Improvement Of Medical Product Through Design For Environment (DfE) Methodology : A Case Study Dialyzer.

ABSTRACT

Design for environment is such an important methodology in discovering the new
product environment that is equivalent in order to fulfill the customers’ needs and wants.
The development of medical product followed by proper design such as considering on
the design for environment can save both environmental and financial resources. This
report proposes the application of principle of Design for Environment (DFE) towards
developing a sustainable product. This concept is applied to consider the environmental
aspects at all stages of the product development process as well as to increase resources
efficiency at all stages of product life cycle ranging from extraction of its material,
manufacturing, packaging, transportation, product usage, and finally to recycling or
disposal of the product. The aims of this report are to strive for products which causes
the lowest possible environmental impact throughout the product life cycle. The
methodology carried out in this report is through analyzing an existing medical product
and implementing DFE tools and guidelines to design a new sustainable product. A
sustainability analysis is conducted concurrently with SolidWorks 2010, to evaluates the
environmental impact of a material throughout the life cycle of a product. Based on the
evaluation of result from sustainable analysis, a new sustainable material of product was
replaced to reduce effect to environment. Lastly, the evaluation and comparison of
environment impact and human health of the existing product and sustainable redesign
product is carried out with the life cycle assessment (LCA) method. The environment

impact is analyzed by mean of SimaPro software which is one of the LCA tools.

i

ABSTRAK
Rekabentuk untuk persekitaran merupakan suatu kaedah penting ke arah penemuan
produk persekitaran yang sesuai dan memenuhi keperluan pelanggan. Penghasilan
barangan

perubatan

diikuti

dengan

rekabentuk

yang

bersesuaian


seperti

mempertimbangkan rekabentuk untuk yang memenuhi ciri-ciri persekitaran dapat
menyelamatkan alam sekitar serta menjimatkan sumber kewangan. Laporan ini
mencadangkan pengaplikasian konsep dalam rekabentuk untuk persekitaran(DFE) bagi
membangunkan suatu produk yang berterusan. Pengaplikasian konsep ini bertujuan
untuk

mempertimbangkan

aspek

persekitaran

pada

semua

peringkat


proses

perkembangan produk dan meningkatkan sumber kecekapan dalam setiap fasa yang
terdapat dalam kitaran jangka hayat produk bermula dari pengekstrakan bahan,
pengeluaran, pembungkusan, pengangkutan, penggunaan produk dan akhirnya untuk
kitar semula atau pelupusan produk. Tujuannya adalah untuk mengusahakan produkproduk yang memberikan kesan persekitaran yang serendah mungkin sepanjang kitaran
hidup produk. Kaedah yang dilakukan dalam laporan ini adalah mengembangkan produk
yang sedia dan menerapkan alat DFE dan panduan untuk merekabentuk produk baru
yang berterusan. Analisis yang berterusan dilakukan bersamaan dengan SolidWorks
2010, untuk menilai kesan persekitaran dari suatu bahan sepanjang kitaran hidup produk.
Berdasarkan penilaian hasil dari analisis yang berterusan, bahan berterusan produk baru
diganti untuk mengurangkan kesan terhadap alam sekitar. Akhirnya, penilaian dan
perbandingan kesan persekitaran dan kesihatan manusia terhadap produk sedia ada dan
produk baru yang melibatkan lestari dilakukan dengan penilaian kitaran hidup (LCA).
Kesan persekitaran ini dianalisis oleh perisian SimaPro yang mana ia merupakan salah
satu daripada kaedah LCA yang digunakan secara meluas.

ii


ACKNOWLEDGEMENT

A deep sense of thankfulness to Allah who has given me the strength, ability and
patience to complete this project as it is today. Firstly, I would like to take this
opportunity to put into words my deepest gratitude and appreciation to the Project
Supervisor, En. Tajul Ariffin Bin Abdullah for his supports, guidance, patience,
encouragement and abundance of ideas during the completion of this project. Secondly,
special thanks to honorable panels, En. Hassan Bin Attan and En. Taufik for their
comments, invaluable suggestions and outstanding deliberations to improve the project
during the project presentation. I would also like to express my extraordinary
appreciation to my family for their invaluable support along the duration of my studies
until the completion of Final Year Project. Finally yet importantly, thanks to all the
persons who are directly or indirectly contributed especially to my friends because their
perspective and guidance helped greatly to point me in the right direction until the
completion of this project.

iii

TABLE OF CONTENTS


TITLE

PAGE

Abstract

i

Acknowledgement

iii

Table of Contents

iv

List of Figure

viii


List of table

x

List Abbreviations

xi

CHAPTER1: INTRODUCTION
1.0

Background

1

1.1

Objective

2


1.2

Scope

2

1.3

Problem Statement

3

1.4

Thesis Organization

4

CHAPTER 2: LITERATURE REVIEW

2.0

Introduction

5

2.1

Design for Environment

5

2.1.1

Objective of DFE

7

2.1.2


Approaches to optimal environment performance

8

2.1.3

The new DfE Process

9

2.1.4

DFE benefits

11

2.1.5

Analysis of DfE Process/ DfE Tools


11

2.1.5.1 Guidelines and Checklist Document

12

2.1.5.2 Use of Flow Charts

13

2.1.5.3 Use of Matrices

14

2.1.5.4 Life-Cycle Assessment (LCA)

15
iv

2.1.5.5 Environment Conscious Quality Function Deployment


17

2.2

Design for disassembly (DfD)

18

2.3

Design for Recycling and Reused

20

2.4

Green technology

21

2.5

Green manufacturing

23

2.6

Sustainability

24

2.6.1

Design

24

2.6.2

Design for Sustainability

25

2.6.3

Implementing sustainable design

26

2.6.4

Barriers to Sustainability

27

2.6.5

Concepts and Tools for Sustainable Design

28

2.6.5.1 Closed-loop or Closed-cycle Design

28

2.6.5.2 Life-cycle Analysis (LCA)

28

2.6.5.3 Sustainable Manufacturing

29

2.6.5.4 Sustainable Manufacturing Standards

30

2.7

Environmentally Responsible Product Development

31

2.7.1

Decision Production Systems

32

2.8

Conceptualizing a Medical Need

33

2.9

Material selection

34

2.9.1

PVC

35

2.9.1.1 PVC in medical items

35

2.9.2

Polycarbonate

37

2.9.2.1 Medical Applications

38

2.10

39

Dialysis

CHAPTER 3: METHODOLOGY
3.0

Introduction

41

3.1

Process Flow Chart

41

3.1.1

Identify the Project Title

43

3.1.2

Define Background, Problem Statement, Objective and Scope

43

3.1.3

Develop Literature Review

44
v

3.1.4

Design Methodology for Structural Analysis

44

3.1.5

Result and Discussion

45

3.1.6

Conclusion and recommendation

45

3.1.7

Report Writing and Submission

45

3.2

Phases of DFE Analysis

46

3.2.1

Analyzing of Product (Sustainability analysis)

47

3.2.1.1 DFE Analysis Flow

47

3.2.1.2 Environmental Impact

48

3.2.2

49

Assessment of environmental performance

CHAPTER 4: RESULT AND DISCUSSION
4.1

Introduction

51

4.2

Current product

51

4.2.1

Product Specification

52

4.2.2

Exploded view

53

4.3

Material Analysis on dialyzer Product

53

4.3.1

Case part analysis

54

4.3.2

Cap part analysis

55

4.3.3

End caps part analysis

56

4.4

Material Selection for Sustainable Product

58

4.5

Material Choice for Sustainable dialyzer

62

4.5.1

Sustainable Product Part

67

4.5.1.1 Case/body

67

4.5.1.2 End caps

72

4.5.1.3 Cap

76

4.5.2

Summary for sustainable dialyzer

81

4.6

Life Cycle Assessment (LCA)

81

4.6.1

Life Cycle Assessment of HDPE dialyzer

83

4.6.2

Life Cycle Assessment of Polycarbonate dialyzer without reused

84

4.6.3

Comparison of Life Cycle Assessment of PC dialyzer and
HDPE dialyzer

85
vi

4.6.4

Life Cycle Assessment of Polycarbonate dialyzer with reused

4.6.5

Comparison of Life Cycle Assessment of PC dialyzer

4.7

87

and PC dialyzer reused

89

Sustainable design and material of dialyzer

94

CHAPTER 5: CONCLUSION AND RECOMMENDATION
5.1

Conclusion

97

5.2

Recommendation

98
99

REFERENCE
APPENDICE A
APPENDICE B
APPENDICE C

vii

LIST OF FIGURES

1.1

Article San Francisco Chronicle

3

2.1

Objective and Characteristics of DFE

7

2.2

Main phases of product life cycle and flow of recourses

8

2.3

Combined Safety and Environmental Review Process

10

2.4

Example DfE checklist question

12

2.5

Example of flow chart questions

14

2.6

Product design matrix

15

2.7

Life Cycle Approach as basis for modeling systems

16

2.8

DfE flow and design support tools

18

2.9

Green technology subject areas

22

2.10

The Shift to Sustainable Design

24

2.11

Sustainability and the Design Funnel

25

2.12

Relationship between sustainable development, sustainability,
and green engineering

2.13

26

Product development organization with isolated environmental
decision-making

2.14

33

Design of this safety syringe allows healthcare practitioners
to operate the device with one hand.

35

2.15

Polycarbonate resin

37

2.16

Dialyzer

39

2.17

Hemodialysis schematic

40

3.1

Process flow in conducting PSM 1 & PSM 2

42

3.2

Phases of analysis

46

3.3

Process flow in conducting sustainability analysis

47

3.4

Pie chart

48

3.5

Comparisons bars

48
viii

3.6

Powerful analytical features on many levels

49

3.7

Interactive analysis of a network

50

3.8

Comparison (damage assessment) analysis of a human health,
ecosystem quality and resources

50

4.1

Dialyzer

52

4.2

Exploded view of dialyzer

53

4.3

The graph analyze view of Case

54

4.4

The graph analyze view of Cap

55

4.5

The graph analyze view of End cap

56

4.6

Pie Chart Environmental Impact of ABS case

68

4.7

Pie Chart Environmental Impact of PC case

69

4.8

Pie Chart Environmental Impact of HDPE case

70

4.9

Pie Chart Environmental Impact of ABS end caps

73

4.10

Pie Chart Environmental Impact of PE High Density end caps

74

4.11

Pie Chart Environmental Impact of HDPE cap

77

4.12

Pie Chart Environmental Impact of PP cap

78

4.13

Pie Chart Environmental Impact of PC cap

79

4.14

Tree Diagram of HDPE dialyzer

83

4.15

Tree Diagram of PC dialyzer without reused

84

4.16

Comparison PC dialyzer and HDPE dialyzer (weighting)

85

4.17

Comparison PC dialyzer and HDPE dialyzer (single score)

86

4.18

Tree diagram of PC dialyzer reused

88

4.19

Comparison PC dialyzer and PC dialyzer reused (weighting)

89

4.20

Comparison PC dialyzer and PC dialyzer reused (single score)

90

4.21

Solid Waste Management Hierarchy

91

4.22

Comparison HDPE, PC and PC dialyzer reused (damage assessment)

91

4.23

Impact strength of commonly sold plastics.

93

4.24

Comparison HDPE, PC and PC dialyzer reused (single score)

94

4.25

Sustainable dialyzer (PC reused)

96
ix

LIST OF TABLES

3.1

Descriptions of the ECQFD structure

63

4.1

Summary of the result from XRD

57

4.2

Plastics Comparison & Selection Guide

59

4.3

Data Sheets Properties for Thermoplastic

61

4.4

Current material and target sustainable properties of case and end caps

62

4.5

Current material and target sustainable properties of cap

63

4.6

Summary of Case Sustainability Results on Environment Impact

71

4.7

Summary of End Caps Sustainability Results on Environment Impact

75

4.8

Summary of Cap Sustainability Results on Environment Impact

80

4.9

Summary of Sustainability Analysis in SolidWork 2010 on dialyzer

81

4.10

Material and disposal each component of sustainability dialyzer

95

x

LIST OF ABBREVIATIONS, SYMBOLS, SPECIALIZED
NOMENCLATURE

ABS

-

Acrylonitrile butadiene styrene

CML

-

Centre of Environmental Sciences at Leiden University

Cu

-

Copper

DEHP

-

Di-(2-ethylhexyl) phthalate

DFA

-

Design for Assembly

DfD

-

Design for disassembly

DfE

-

Design for Environment

ECQFD

-

Environmentally Conscious Quality Function Deployment

EEA

-

Assessment or Environmental Effect Analysis

EIO-LCA

-

Economic Input-Output LCA

EM

-

Engineering Metrics

EMS

-

Environmental Management System

EPA

-

Environmental Protection Agency

ERPD

-

Environmentally Responsible Product Development

EtO

-

Ethylene Oxide

FDA

-

food and Drug Administration

GWP

-

Global Warming Potential

HDPE

-

Polyethylene High Density

ISO

-

International Organization for Standardization

JEMAI

-

Japan Environmental Management Association for Industry

QFDE

-

Quality Function Deployment for Environment

KG

-

Kilogram

LCA

-

Life Cycle Assessment

xi

LDHE

-

Polyethylene Low Density

MJ

-

megajoules

N

-

Nitrogen

OEM

-

Original Equipment Manufacturer

OHSAS

-

Occupational Health & Safety Advisory Services

PB-EMS

-

Product-based Environmental Management Systems

PC

-

Polycarbonate

PE

-

Polyethylene

PP

-

Polypropylene

PVC

-

Polyvinyl chloride or vinyl

TDI

-

Tolerable Daily Intake

TRACI

-

Tool for the Reduction and Assessment of Chemical

VOC

-

Voice of Customer

XRD

-

X-ray diffraction

xii

CHAPTER 1
INTRODUCTION

1.0

Background
Design is key to the function, meaning, and appeal of products used by people

every day throughout the world (Kurk F. et al., 2004). It has been recognized as a
critical stage for determining costs and profitability. The National Research Council
estimates that 70 percent or more of the costs of product development, manufacture, and
use are determined during initial design stages (Kurk F. et al., 2004). For those who
bring shape to our physical world by designing products, it is also an unparalleled
window of opportunity to distinguish products, while championing the environment
through innovation.
Exactly what draws consumers to pick up a product or just to want it is
sometimes referred to as “Factor X.” While this factor can be elusive, a common
element of good design is satisfaction of the core needs of the user. Hence meeting these
needs with unique, will assists in improving the design as well as to differentiate
products in the marketplace.
Manufacturers started thinking in terms of "design for" qualities or traits in their
products and processes. At the same time, views on risk management began shifting to
approaches that promote risk reduction through pollution prevention (also known as
source reduction). Environmental Protection Agency (EPA) recognized the need to
develop a cleaner, safer technologies program to work with industry to design products,
processes, and technologies that are competitive but environmentally preferable
1

(www.epa.gov/). Several non-regulatory, voluntary initiatives on safer chemical
synthesis, comparative risk analysis, and alternative technology development merged to
create the EPA's Design for Environment (DfE).

1.1

Objectives

The objectives of this study are:
1) To investigate the design parameters of medical product.
2) To analyze the medical product using Design for Environment analysis.
3) To purpose the medical product base on Life Cycle Assessment.

1.2

Scope
The scope of this study is to focus on analyzing medical product based on DFE

guidelines, methods, and tools obtained through the literature studies. This research also
includes the environmental impact and performance of the product evaluated with
Solidwords (Student Vision) and SimaPro which is this software for LCA studies. As for
the boundary, the analyses only cover the external feature of the dialyzer (case, end cap,
and cap).

1.3

Problem Statement
When a product is designed and introduce to the market, the value of the

environmental of product is given less priority and this has lead to lack of environmental
friendly product in market. Every such product in the market will eventually face the
risk of disposal difficulties at the end of the products life. Hence, this led to the raised of
a product cost due to the disposal difficulties. Usually, Hospitals generate more than two
million tons of waste each year (http://www.noharm.org/us/). In the past, many hospitals
2

simply dumped all waste streams together, from reception-area trash to operating-room
waste, and burned them in incinerators. Incineration is a leading source of highly toxic
dioxin, mercury, lead and other dangerous air pollutants such as in Article San Francisco
Chronicle showed in figure 1.1.

Figure 1.1: Article San Francisco Chronicle
(Source: This article appeared in the San Francisco Chronicle on June 9, 2005)

Environmental concern for the use of disposable healthcare products has
continued to escalate over the past ten years. Medical waste is substantial and must be
considered in the overall health of the population. Over the past decade, the mortality of
dialysis patients has steadily decreased while dialyzer reuse has increased steadily
during this time becoming the major sterilant used in 56% of the 82% of centers that
reprocess dialyzers in the United States (Steven G.,2000). The reprocessing of dialyzers
has economic benefits as well improved patient benefits which have legitimatized the
practice of dialyzer reuse. However, there are substantial benefits to the environment
which also result from the practice of dialyzer reuse. reprocessing of dialyzers has led to
the elimination of millions of pounds dialyzer waste and is recommended for facilities
which are not practicing dialyzer reprocessing.
3

This project will look into implementation of DFE method and tools to obtain a
sustainable product that will have less impact on the environment and human health than
current product.

1.4

Thesis Organization

This thesis consists of five chapters. In chapter 1, the background and problem statement
of the research are described. It also states the objectives of the research as well as the
scope and limitation of study and also organization of thesis.
In chapter 2, a Literature review of the research topic is conducted. The study on the
Design for Environment principles. Besides that, the study on tool of DFE relate on
product and anything that helps in the study is also stated in this chapter.
In chapter 3, the methodology of the research is presented. Methods or any particular
procedures used to complete the analysis are noted in this chapter. It also includes the
chronology of the research.
In chapter 4, the results of analysis are discussed. This chapter is a very important part of
this thesis and finally, the conclusions and recommendations are stated in chapter 5.

4

CHAPTER 2
LITERATURE REVIEW

2.0

Introduction
This chapter presents the literature search was performed to study, implement,

design and analyze the sustainable product through implementation of Design for
Environment (DfE). The study also includes the areas of product material, product
design and development of sustainable product. All the information that were collected
are very important to ensure that the project research achieved the objective.

2.1

Design for Environment
The first consideration of the technical aspect associated with the practice of a

design action directed at reducing the environment impact of product appeared in the
first half of the 1980s (Overby, 1979). In the early 1990s, these first experiences were
followed by a phase of greater understanding of a new need to safeguard resources,
which consolidated in a wide diffusion of a new ideas and experiences developed with
the clear objective of integrating environment demands in traditional design procedures
(Navin-Chandra, 1991). In this way a new approach to the design intervention was born,
know as Design for Environment (DfE), characterized by the priority objective of
already in the design phase, minimizing the impact of product on the environment.
From the life-cycle perspective, designers gain inherent drivers for improving
design. Materials tend to be selected more prudently and used more efficiently.
5

Consideration of alternative materials or sources of energy is built into the design
process. The result could be an ingenious connector design or use of a small fuel cell for
energy.
Design for Environment (DfE) surprisingly coincides very well with design for
manufacturability. With DfE, a lot of components and pieces of the hardware that snap
together or can come apart easily and that also benefits our manufacturing assembly time
as well as the throughput rate of all of our products on the production floor. So not only
do we get the environmental benefits, but we get the manufacturing benefits at the same
time.
Another source states that Design for Environment (DfE) is an attempt taken to
minimize the environmental impact of the product during its life cycle ranging from
extraction of raw material through processing, manufacturing and transportation to
reuse, recycling, and final disposal in order to decrease the consumption of raw material
and energy, reduce cost and make process environment friendly (Anastassia M. et al.,
2005).
Design for Environment also primarily refers to product related environmental
care, diminishing environmental effects of a product before it is produced, distributed
and used. DFE examines the disassembly of products at the end-of-life and reveals the
associated cost benefits and environmental impact of , reuse and recycling.
Furthermore Design for Environment (DfE) Programme helps businesses
incorporate environmental considerations into the design and redesign of products,
processes, and technical and management systems. Initiated by US Environmental
Protection Agency's (EPA's) Office of Pollution Prevention and Toxics (OPPT) in 1992,
DFE forms voluntary partnerships with industry, universities, research institutions,
public interest groups, and other government agencies.

6

2.1.1

Objective of DFE
The objective is to minimize or eliminate, during design, the anticipated waste

generation and resource consumption in all subsequent life cycle phases: construction,
operation, and closure (or production, use, and disposal). In addition to its specific
primary objective and its orientation toward the cycle, DFE is characterized by two other
aspects as shown in figure 2.1 particular:




The dual level of intervention, regarding both products and processes
The proactive action of intervention, base on the presupposition of the greater
efficacy of intervening early in the product development process (i.e., in the early
design phases).

Figure 2.1: Objective and characteristics of DFE
(Source: Giudice, F. ,2006.pg-17)

7

2.1.2

Approaches to optimal environment performance
The central theme unifying the various studies of DFE can be identified in the

common objective of reducing the environment impact of a product over its entire life
cycle, from design to disposal (Coulter et al., 1995). The concept of “reduction of
environment impact” is not, however, limited to the simple quantification and
minimization of direct impact on the ecosystem. Rather, in this context it has to be
understood in wider terms, as the optimization of environment performance, which
include a more articulated range of aspect:


Reduction of scrap and waste, allowing a more efficient use of resources and a
decrease in the volumes of refuse, and, more generally, are reduction in the



impact associated with the management of waste material.
Optimal management of material, consisting of the correct use of material on the
basis of the performance require, in their recovery at the end of the product‟s life




and in the reduction of toxic or polluting material.
Optimization of the production processes, consisting of planning of processes
that are energetically efficient and result in limited emissions.
Improvement of the product, with particular regard to its behavior during the
phase of use, to reduce the consumption of resources or the need for additional
recourses during its operation.
PRODUCTION
REMANUFACTURE

RAW
MATERIAL

USE
REUSE

RECYCLE

DISPOSAL
Figure 2.2: Main phases of product life cycle and flow of recourses
(Source: Giudice, F. ,2006.pg-19)

8