
× RB

1 kN
Compatibility equation :

+

∆ B = 0 = ∆ ' B + f BB RB

+

∆ B = −0.005m = ∆ ' B + f BB RB

-----(1)
-----(2)

: no settlement
: with settlement

38

• Use conjugate beam method in obtaining ∆´B
16 kN
Real A
beam
12 kN

∆´B
2m

2m
24


diagram
24
Conjugate EI
beam
56
EI

Real
C beam

B

4
3

24
EI

2
3

4m

4 kN
∆´B

16
16
EI

72
EI

2m

32
EI

M´´B

4m

40
EI

V´´B
4
3

40
EI

2
4
3
32 4 40
M
(4) = 0

'
'
+
( )−
ΣM
=
0:
+
B
B
EI 3 EI
∆'B = M ' 'B = −

117.33
,↓
EI

39

• Use conjugate beam method in obtaining fBB
fBB

Real A
beam
0.5 kN

B

C

1 kN

4m

4m

0.5 kN


diagram

m´´B
v´´B

-2
Conjugate
beam
4
EI

2
4
3

4
3



+ ΣMB = 0:
4

EI



2
EI

4

EI

4
EI

− m' ' B −
f BB

4
EI

4
EI

4 4
4
( )+
(4) = 0
EI 3 EI
10.67
= m' ' B =
,↑
EI

fBB

40

• Substitute ∆´B and fBB in Eq. (1)

+↑; 0= −

117.33
,↓
EI
10.67
=
,↑
EI

∆'B = −

117.33 10.67
+
RB ,
EI
EI

f BB

RB = 11.0 kN,

16 kN

+

fBB

∆´B

4 kN

16 kN
A
RA = 6.5 kN

1 kN
0.5 kN

0.5 kN

=

12 kN

xRB = 11.0 kN

B

11.0 kN

C

no settlement

RC = 1.5 kN
41

• Substitute ∆´B and fBB in Eq. (2)
+ ↑ ; − 0.005m = −

117.33
,↓
EI
10.67
=
,↑
EI

∆'B = −
f BB

117.33 10.67
+
RB
EI
EI

(−0.005m) EI = −117.33 + 10.67 RB

(−0.005)(200 × 60) = −117.33 + 10.67 RB

RB = 5.37 kN,
16 kN

+

fBB

∆´B

4 kN
16 kN

A
RA = 9.31 kN

1 kN
0.5 kN

0.5 kN

=

12 kN

xRB = 5.37

B

5.37 kN

C

with 5 mm settlement

RC = 1.32 kN

42

• Quantitative shear and bending diagram and qualitative deflected curve
16 kN

16 kN
B

A

C

B

A

C
∆B = 5 mm

6.5 kN

11 kN

2m
V
diagram

2m

6.5

1.5 kN

9.31 kN

4m

2m

5.37 kN
2m

V
diagram
-1.32
-6.69

13
+
-

M
diagram

-6
Deflected
Curve

4m

9.31

1.5

-9.5
M
diagram

1.32 kN

Deflected
Curve

18.62
+

5.24

∆B = 5 mm

43

Example 6
Calculate supports reactions and draw the bending moment diagrams for (a)
D2 = 0 and (b) D2 = 2 mm.
1

2

4m

w 2 kN/m 3

6m

44

Compatibility equation:
∆´2 + f22R2 = ∆2
1

2

w 2 kN/m 3

Use formulations provided :
wx
( x 3 − 2 Lx 2 + L3 )
24 EI
(2)(4) 3
=−
(4 − 2 ×10 × 4 2 + 103 )
24 EI
248
=−
= −6.2mm, ↓
(200)(200)

∆ '2 = −

4m

6m
=
2 kN/m
∆´2

Pbx 2
(L − b2 − x2 )
6 LEI
1× 6 × 4
=−
(10 2 − 6 2 − 4 2 )
6 ×10 EI
19.2
=
= +0.48 mm, ↑
(200)(200)

f 22 =

+
f22
×R2
1

45

For ∆2 = 0

For ∆2 = 2 mm
Compatibility.equation:

Compatibility equation:
-6.2 + 0.48R2 = 0
R2 = 12.92 kN
1

2

1

w 2 kN/m 3

12.92 kN
6m

2.25 kN 4 m

-6.2 + 0.48R2 = -2
R2 = 8.75 kN

4.83 kN

4.75 kN 4 m

7.17
V
(kN)

4.75

2.415 m

2.25

+
-

-5.75

1.125 m

x (m)

-4.83

2

w 2 kN/m 3

8.75 kN 6 m
5.5

3.25 m

V +
+
(kN)
2.375 m -3.25

-

1.27

+
-7

x (m)
-6.5

5.85
M
+
(kN•m)

6.5 kN

10.56
5.64
x (m)
M
(kN•m)

+

3

+
x (m)
46

APPENDIX
Basic Beams: Single span
1

wL/2

w

L/3

L/3

wL/2

5wL4
384 EI

L
wL/2
V

- wL/2
wL2/8
M
47

• Find ∆1 by Castigliano’s

2

1
P

3
w

wL P
+
2
2

w

x1

wL P
+
2
2

L/2
x1

L/2
L

M1
V1

wL P
+
2
2

x2

w

M2
V2

x2

wL P
+
2
2

+ ΣΜ = 0;
2

wx
wL P
M1 + 1 − (
+ ) x1 = 0
2
2
2
2
wx1
wL P
M1 = −
+(
+ ) x1 = M 2
2
2
2

48

2

wx
wL P
M1 = − 1 + (
+ ) x1 = M 2
2
2
2
L/2

∆1 = ∆ max =


0

∂M
dx
( 1 )M1 1 +
∂P
EI

L/2

=2∫ (
0

=

2
EI


0

(

∂M 2
dx
)M 2 2
∂P
EI

∂M 1
dx
)M1 1
∂P
EI

L/2


0

L/2

0
x − wx1
wL P
( 1 )(
+(
+ ) x1 )dx1
2
2
2
2
2

5wL4
=
384 EI

49

Single span

1
P

P/2

P/2
PL3
L3
δ 11 =
= f11 P → f11 =
48 EI
48 EI

L /2

L /2
L

P/2
V

+
- P/2
PL/4

M
50

Double span
∆ max

wl 4
=
185 EI

1

∆ max

w

0.375 wl

0.375 wl

1.25 wl
l = L/2

wl 4
=
185 EI

l = L/2

L = 2l
0.625 wl
0.375 wl
+

+
-

-0.375 wl

-0.625 wl
0.070 wl2
+

0.070 wl2
+

-0.125 wl2
51

Triple span
1

∆max = wl4

2

w

145 EI

0.4wl

0.4wl
1.1wl

l = L/3

V

1.1wl

l = L/3

l = L/3

0.6wl

0.5wl

0.4wl
+

+

+
-

-

-

- 0.6wl
0.08 wl2
M

- 0.4wl

-0.5wl

0.08 wl2
0.025 wl2

+

+
-0.1 wl2

+

-0.1 wl2
52

APPROXIMATE ANALYSIS OF STATICALLY
INDETERMINATE STRUCTURES
!
!
!

!

Trusses
Vertical Loads on Building Frames
Lateral Loads on Building Frames: Portal
Method
Lateral Loads on Building Frames: Cantilever
Method Problems

1

Trusses
P1

P2

a

a
F1
Fa
V = R1

Fb
F2
R1

a

(a)

R2

R1

a

(b)

Method 1 : If the diagonals are intentionally designed to be long and slender,
it is reasonable to assume that the panel shear is resisted entirely by the tension diagonal,
whereas the compressive diagonal is assumed to be a zero-force member.
Method 2 : If the diagonal members are intended to be constructed from large
rolled sections such as angles or channels, we will assume that the tension and compression
diagonals each carry half the panel shear.

2

Example 1
Determine (approximately) the forces in the members of the truss shown in
Figure. The diagonals are to be designed to support both tensile and compressive
forces, and therefore each is assumed to carry half the panel shear. The support
reactions have been computed.

F

E

D

3m
C
A

B
4m

10 kN

4m
20 kN

3

20 kN
F

E

D

+ ΣMA = 0:

FFE(3) - 8.33cos36.87o(3) = 0
FFE = 6.67 kN (C)

3m
C
A

B
4m

10 kN

4m

10 kN

20 kN

+ ΣMF = 0:

FAB(3) - 8.33cos36.87o(3) = 0
FAB = 6.67 kN (T)

20 kN
F

θ

θ = 36.87o
FFE

FFB= F
F =F
θ AE
FAB

3m
A

FAF
V = 10 kN
A

10 kN
+ ΣFy = 0:

8.33
θ
6.67 kN
10 kN

20 - 10 - 2Fsin(36.87o) = 0
F = 8.33 kN
FFB = 8.33 kN (T)
FAE = 8.33 kN (C)

+ ΣFy = 0:

FAF - 10 - 8.33sin(36.87o) = 0
FAF = 15 kN (T)

4

θ = 36.87o

D

FED
V = 10 kN

F = FDB
F = FEC

θ

θ
FBC

θ = 36.87o
6.67 kN
3m

D
θ

8.33 kN

C

FDC

10 kN
+ ΣFy = 0:

10 - 2Fsin(36.87o) = 0

+ ΣFy = 0:

FDC - 8.33sin(36.87o) = 0

F = 8.33 kN
FDB = 8.33 kN (T)
FEC = 8.33 kN (C)
+ ΣMC = 0:

FED(3) - 8.33cos36.87o(3) = 0

FDC = 5 kN (C)

θ = 36.87o
6.67 kN

E
θ

θ

6.67 kN
8.33 kN

8.33 kN
FEB

FED = 6.67 kN (C)
+ ΣFy = 0:
+ ΣMD = 0:

FBC(3) - 8.33cos36.87o(3) = 0
FBC = 6.67 kN (T)

FEB = 2(8.33sin36.87o) = 10 kN (T)

5

Example 2
Determine (approximately) the forces in the members of the truss shown in
Figure. The diagonals are slender and therefore will not support a compressive
force. The support reactions have been computed.
10 kN

20 kN

J

I

20 kN
H

20 kN
G

10 kN
F

4m
A
40 kN

4m B

4m C 4m D 4m

E
40 kN

6

10 kN

FJA

J
4m

45o

A

FJB

FJI

FAI = 0
FAB

θ

A
V = 30 kN

0
0

40 kN
+ ΣFy = 0:

40 kN

10 kN

FJA = 40 kN (C)
20 kN

FAI = 0
I

J
+ ΣFy = 0:

40 - 10 - FJBcos 45o = 0
FJB = 42.43 kN (T)

4m
A

+ ΣMA = 0:

FJI(4) - 42.43sin 45o(4) = 0

45o

4m B

FAB(4) = 0
FAB = 0

FIC
FBH = 0
FBC

V = 10 kN

40 kN

FJI = 30 kN (C)
+ ΣMJ = 0:

FIH

FBH = 0
+ ΣFy = 0:

40 - 10 - 20 - FICcos 45o = 0
FIC = 14.14 kN (T)

7

10 kN

20 kN

J

FIH

45o

4m
A

42.3 kN

I

4m B

FIC
FBH = 0
FBC

V = 10 kN

0

+ ΣFy = 0:

FBI
45o 0
45o

45o

B

30 kN

FBI = 42.3 sin 45o = 30 kN (T)

40 kN
+ ΣMB = 0:
FIH(4) - 14.14sin

14.14 kN
45o(4)

14.14 kN

+ 10(4) - 40(4) = 0

FJH = 40 kN (C)
+ ΣMI = 0:

FCH

FBC(4) - 40(4) + 10(4) = 0
FBC = 30 kN (T)

30 kN

45o

45o

C

30 kN

+ ΣFy = 0:
FBI = 2(14.1442.3 sin 45o) = 20 kN (C)

8

Vertical Loads on Building Frames

typical building frame

9

• Assumptions for Approximate Analysis
column

w

column

girder
A

B
L
(a)
w

w

A

Point of
zero A
moment

B
point of zero
0.21L
0.21L moment
L
(b)
w

0.1L

approximate case
(d)
B

L
Simply supported
(c)

assumed
points of
zero moment 0.1L
L

Point of
zero
moment

w

0.1L

0.8L
model

0.1L
(e)

10

Example 3
Determine (approximately) the moment at the joints E and C caused by members
EF and CD of the building bent in the figure.
1 kN/m
F

E

1 kN/m
D

C

B

A
6m

11

1 kN/m

4.8 kN

1 kN/m

4.8 m

4.8 m
0.1L=0.6 m

2.4 kN

0.6 m
0.6 kN

2.4 kN

2.4 kN 2.4 kN

0.6(0.3) + 2.4(0.6) = 1.62 kN•m
3 kN 0.6 m

0.6 kN
1.62 kN•m

0.6 m 3 kN

12

Portal Frames and Trusses




• Frames: Pin-Supported
P

P

h

assumed
hinge

h

l
(a)

Ph/2
Ph/2

l
(b)
L/2

Ph/2

L/2

P

P/2

P/2

Ph/2
Ph/l

Ph/l
h

h

P/2
(d)

Ph/l

P/2
(c)

Ph/l

13



• Frames : Fixed-Supported



P

P

assumed
hinges

h

h

l
(a)

l
(b)

L/2
P

P/2
h/2

Ph/4
Ph/4

P/2

Ph/2l

Ph/4

P/2
Ph/2l
Ph/2l

Ph/2l
Ph/2l
P/2

Ph/4

Ph/4

h/2

Ph/2l

P/2
Ph/4

L/2

P/2

h/2
P/2
Ph/4

(d)
Ph/2l

(c)

Ph/2l

P/2
Ph/4

14

• Frames : Partial Fixity
P

P
assumed
hinges

θ

h
h/3

θ
h/3

l
(a)

(b)

• Trusses
P

P

h
h/2
l
(a)


assumed
hinges
P/2

P/2
l
(b)

15

Example 4
Determine by approximate methods the forces acting in the members of the
Warren portal shown in the figure.

2m
40 kN C

4m
D

2m
E

F

2m
B

H

G

4m
7m

A

I
8m

16

2m

4m
D

40 kN C

2m
E

F

2m

+ ΣMJ = 0:
H

B

G
N(8) - 40(5.5) = 0

3.5 m
J

K

40/2 = 20 kN = V

N = 27.5 kN

20 kN = V
N

N

N

N
V = 20 kN

V = 20 kN + ΣM = 0:
A

3.5 m

M - 20(3.5) = 0
A

V = 20 kN

M
N

I

20 kN = V

M

M = 70 kN•m

N

17

2m

2m

40 kN C FCD D
2m
B

FEF F

E

FEG

F
45o BD
FBH

FGH

2m

45o

G

3.5 m

3.5 m
J

20 kN

K
20 kN = V

27.5 kN
+ ΣFy = 0:

-27.5 + FBDcos 45o = 0

27.5 kN
+ ΣFy = 0:

FBD = 38.9 kN (T)
+ ΣMB = 0:

FCD(2) - 40(2) - 20(3.5) = 0
FCD = 75 kN (C)

27.5 - FEGcos 45o = 0
FEG = 38.9 kN (C)

+ ΣMG = 0:

FEF(2) - 20(3.5) = 0
FEF = 35 kN (T)

+ ΣMD = 0: FBH(2) + 27.5(2) - 20(5.5) = 0

+ ΣME = 0: FGH(2) + 27.5(2) - 20(5.5) = 0

FBH = 27.5 kN (T)

FGH = 27.5 kN (C)

18

y

y
38.9 kN
D

75 kN

x

45o

45o

38.9 kN

+ ΣFy = 0:

FDE

45o

45o

27.5 kN
H

x

27.5 kN

FDH

FDHsin 45o - 38.9sin 45o = 0
FDH = 38.9 kN (C)

+ ΣF = 0:
x

FHE

+ ΣFy = 0:

FHEsin 45o - 38.9sin 45o = 0
FHE = 38.9 kN (T)

75 - 2(38.9 cos 45o) - FDE = 0
FDE = 20 kN (C)

19

Lateral Loads on Building Frames: Portal Method
P

= inflection point
(a)

V

V

(b)

V

V

20

Example 5
Determine by approximate methods the forces acting in the members of the
Warren portal shown in the figure.

5 kN B

D

F

G

3m
A

C
4m

E
4m

H
4m

21

5 kN B

3m

D

M

I

J

A

L

E

H

4m

M

G

O

K

C
4m

5 kN B

F

N

4m

N

D

O

F

G

1.5 m
I

V

J

2V
Jy

Iy
+ ΣF = 0:
x

K

2V
Ky

V

L
Ly

5 - 6V = 0
V = 0.833 kN

22

2m

5 kN B
1.5 m

0.625 kN

0.833 kN

2m D

4.167 kN
4.167 kN
M

2.501kN

1.5 m 0.625kN
J

0.625 kN
1.666 kN

I

2m N

Jy = 0

Iy = 0.625kN
2.501 kN N 2 m F

2m

O0.835 kN

O

1.5 m
0.625kN
K

1.666 kN

Ky = 0

0.625 kN 1.5 m
0.833 kN

L

0.625 kN = Ly

0.625 kN

0.625 kN

G

0.835 kN

0.625kN

I
1.5 m

2m

0.625 kN
0.833kN

J
1.5 m
C
A
0.833 kN
1.25 kN•m

1.666 kN

1.666kN
2.50 kN•m

1.666 kN
K
1.5 m
E

L
1.5 m
H

1.666kN
2.5 kN•m 0.625 kN

0.833 kN

0.833 kN
1.25 kN•m

23

Example 6
Determine (approximately) the reactions at the base of the columns of the frame
shown in Fig. 7-14a. Use the portal method of analysis.

20 kN

G

H

I

5m
30 kN

D

E

F
6m

A

B
8m

C
8m

24

20 kN

G

R

O
30 kN

D

H

S

P
M

E

I
Q

N

F

J

K

L

A

B

C

8m

5m

6m

8m

25

G

20 kN

I

2.5 m
V

2V
Oy

+ ΣF = 0:
x
G

20 kN

V
Py

20 - 4V = 0

Py
V = 5 kN

H

I

5m
D

30 kN

E

F

3m


2V´
Jy

+ ΣF = 0:
x


Ky

20 + 30 - 4V´ = 0

Ly
V´ = 12.5 kN

26

Ry = 3.125 kN
20 kN

G

4m R

Rx = 15 kN

R

3.125 kN
4m H

15 kN

2.5 m
10 kN

2.5 m

Sy = 3.125 kN
S
4m

Sx = 5 kN

5 kN
Oy = 3.125

Py = 0 kN

3.125 kN
O
2.5 m
30 kN
3m
12.5 kN

5 kN

My = 12.5 kN

M
4m

P

2.5 m

22.5 kN M
Mx = 22.5 kN

J

4m

4m N
3m
K

12.5 kN
25 kN

Jy = 15.625 kN
12.5 kN

A
Ax = 15.625 kN

3m
Ax = 12.5 kN
MA = 37.5 kN•m

Ny = 12.5 kN
Nx = 7.5 kN

Ky = 0 kN

15.625kN
J

10 kN

K
B
Bx = 0

25 kN
3m
Bx = 25 kN
MB = 75 kN•m

27

Lateral Loads on Building Frames: Cantilever Method
P

beam
(a)

building frame
(b)

In summary, using the cantilever method, the following assumptions apply to
a fixed-supported frame.
1. A hinge is place at the center of each girder, since this is assumed to be point
of zero moment.
2. A hinge is placed at the center of each column, since this is assumed to be
a point of zero moment.
3. The axial stress in a column is proportional to its distance from the centroid
of the cross-sectional areas of the columns at a given floor level. Since stress equals force
per area, then in the special case of the columns having equal cross-sectional areas,
the force in a column is also proportional to its distance from the centroid of the column areas.

28

Example 7
Determine (approximately) the reactions at the base of the columns of the frame
shown. The columns are assumed to have equal crossectional areas. Use the
cantilever method of analysis.
30 kN

C
D
4m
B
E

15 kN
4m
A

F
6m

29

30 kN

C
I
4m
B

D
K

H
J

E

15 kN
4m

x

G

6m

L

A

F
6m

~
x A 0( A) + 6( A)

x=
=
=3
A
A
A
+


30

3m

3m

+ ΣMM = 0:

C

30 kN

2m

I

Hx

M

-30(2) + 3Hy + 3Ky = 0

D
The unknowns can be related by proportional triangles,
that is

Kx

Hy

Hy

Ky

3

=

Ky
3

or

Hy = Ky

H y = K y = 10 kN

C

30 kN

D

I
4m
B

K

H
J

15 kN
2m

3m

3m
Lx

E

Gy

-30(6) - 15(2) + 3Gy + 3Ly = 0

The unknowns can be related by proportional triangles,
that is
Gy
3

N

Gx

+ ΣMN = 0:

=

Gy
3

or

G y = Ly

G y = L y = 35 kN

Ly

31

Iy = 10 kN
C

30 kN

3m

Ix = 15 kN

2m
Hx = 15 kN

10 kN
3m D

I
15 kN

Kx = 15 kN
10 kN

10 kN
10 kN

10 kN
15 kN

H
2m

Jy = 25 kN

J

15 kN

3m

2m

Jx = 7.5 kN

Gx = 22.5 kN
35 kN

Ax = 35 kN

15 kN
2m

3m

2m
L

25 kN
Lx = 22.5 kN

35 kN

35 kN
22.5 kN

G

K
7.5 kN J

G

A

2m

2m
Ax = 22.5 kN
MA = 45 kN•m

35 kN
L
F
Fy = 35 kN

22.5 kN
2m
Fx = 22.5 kN
MF = 45 kN•m

32

Example 8
Show how to determine (approximately) the reactions at the base of the columns
of the frame shown. The columns have the crossectional areas show. Use the
cantilever of analysis.
P

35 kN

6000 mm2
4 mL

Q

5000mm2 4000 mm2
M
N

I

45 kN
6 mE

J

F
6000 mm2
A
6m

R
O

K

G
5000mm2 4000 mm2
B
C
4m

6000 mm2

H
6000 mm2
D

8m

33

P

35 kN

Q

4 mL

M

N

I

45 kN

R
O

J

6 mE

F
A

G
B

6m

K

H
C

4m

D
8m

5000mm2 4000 mm2

6000 mm2

6m

4m

6000 mm2

8m

x

~
x A 6000(0) + 5000(6) + 4000(10) + 6000(18)

=
x=
= 8.48 m
A
6000
+
5000
+
4000
+
6000


34

P

35 kN
2m

Q
Mx

Lx

R
Nx

Ox

My
Ly

Ny

Oy

2.48 m 1.52 m
8.48 m
+ ΣMNA = 0:

9.52 m

-35(2) + Ly(8.48) + My(2.48) + Ny(1.52) + Oy(9.52) = 0

-----(1)

Since any column stress σ is proportional to its distance from the neutral axis

σM
2.48

σN
1.52

σO
9.52

=
=

=

σL
8.48

σL
8.48

σL
8.48

;

σM =

2.48
σL ;
8.48

;

σN =

1.52
σL ;
8.48

;

σO =

9.52
σL ;
8.48

Solving Eqs. (1) - (4) yields

My
−6

5000(10 )
Ny
−6

4000(10 )

Oy
6000(10 −6 )

=

Ly
2.48
(
)
−6
8.48 6000(10 )

− − − − − ( 2)

=

Ly
1.52
(
)
−6
8.48 6000(10 )

− − − − − (3)

=

Ly
9.52
(
)
8.48 6000(10 −6 )

− − − − − ( 4)

Ly = 3.508 kN
Ny = 0.419 kN

My = 0.855 kN
Oy = 3.938 kN

35

35 kN
4m L

M
I

45 kN
3m

O

J
Fx

Ex

N
K
Gx

Fy

Hx
Gy

Ey

Hy
8.48 m

+ ΣMNA = 0:

2.48 m 1.52 m

9.52 m

-45(3) - 35(7) + Ey(8.48) + Fy(2.48) + Gy(1.52) + Hy(9.52) = 0 -----(5)

Since any column stress σ is proportional to its distance from the neutral axis ;
Fy
Ey
σF
σ
2.48
2.48
= E ; σF =
σE ;
=
(
)
− − − − − (6)
−6
−6
2.48 8.48
8.48
5000(10 ) 8.48 6000(10 )

σG
1.52

σH
9.52

=
=

σE
8.48

σE
8.48

1.52
σE ;
8.48

;

σG =

;

9.52
σH =
σE ;
8.48

Gy

Ey
1.52
(
)
8.48 6000(10 −6 )

− − − − − (7)

Ey
9.52
=
(
)
6000(10 −6 ) 8.48 6000(10 −6 )

− − − − − (8)

4000(10 −6 )
Hy

=

Solving Eqs. (1) - (4) yields Ey = 19.044 kN Fy = 4.641 kN Gy = 2.276 kN Hy = 21.38 kN

36

3m

35 kN
2m
Lx= 5.262 kN

Py= 3.508 kN
Px= 29.738 kN

3.508 kN

2m
45 kN
3m
Ex= 64.44 kN

3.508 kN
5.262 kN
Iy= 15.536 kN
I
Ix= 114.702 kN
3m
19.044 kN
19.044 kN

E

64.44 kN

3m
Ax = 19.044 kN

Ax = 64.44 kN
MA = 193.32 kN•m

One can continue to analyze the
other segments in sequence, i.e.,
PQM, then MJFI, then FB, and so on.

37

ANALYSIS OF STATICALLY INDETERMINATE
STRUCTURES BY THE FORCE METHOD
!
!

!
!
!
!

Force Method of Analysis: Beams
Maxwell’s Theorem of Reciprocal Displacements;
Betti’s Law
Force Method of Analysis: Frames
Force Method of Analysis: Trusses
Force Method of Analysis: General
Composite Structures

1

Force Method of Analysis : Beams
1 Degree of freedom
• Compatibility of displacement
M1

P

1

2

C

A

M1

B

R1

P

1

2

C

A
R1

R2

L

R2

=

P

C

A
∆´2

B
L

=

P

• Compatibility of slope

B

θ ´1

+

+
1

α11
× M1

f22 × R2
1
∆´2 + f22 R2

= ∆2 = 0

θ ´1 + α11M1

= θ 1= 0

2

2 Degree of freedom
Ax

P

A

1
B

Ay

R1

P

2
C

R2

B

A

D

∆´2
+

f21

f11

f12

Dy

C

∆´1

A

D

D
xR
R11
1

+
f22

A

D

xR
R22

1
∆´1 + f11 R1 + f12 R2
∆´2 + f21 R1 + f22 R2

= ∆1 = 0
= ∆2 = 0

3

Maxwell’s Theorem of Reciprocal Displacements; Betti’s Law
f21

1
1

2

A

B
f11

f21
mm
m2 M 1
dx = ∫ 2 1 dx
EI
EI
L
L

1 • f 21 = ∫

m1

m2 m1
dx
EI
L

f 21 = ∫

1

A

B

f22
f12
m2
4

1

f12

m2 m1
dx
EI
L

2

f 21 = ∫

1
A

B
f22
f12

mm
m1M 2
dx = ∫ 1 2 dx
EI
EI
L
L

1 • f12 = ∫

m1m2
dx
EI
L

f12 = ∫

m2

f 21 = f12

Maxwell’s Theorem:
1

A

B

f ij = f ji

f21

f11

m1
5

f11, f22

1

2

1
A

B
f11

f21

m1M 1
mm
dx = ∫ 1 1 dx
EI
EI
L
L

1 • f11 = ∫

m2 M 2
mm
dx = ∫ 2 2 dx
EI
EI
L
L

1 • f 22 = ∫

m1

In general,
1

A

B

1 • f ij = f = ∫

mi m j

L

f22
f12

1 • f ji = f ji = ∫
L

EI
m j mi
EI

dx

dx

m2
6

1
A

2
P1
D

d11 = f11 P1

d21 = f21 P1

P2
A

D

d12 = f12 P2

d22 = f22 P2

7

Force Method of Analysis: General

1

Compatibility Eq.

2

w

∆´1 + f11R1 + f12R2 = ∆1 = 0
∆´2 + f21R1 + f22R2 = ∆2 = 0
0

=

∆´1

w
∆´1

∆´2
∆´2

f12 f22 R
2
f11 f12 R1

+

f12 f22 R
2

f21

f11

+

f11 f12 R1

xR1

+
f22
1

xR2

=-

0

∆2
∆´1
∆´2

General form:

1
f12

=

∆1

f11 f12 f1n
f21 f22 f2n
..
.
fn1 fn2 fnn

R1
R2
..
.
Rn

∆´1
∆´2
.
= - ..
∆´n

8

Example 9-1
Determine the reaction at all supports and the displacement at C.

50 kN

B

C

A
6m

6m

9

SOLUTION

Use compatibility of displacement for find reaction

• Principle of superposition

50 kN

MA
A
6m

6m

RB

=

RA

B

C

50 kN

∆´B
+
RBB
fBB x R
Compatibility equation : ∆ ' B + f BB RB = 0

-----(1)
1

10

• Use formulation for ∆´B and fBB
50 kN
A

6m

C

B ∆´C

6m

6θ´C

θ´C

∆´B = ∆´C+ (6 m)θ´C
P(6) 3
P ( 6) 2
∆'B =
+ ( 6)
3EI
2 EI

A

50(6)3
(50)(6) 2 9000
=
+ (6)
=
,↓
3EI
2 EI
EI

C
f BB

∆´B

PL3 (1)(12) 3 576
=
=
=
,↑
EI
3EI
3EI

B

fBB

1

11

• Substitute ∆´B and fBB in Eq. (1): ∆ 'B + f BB RB = 0

+ ↑: −

∆'B =

9000 576
+(
) RB = 0
EI
EI
RB = 15.63 kN,

9000
,↓
EI

f BB =

576
,↑
EI

50 kN
6m
MA

A

6m
C

B
15.63 kN

RA
Equilibrium equation :
+ ΣMA = 0:
+ ΣFy = 0:

M A − 50(6) + 15.63(12) = 0,
+ RA − 50 + 15.63 = 0,

MA = 112.4 kN,

+

Ra = 34.37 kN,
12

• Quantitative shear and bending diagram and qualitative deflected curve
50 kN
6m

112.4 kN•m
A

6m
B

C

15.63 kN

34.37 kN
34.37
V
(kN)

x (m)
-15.63

-15.63

93.78
M
(kN•m)

x (m)
3.28
-112.44

6

12

13

Or use compatibility of slope to obtain reaction
50 kN

• Principle of superposition
6m

MA

6m
B

C

A

=

RA

RB

50 kN
A
B

C

θ ´A
1

+

fAA

A
B

C

xM
MAA

Compatibility equation :

θ ' A + f AA M A =θ A= 0

-----(2)
14

• Use the table on the inside front cover for θ´B and fBB
50 kN
A
C

B

C

B

θ ´A
PL2
θ A'=
16 EI

1

fAA

A
f CC =

L
3EI

Substitute the values in equation: θ ' A + f AA M A =θ A= 0
+:

PL2
L

+
MA =0
16 EI 3EI
MA =

3PL 3(50)(12)
=
16
16

= 112.5 kN•m, +
15

Or use Castigliano least work method
50 kN

x1

x2

12RB - 300 = MA

B

C

A
6m

50 - RB = RA
M 12RB - 300
diagram

L

∆B = 0 = ∫ (
0

6m

RB

M2 = RBx2
M1 = (12RB - 300) + (50 - RB)x1

x (m)

∂M M
)
dx
∂RB EI
6

6

1
1
0=
(
12

x
)(
12
R

300
+
50
x

R
x
)
dx
+
x2 ( RB x2 ) dx2
1
B
1
B 1
1
EI ∫0
EI ∫0
2

2

3

3

3

6
900 x1 24 x1
50 x1 x1
x
0 = (144 RB x1 − 3600 x1 +

RB −
+
RB ) 0 + 2 RB
2
2
3
3
3

RB =15.63 kN,

6
0

16

Use conjugate beam for find the displacement
50 kN
6m

112 kN•m

6m

C

B

A

∆C

34.4 kN

Real Beam

15.6 kN

93.6

M
(kN•m)

x (m)
6

3.28

12

93.6/EI

-112

Conjugate Beam
-112/EI
281
223
776
( 2) −
(6 ) = −
M 'C =
EI
EI
EI
∆ C = M 'C = −

776
,↓
EI

281/(EI)

223/(EI)

M´C

V´C 2 m

4m

223/(EI)

17

Use double integration to obtain the displacement
50 kN
6m

112 kN•m

6m

C

B

A

∆C

34.4 kN

Real Beam

15.6 kN

93.6

M
(kN•m)

x (m)
3.28
-112

6

12

d 2υ
EI 2 = −112 + 34.4 x1
dx

x12
EI
= −112 x1 + 34.4 + C1
dx
2
2
x1
x13
EIυ = −112.4 + 34.4 + C1 x1 + C2
2
6
1
62
63
778
(−112( ) + 34.4( ) + 0 + 0) = −
∆C =
,↓
2
6
EI
EI
18

Example 9-2
Draw the quantitative Shear and moment diagram and the qualitative deflected
curve for the beam shown below.The support at B settles 5 mm.
Take E = 200 GPa, I = 60(106) mm4.

16 kN
B

A

C
∆B = 5 mm

2m

2m

4m

19

Use compatibility of displacement to obain reaction

• Principle of superposition

16 kN
B

A

C
∆B = 5 mm

2m

2m

16 kN

4m

=

SOLUTION

+

∆´B
fBB
× RB

1 kN
Compatibility equation :
∆ B = −0.005m = ∆ 'B + f BB RB

-----(1)

20

• Use conjugate beam method for ∆´B
16 kN
Real A
beam
12 kN

B
∆´B
2m

2m
24


diagram
24
Conjugate EI
beam
56
EI

C

4
3

24
EI

4m

4 kN

16

16
EI

72
EI

M´´B
2
3

2m

4m

40
EI

V´´B
4
3

32
EI
40
EI

2
4
3
32 4 40
+ ΣMB = 0: − M ' ' B +
(4) = 0
( )−
EI 3 EI
117.33
∆' B = M ' ' B = −
,↓
21
EI

• Use conjugate beam method for fBB
fBB

Real A
beam
0.5 kN

B

C

1 kN

4m

4m

0.5 kN


diagram

m´´B
vB´B

-2
Conjugate
beam
4
EI

2
4
3

4
3



+ ΣMB = 0:
4

EI



2
EI

4

EI

4
EI

4
EI

4
EI

4 4
4
( )+
(4) = 0
EI 3 EI
10.67
f BB = mB ' ' =
,↑
EI

− mB ' '−

22

∆ B = −0.005 m = ∆ ' B + f BB RB

• Substitute ∆´B and fBB in Eq. (1):
+ ↑: − 0.005 = −

117.33 10.67
RB
+
EI
EI

117.33
,↓
EI
10.67
= mB ' ' =
,↑
EI

∆'B = M ' 'B = −

(−0.005) EI = −117.33 + 10.67 RB

f BB

(−0.005)(200 × 60) = −117.33 + 10.67 RB

RB = 5.37 kN,

+

16 kN
xRB = 5.37
1 kN

16 kN
A

0.5 kN

0.5 kN

=

4 kN

12 kN

B

RA = 9.31 kN 5.37 kN

C

RC = 1.32 kN

23

• Quantitative shear and bending diagram and qualitative deflected curve
16 kN
B

A

C
∆B = 5 mm

RA = 9.31 kN 5.37 kN
2m

2m

RC = 1.32 kN
4m

9.31
V
diagram
-1.32
-6.69
M
diagram

Deflected
Curve

18.62
5.24

∆B = 5 mm

24

Or use Castigliano least work method
• Principle of superposition
16 kN

RA = 12 - 0.5RB

16 kN

12

0.5RB

RC = 4 - 0.5RB
4m

=

2m

+

2m

RB

RB

4

0.5RB

25

16 kN
x1 x2

x3

RB

RA = 12 - 0.5RB
2m

x1

2m

RC = 4 - 0.5RB
4m

M1 = (12 - 0.5RB)x1

x3
(4 - 0.5RB)x3 = M3

M2 = 0.5x2RB + 16 - 2RB + 4 x2

V1

12 - 0.5RB

V2
L

∆ B = −0.005 = ∫ (
0

∂M i M i
)
dx
∂RB EI

RB
x2

2

V3

4 - 0.5RB

4 - 0.5RB
4m
2

1
1
− 0.005 =
(

0
.
5
x
)(
12
x

0
.
5
x
R
)
dx
+
(0.5 x2 − 2)(0.5 x2 RB + 16 − 2 RB + 4 x2 )dx2
1
1
1 B
1
EI ∫0
EI ∫0
4
1
+
(−0.5 x3 )(4 x3 − 0.5 x3 RB )dx3

EI 0
− 0.005 EI = −117.34 + 10.66 RB , RB = 5.38 kN,

26

Example 9-3
Draw the quantitative Shear and moment diagram and the qualitative deflected
curve for the beam shown below.EI is constant. Neglect the effects of axial load.

5 kN/m
A

B
4m

4m

27

SOLUTION

Use compatibility of displacement to obtain reaction

• Principle of superposition
5 kN/m

θA=0

4m

4m

θB=0

B

=

A

5 kN/m

θ´B

+

θ´A
1 kN•m

αBA

+

αAA

×MA

αAB
Compatibility equation :

1 kN•m × M
B

αBB

θ A = 0 = θ ' A +α AA M A + α AB M B

-----(1)

θ B = 0 = θ 'B +α BA M A + α BB M B

-----(2)

28

• Use formulation: θ´A, θ´B, αAA, αBA, αBB, αAB,
5 kN/m

θ´A

θ´B

3wL3 3(5)(8) 3 60
θ 'A =
=
=
EI
128 EI
128EI
7 wL3
7(5)(8) 3 46.67
θ 'B =
=
=
EI
384 EI
384 EI

1 kN•m

αAA

αBA

1 kN•m

αAB

αBB

α AA =

M o L 1(8) 2.67
=
=
3EI 3EI
EI

α BB =

M o L 1(8) 2.67
=
=
3EI 3EI
EI

α BA =

M o L 1(8) 1.33
=
=
6 EI 6 EI
EI

α AB =

M o L 1(8) 1.33
=
=
6 EI 6 EI
EI

Note : Maxwell’s theorem of reciprocal displacement is αAB = αBA

29

• Substitute θ´A, θ´B, αAA, αBA, αBB, αAB, in Eq. (1) and (2)
5 kN/m

θA=0

4m

4m

B

θB=0

θ A = 0 = θ ' A +α AA M A + α AB M B

-----(1)

θ B = 0 = θ 'B +α BA M A + α BB M B

-----(2)

+

+

α AA

α AB =

=

A

60
EI
2.67
=
EI

θ 'A =

θ 'B =

1.33
EI
46.67
EI

1.33
EI
2.67
=
EI

α BA =

0=

60 2.67
1.33
+(
)M A + (
)M B
EI
EI
EI

0=

46.67 1.33
2.67
+(
)M A + (
)M B
EI
EI
EI

α BB

Solving these equations simultaneously, we haave
MA = -18.31 kN•m,

+

MB = -8.36 kN•m,

+
30

MA = -18.31 kN•m,

+

MB = -8.36 kN•m,

+

5 kN/m
18.31 kN•m

A
RA

+ ΣMA = 0:
+ ΣFy = 0:

B
4m

4m

8.36 kN•m

RB

18.31 − 20( 2) + RB (8) − 8.36 = 0,
3.76
+ R A − 20 + RB = 0,

RB = 3.76 kN,
Ra = 16.24 kN,

31

• Quantitative shear and bending diagram and qualitative deflected curve
5 kN/m
18.31 kN•m

A

B
4m

16.24 kN

4m

8.36 kN•m

3.76 kN

16.24
V
diagram
3.25 m

M
diagram

8.08

-3.76

6.67
-8.36

-18.31

Deflected
Curve
32

Force Method of Analysis : Frames
• Principle of superposition
fCC × C x
B

∆´CH

C
Cx

1 kN

Cy

w

=

w

+

Ax

A
Ay

Compatibility equation :
∆ CH = 0 = ∆'CH + f CC C x

33

Example 9-4
Draw the quantitative Shear and moment diagram and the qualitative deflected
curve for the Frame shown below.EI is constant.

2 kN/m

B

6m

C

6m

A

34

SOLUTION

Use compatibility of displacement to obtain reaction

• Principle of superposition
fCC × C x
B

6m

∆´CH

C

Cy

=

6m

2 kN/m

2 kN/m

Cx

1 kN

+

Ax

A
Ay

Compatibility equation :
∆ CH = 0 = ∆'CH + f CC C x

-----(1)

35

6m

3m

Cy

M´2 = (6 + P)x2

x2
P
2 kN/m

2 kN/m

• Use Castigliano’s method for ∆´CH
∆´CH
6m
B
C

V´2
6+P

12 kN
3m

-12 - P

V´1
2x1

-6 - P

Ay

x2

6+P
M´1 = (12 + P)x1- x12

x1

Ax

A

P

x1
-12 - P
-6 - P

0
0
6
6
1
1
2
∂M 'i M 'i
(
x
)
(
12
x
+
x
P

x
)dx1 +
( x2 )(6 x2 + x2 P) dx2
dx =
= ∫(
)
1
1
1
1


EI 0
EI 0
∂P EI
0
L

∆ 'CH

6

6

1
1
2
3
2
=
(
12
x

x
)
dx
+
(
6
x
) dx2
1
1
1
2


EI 0
EI 0
3

4

3

1 12 x1 x1 6 1 6 x2
=
(
− )0+
(
)
EI
EI 3
3
4

6
0

=

972
,→
EI

36

• Use Castigliano’s method for fCC
fCC
6m

B

C

m´2 = x2P

x2
P

1 kN

P
v´2

Cy

P

6m

x2
P

m´1 = x1P
x1
-P

Ax

A

v´1

Ay

x1
-P

-P
1
1
6
6
1
1
∂m' m'
( x1 )( x1 P)dx1 +
( x2 )( x2 P )dx2
= ∫ ( i ) i dx =


EI 0
EI 0
∂P EI
0

-P

L

f CC

3

3

1 x1 6 1 x2
=
( ) +
( )
EI 3 0 EI 3

6
0

=

144
,→
EI
37

• Substitute ∆´CH and fCC in Eq. (1) ∆ CH = 0 = ∆'CH + f CC C x
+:

0=

-----(1)
972
,→
EI
144
f cc =
,→
EI

∆ CH =

972 144
+
Cx
EI
EI

Cx = -6.75 kN,

6 kN

1 kN

+

× C x = −6.75kN

12 kN

=

C 6.75 kN

B
2 kN/m

2 kN/m

1 kN

0.75 kN

5.25 kN

1 kN
A

6 kN

1 kN

0.75 kN
38

Or use Castigliano least work method:
x2
B

6m

M2 = (6-Cx)x2

C

Cx

2 kN/m

Cx

A

x2

V2

6 - Cx

6 - Cx
6m
M1 = (12 - Cx)x1- x12

x1
12 - Cx

V1
2x1

6 - Cx

x1
12 - Cx

L

∂M i M i
∂U i
= ∫(
)
dx = ∆ CH = 0
∂C x 0 ∂C x EI
6

0=

6 - Cx

6

1
1
2
(

x
)(
12
x

C
x

x
)
dx
+
(− x2 )(6 x2 − C x x2 )dx2
1
1
1
1
x 1
EI ∫0
EI ∫0
3

3

4

3

12 x1 C x x1 x1 6
6x
C x
0 = (−
+
+ ) 0 + (− 2 + x 2
3
3
4
3
3

0 = -972 + 144Cx , Cx = 6.75 kN,

3
6
0

39

• Quantitative shear and bending diagram and qualitative deflected curve
B

6m

C

B

2 kN/m

6.75 kN

C

- 0.75

- 0.75

- 6.75

0.75 kN
6m

5.25

5.25 kN

A

V, (kN)
2.63 m

A

0.75 kN

B

B

C

-4.5

C

1.33 m
-4.5

Deflected curve
A

M, (kN•m)

6.90

A
40

Force Method of Analysis : Truss (Externally indeterminate)
E

A

D

Cx

Ax

C

B

∆'CH + f CC C x = ∆ CH = 0

Cy

Ay
P

=
E

E

D

D

+
A

C

A
B

C

P

1
x Cx

B

∆´C

fCC

41

Truss (Internally indeterminate)
P

3

D

C

6
1

2
5

A

B

4

=

∆'6 + f 66 F6 = ∆ 6 = 0

P
D

D
∆´6

A

C

+
B

f66

C
1

A

xF6
B

42

Example 9-5
Determine the reaction at support A, C, E and all the member forces. Take
= 200 GPa and A = 500. mm2 .

E

E

40 kN
D

4m
A

C

B
5m

5m

43

SOLUTION

Use compatibility of displacement to obtain reaction

• Principle of superposition
RE

E

40 kN
D

4 m Ay
Ax

A

C

B
5m

=

5m

RC

40 kN

+

× Cy
fCC

∆´C
1 kN
Compatibility equation :

∆ C = 0 = ∆'C + f CC RC

-----(1)
44

• Use unit load method for ∆´C and fcc
5.39
m
53.85

20
E

50

5.39
m
+53
.85

A

2.5

0
0

B

=- 7.81 mm,

C
∆´C

0
5m

A

Σ ni´n´iLi
fCC =

N ´i (kN)
=

0
+2.5

AiEi
2(-2.69)2(5.385)
(200x106)(500x10-6)

-2.6
9
-2.6
9

fCC

B

n´i (kN)

+2.5

+

2(2.5)2(5)
(200x106)(500x10-6)

0
2.5

(200x106)(500x10-6)

0

D
0

=

D

1
E

AiEi
(53.85)(-2.69)(5.38)

5m
53.85

∆´C =

40 kN

4 m 20 kN
85
-53.
50

Σ n´iN´iLi

C

1 kN

= 1.41 mm,
45

• Substitute ∆´Cv and fCC in Eq. (1): ∆ C = 0 = ∆'C + f CC RC

∆ 'C = 7.81 mm, ↓

+ ↑: −7.81 + 1.41RC = 0

f CC = 1.41 mm, ↑

RC = 5.54 kN , ↑

20

50

+53
.85

A

40 kN

0

0

36.15 kN

xRC = 5.54 kN

0

B

0
14.46 kN
E
+38
.95

2.5

20 kN 53.85
36.15 kN
A

+13.85

-2.6
9

0

C

N ´i (kN)
38.93 kN

-2.6
9

D

0
0

E

2.5
D

20 kN
85
.
3
5
50

53.85

+

E

1

A

+2.5

B

n´i (kN)

=

53.85

C
+2.5
1 kN

40 kN
D -1
4.90
0 21.8o
B +13.85

N i (kN)

C
5.54 kN

46

Or use Castigliano least work method:
5.39
m

-2.7 RC + 53.85 = RE

4m
Ax = -2.5RC +50 = Ax

5.39
E -2.7 R
m
40 kN
C +5
3.85
D
-2.7
5
RC
8
.
-53
0 21.8o

A

2.5RC

B

2.5RC

C
RC

Ay = 20
5m

5m

Castigliano’s Theorem of Least Work :
∆ CV = 0 = ∑ (
0=

∂N i N i Li
)
∂RC AE

1
[(−2.7)(−2.7 RC + 53.85)(5.39) + ( −2.7)(−2.7 RC )(5.39) + 0 + 0 + 2[(2.5)(2.5 RC )(5)]]
AE

0 = 39.3RC − 783.68 + 39.3RC + 62.5 RC

RC = 5.55 kN,

47

Example 9-6
Determine the force in all member of the truss shown :
(a) If the horizontal force P = 6 kN is applied at joint C.
(b) If the turnbuckle on member AC is used to shorten the member by
1 mm.
(c) If (a) and (b) are both accounted.
Each bar has a cross-sectional area of 500 mm2 and E = 200 GPa.

D

C
2m

A

B
3m

48

SOLUTION

Part (a) : If the horizontal force P = 6 kN is applied at joint C.

• Principle of superposition

D

6 kN

1

C

6
3

A

5

4

2m
B

2

3m
D

C 6 kN

=

3m
D

∆´6

1 E´
E E´

A

C

2m
B

Compatibility equation :
Note : AE + E ' C = L

1

+

E f66

A
∆´6 + f66 F6 = 0

×F6
B

----------(1)
49

• Use unit load method for ∆´6 and f66

3m
D

C 6 kN

+6

D

∆´6
+4
6

-7.
2

A

0

B

1

N ´i (kN)
-14.98

0

n´iN ´iLi (kN2•m)

1

-0.832

A

n´i (kN)
0
2.08
6
3.

0
-2
6. 0
3
-14.98

1

2 m -0.555

4

4

-4.44

3

1
E E´

+6

C

-0.832

0

-0.555

3.6

1

2
3

0

Li (m)

0.616

3.6

2

1

n'i N 'i Li
Ai Ei

=

1
[−4.44 − 26.03 − 2(14.98)]
AE

=

− 60.43
AE

2.08
n´i2Li (kN2•m)

1

B

∆ '6 = ∑

1

0.616

6
3.

2

n' L
1
12.61
f 66 = ∑ i i =
[2(0.616) + 2(2.08) + 2(3.61)] =
Ai Ei
AE
AE

50

• Substitute ∆´6 and f66 in Eq. (1)


3m
+6

60.43 12.61
+
( F6 ) = 0
AE
AE
F6 = 4.80 kN, (T)

D

6 kN

∆´6
+4

+6

6

C

-0.832
1

E E´
-7.
2

0

2m

+

1

4

4

-0.832

A

n´i (kN)
0

80
.
+4 2.4
1
+2

+1.34

A
4

Ni (kN)

-0.555 x F6 = 4.80 kN

B
0

6 kN

+2

D

6

1

=

0
N ´i (kN)

1

-0.555

C
-2.66

B
4

51

Part (b) : If the turnbuckle on member AC is used to shorten the member by 1 mm.
f 66 =

12.61
12.61
=
= 1.26(10-4) m = 0.126 mm
AE
(500)(200)
F6 =

D

1 mm
(1 kN ) = 7.94 kN
0.126 mm

C

-0.832

-6.61

D

94
.
+7 7
.94
-6.61

1
1

-0.555
0

1

-0.832

A

n´i (kN)
0

-0.555

B
0

x F6 = 7.94 kN

-4.41

=

6

A
4

Ni (kN)

C
-4.41

B
4

52

Part (c) : If the horizontal force P = 6 kN is applied at joint C and the turnbuckle
on member AC is used to shorten the member by 1 mm are both accounted.

4

(Ni)load (kN)

94
.
+7 7
.94
-6.61

-4.41

B

0

A

4

0

=

A

C
-2.66

-6.61

D

+

80
.
+4 2.4
1
+2

+1.34
6

6 kN

+2

D

1

-3.07

74
.
2

A
4

B
0

C
5.5

3

-4.61

6

-4.41

6 kN

-4.61

D

(Ni)short (kN)

C

(Ni)total (kN)

-7.07

B
4
53

Or use compatibility equation :
∆´6 + f66 F6 = ∆´6 = 0.001


60.43 12.61
+
( F6 ) = 0.001
AE
AE

F6 =

∆´6
-7
. 21

6

D

6 kN

+6
+4

0.001AE + 60.43 0.001(500)(200) + 60.43
=
= 12.72 kN, (T)
12.61
12.61

0

+

+6

4

-0.832

A

n´i (kN)
0

-4.58

D

12

-3.06

2
.7

C
5.5

1

-4.58

6

A
4

x F6 = 12.72 kN
f66 -0.555

=

4

(Ni)total (kN)

C
1

-0.555
0

N ´i (kN)

-0.832
1 1

B
0

6 kN

-7.06

B
4

54

Composite Structures
Example 9-7
Find all reaction and the tensile force in the steel support cable. Consider both
bending and axial deformation.

Steel cable
Ac = 2(10-4) m2
Ec = 200(103) kN/m2

C

2m
A
B
5 kN

m2

Ab = 0.06
Ib = 5(10-4) m4
Eb = 9.65(103) kN/m2
6m

55

SOLUTION
C

m
6.32

RC = T

2m
18.43o

A

B

x
6m

5 kN
0.316T
T

M = 0.316Tx - 5x
N = -0.949T

0.949T
V
5 kN

Bx

MB

By

By Castigliano’s Theorem of Least Work ;

∆C = 0 =
(U ib + U in )
∂T
L
L
∂M M
∂N N
∆C = 0 = ∫ (
dx + ∫ ( )
)
dx

T
EI

T
AE
0
0

6

6

1
1
1
0=
(
0
.
316
x
)(
0
.
316
xT

5
x
)
dx
+
(

0
.
949
)(

0
.
949
T
)
dx
+
Eb I b ∫0
Ab Eb ∫0
Ac Ec
6
1
0.316 2 x 3
(0.316 × 5) x 3 6
1
1
2
0=
[(
T) −
]0+
(0.949 xT ) 0 +
( xT )
Eb I b
3
3
Ab Eb
Ac Ec

0 = (1.49T - 23.58) + 9.33(10-3)T + 0.158T

6.32

∫ (1)(T )dx
0
6.32
0

; T = 14.23 kN, (tension) #

56

4.5 kN
C

m
6.32

RC = T = 14.23 kN
13.5 kN

2m
18.43o

A

B

x
5 kN

Bx

6m

By

+ ΣF = 0:
x

Bx = Rc cos θ = 13.5 kN,

+ ΣFy = 0:

By = 5 - Rc sin θ = 0.5 kN,

+ ΣMB = 0:

MB

MB = 13.5(2) - 5(6) = -3 kN•m, +

57

DISPLACEMENT METHOD OF ANALYSIS:
SLOPE DEFLECTION EQUATIONS
!
!
!
!
!
!
!
!
!

General Case
Stiffness Coefficients
Stiffness Coefficients Derivation
Fixed-End Moments
Pin-Supported End Span
Typical Problems
Analysis of Beams
Analysis of Frames: No Sidesway
Analysis of Frames: Sidesway

1

Slope – Deflection Equations

i

P

j

w

k

Cj

settlement = ∆j

Mij

P

i

w

j

Mji

θi
ψ

θj

2

Degrees of Freedom
M

θΑ

A

B

1 DOF: θΑ

C

2 DOF: θΑ , θΒ

L

θΑ

A

P
B
θΒ

3

Stiffness

kAA

kBA

1

B

A
L
k AA =

4 EI
L

k BA =

2 EI
L

4

kBB

kAB

A

B

1
L
k BB =

4 EI
L

k AB =

2 EI
L

5

Fixed-End Forces
Fixed-End Moments: Loads
P
L/2

PL
8

L/2

PL
8

L
P
2

P
2

w
wL2
12

wL2
12
wL
2

L

wL
2

6

General Case

i

P

j

w

k

Cj

settlement = ∆j

Mij

P

i

w

j

Mji

θi
ψ

θj

7

Mij

P

i

j

w

Mji

θi
L

settlement = ∆j

θj

ψ
4 EI
2 EI
θi +
θj = M
ij
L
L

Mji =

2 EI
4 EI
θi +
θj
L
L

θj

θi

+
(MFij)∆

(MFji)∆
settlement = ∆j

+
P
(MFij)Load

M ij = (

w
(MFji)Load

4 EI
2 EI
2 EI
4 EI
)θ i + (
)θ j + ( M F ij ) ∆ + ( M F ij ) Load , M ji = (
)θ i + (
)θ j + ( M F ji ) ∆ + ( M F ji ) Load 8
L
L
L
L

Equilibrium Equations
i

P

j

w

k

Cj

Cj M

Mji
Mji

jk

Mjk
j

+ ΣM j = 0 : − M ji − M jk + C j = 0

9

Stiffness Coefficients
Mij

i

j

Mji

L

θj

θi

kii =

4 EI
L

k ji =

2 EI
L

×θ i

k jj =

4 EI
L

×θ j

1

kij =

2 EI
L

+

1

10

Matrix Formulation

M ij = (

4 EI
2 EI
)θ i + (
)θ j + ( M F ij )
L
L

M ji = (

2 EI
4 EI
)θ i + (
)θ j + ( M F ji )
L
L

 M ij  (4 EI / L) ( 2 EI / L) θ iI   M ij F 
M  = 
 θ  +  M F 
(
2
/
)
(
4
/
)
EI
L
EI
L
  j   ji 
 ji  

 kii
k ji

[k ] = 

kij 
k jj 

Stiffness Matrix
11

P

i

Mij

w

j

Mji

θi

[ M ] = [ K ][θ ] + [ FEM ]

L

θj

ψ

∆j

([ M ] − [ FEM ]) = [ K ][θ ]

[θ ] = [ K ]−1[ M ] − [ FEM ]

Mij

Mji

θj

θi

Fixed-end moment
Stiffness matrix matrix

+
(MFij)∆

(MFji)∆

[D] = [K]-1([Q] - [FEM])
+
(MFij)Load

P

w

(MFji)Load

Displacement
matrix

Force matrix

12

Stiffness Coefficients Derivation: Fixed-End Support
θi

Mi

Mj
Real beam

i

j

L
Mi + M j
L

Mi + M j

L/3

M jL
2 EI

L
Mj
EI

Conjugate beam
Mi
EI

θι

MiL
2 EI

M j L 2L
MiL L
)( ) + (
)( ) = 0
2 EI 3
2 EI 3
M i = 2 M j − − − (1)

+ ΣM 'i = 0 : − (

+ ↑ ΣFy = 0 : θ i − (

M L
MiL
) + ( j ) = 0 − − − (2)
2 EI
2 EI

From (1) and (2);
4 EI
)θ i
L
2 EI
Mj =(
)θ i
L

Mi = (

13

Stiffness Coefficients Derivation: Pinned-End Support
Mi

θi
i

θj

j

Real beam

L
Mi
L

2L
3

Mi
EI

θi
+ ΣM ' j = 0 : (

MiL
2 EI

M i L 2L
)( ) − θ i L = 0
2 EI 3
ML
θi = ( i )
3EI

θi = 1 = (

Mi
L

Conjugate beam

θj
+ ↑ ΣFy = 0 : (

MiL
ML
) − ( i ) +θ j = 0
3EI
2 EI

θj =(
MiL
3EI
) → Mi =
L
3EI

− MiL
)
6 EI
14

Fixed end moment : Point Load
P Real beam

Conjugate beam
A

A

B

B

L

M
EI

M

M
EI

M

M
EI

ML
2 EI

ML
2 EI

P
PL2
16 EI

PL
4 EI

M
EI

PL2
16 EI

PL
ML ML 2 PL2
+ ↑ ΣFy = 0 : −

+
= 0, M =
2 EI 2 EI 16 EI
8 15

P
PL
8

PL
8

L
P
2

P
2

P/2

PL/8

P/2

-PL/8

-PL/8
-

-PL/8

-PL/16
-

-PL/16
PL/4
+

-PL/8

− PL − PL PL PL
+
=
+
16
16
4
8

16

Uniform load
w

Real beam

Conjugate beam
A

A

L

B

B
M
EI

M

M
EI

M

M
EI

ML
2 EI

ML
2 EI

w

wL3
24 EI

wL2
8 EI

M
EI

wL3
24 EI

wL2
ML ML 2 wL3
+ ↑ ΣFy = 0 : −

+
= 0, M =
2 EI 2 EI 24 EI
12 17

Settlements
Mi = Mj

Real beam

Mj

Conjugate beam

L
Mi + M j

M

L

A

M
EI

B




M
EI

Mi + M j
L
M
EI

ML
2 EI

ML
2 EI

M

M
EI



+ ΣM B = 0 : − ∆ − (

ML L
ML 2 L
)( ) + (
)( ) = 0,
2 EI 3
2 EI 3
M=

6 EI∆
L2

18

Pin-Supported End Span: Simple Case
P

w
B

A
L
2 EI
4 EI
θA +
θB
L
L

4 EI
2 EI
θA +
θB
L
L

θA
A

θB

+
P

B
w
(FEM)BA

(FEM)AB
A
B
= 0 = (4 EI / L)θ A + (2 EI / L)θ B + ( FEM ) AB

− − − (1)

M BA = 0 = (2 EI / L)θ A + (4 EI / L)θ B + ( FEM ) BA

− − − ( 2)

M AB

2(2) − (1) : 2 M BA = (6 EI / L)θ B + 2( FEM ) BA − ( FEM ) BA

M BA = (3EI / L)θ B + ( FEM ) BA −

( FEM ) BA
2

19

Pin-Supported End Span: With End Couple and Settlement
P

w

MA

B
A
L


2 EI
4 EI
θA +
θB
L
L

4 EI
2 EI
θA +
θB
L
L

θA
A

P

θB
w

B
(MF BA)load

(MF AB)load
(MF

AB)∆

A
A

B
B

(MF BA) ∆

4 EI
2 EI
F
F
θA +
θ B + ( M AB
) load + ( M AB
) ∆ − − − (1)
L
L
2 EI
4 EI
F
F
M BA =
θA +
θ B + ( M BA
)load + ( M BA
) ∆ − − − (2)
L
L
2(2) − (1)
3EI
1
1
M
F
F
F
: M BA =
θ B + [( M BA
)load − ( M AB
)load ] + ( M BA
)∆ + A
2
2
2
2
L

M AB = M A =

E lim inate θ A by

20

Fixed-End Moments
Fixed-End Moments: Loads
P
PL
8

L/2

L/2

PL
8

L/2

PL 1
PL
3PL
+ ( )[−(−
)] =
8
2
8
16

P
L/2

wL2
12

wL2
12

wL2 1
wL2
wL2
+ ( )[−( −
)] =
2
12
8
12

21

Typical Problem

CB
w

P1

P2
C

A
B
L1

P

PL
8

L2

PL
8

wL2
12

L
0
PL
4 EI
2 EI
M AB =
θA +
θB + 0 + 1 1
8
L1
L1
0
PL
2 EI
4 EI
θA +
θB + 0 − 1 1
M BA =
8
L1
L1
0
2
P2 L2 wL2
4 EI
2 EI
M BC =
θB +
θC + 0 +
+
L2
L2
8
12
0
2
− P2 L2 wL2
2 EI
4 EI
θB +
θC + 0 +

M CB =
8
12
L2
L2

w

wL2
12

L

22

CB
w

P1

P2
C

A
B
L1

L2
CB M
BC

MBA

B

M BA =
M BC

PL
2 EI
4 EI
θA +
θB + 0 − 1 1
8
L1
L1

4 EI
2 EI
P L wL
=
θB +
θC + 0 + 2 2 + 2
L2
L2
8
12

2

+ ΣM B = 0 : C B − M BA − M BC = 0 → Solve for θ B

23

P1
MAB

CB
w

MBA

A
B
L1

P2

MBC
L2

C M
CB

Substitute θB in MAB, MBA, MBC, MCB
0
4 EI
2 EI
PL
θA +
θB + 0 + 1 1
M AB =
8
L1
L1
04
2 EI
EI
PL
θA +
θB + 0 − 1 1
M BA =
8
L1
L1
0
2
4 EI
2 EI
P2 L2 wL2
θB +
θC + 0 +
+
M BC =
L2
L2
8
12
0
2
− P2 L2 wL2
2 EI
4 EI
M CB =
θB +
θC + 0 +

L2
L2
8
12

24

P1
MAB

CB
w

MBA

P2
MCB

A

Ay

B

L1

MBC
L2

C
Cy

By = ByL + ByR

P1
MAB

B

A
Ay

L1

C

B
MBA

ByL

P2

MBC
ByR

L2

MCB

Cy

25

Example of Beams

26

Example 1
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.

10 kN

6 kN/m
C

A
4m

4m

B

6m

27

10 kN

6 kN/m
C

A
4m
PL
8

4m

P

B

6m
wL2
30

PL
8

wL2
20

w

FEM
MBA

MBC

[M] = [K][Q] + [FEM]
0
4 EI
2 EI
(10)(8)
θA +
θB +
8
8
8
0
2 EI
4 EI
(10)(8)
θA +
θB −
M BA =
8
8
8
0
4 EI
2 EI
(6)(6 2 )
M BC =
θB +
θC +
6
6
30
0
2 EI
4 EI
(6)(6) 2
M CB =
θB +
θC −
6
6
20
M AB =

B

+ ΣM B = 0 : − M BA − M BC = 0
(6)(6 2 )
4 EI 4 EI
+
=0
)θ B − 10 +
(
30
8
6
2.4
θB =
EI
Substitute θB in the moment equations:

MAB = 10.6 kN•m,

MBC = 8.8 kN•m

MBA = - 8.8 kN•m,

MCB = -10 kN•m 28

10 kN
8.8 kN•m
10.6 kN•m

A

6 kN/m
C

8.8 kN•m
4m

B

4m

MAB = 10.6 kN•m,

MBC = 8.8 kN•m

MBA = - 8.8 kN•m,

MCB= -10 kN•m

10 kN•m

6m

2m
18 kN

10 kN

6 kN/m
10.6 kN•m

A

B

8.8 kN•m B
10 kN•m
8.8 kN•m

Ay = 5.23 kN

ByL = 4.78 kN

ByR = 5.8 kN

Cy = 12.2 kN

29

10 kN

6 kN/m

10.6 kN•m

C

A
4m

5.23 kN

B

4m

6m

10 kN•m

12.2 kN

4.78 + 5.8 = 10.58 kN
5.8

5.23
V (kN)

+

+

x (m)

- 4.78

-

10.3
M
(kN•m)

x (m)

+
-10.6

Deflected shape

-12.2
-

-8.8

2.4
θB =
EI

-10
x (m)
30

Example 2
Draw the quantitative shear , bending moment diagrams and qualitative
deflected curve for the beam shown. EI is constant.
10 kN

6 kN/m
C

A
4m

4m

B

6m

31

10 kN

6 kN/m
C

A
4m
PL
8

P

4m

B

6m
wL2
30

PL
8

w

wL2
20

FEM
10
[M] = [K][Q] + [FEM]
0 4 EI
2 EI
(10)(8)
θA +
θB +
M AB =
− − − (1)
8
8
8 10
2 EI
4 EI
(10)(8)
θA +
θB −
− − − (2)
M BA =
8
8
8
4 EI
2 EI 0 (6)(6 2 )
θB +
θC +
− − − (3)
M BC =
6
6
30
2 EI
4 EI 0 (6)(6) 2
M CB =
θB +
θC −
− − − (4)
6
6
20
6 EI
2(2) − (1) : 2 M BA =
θ B − 30
8
3EI
M BA =
θ B − 15 − − − (5)
8

32

MBA

MBC
B

M BC

4 EI
(6)