Results and discussion PROS Junta DK, Setiawan, Santi PR The simulation studies fulltext

J.D. Kurnia, Setiawan, S.P. Rahayu SWUP SC.33           +           − − −                               +           =           1 1 1 3 2 1 3 2 1 33 22 11 33 32 31 23 22 21 13 12 11 30 20 10 3 2 1 t e t e t e t Z t Z t Z w w w w w w w w w t Z t Z t Z φ φ φ φ φ φ i Comparing the results of model parameter estimation GSTARX-ols and GSTARX-SUR.

3. Results and discussion

Study of simulation in this study using the VAR 1 1 model which is then used to build the model GSTARX 1 1 with the parameters in the following equation coefficient matrix.           = 13 , 21 , 21 , 15 , 23 , 15 , 25 , 25 , 18 , 1 Φ As described in the previous chapter that stage simulation studies conducted through six ways with each simulation consisted of two case studies. The first case study using the order of the transfer function b = 1, s = 1, r = 0 and b = 1, s = 2, r = 0. For the simulation study used a matrix of partial normalization of cross correlation weighting. Results of the simulation study 1 case study 1 with a residual value of between locations are not mutually correlated, the value of the partial normalization of cross correlation weighting worth valid and comparable on all parameters which means a partial amount of the cross-correlation between the second and third location to the first location is equally great in the lag-1 , and the value of the partial cross-correlation between the first and third location to the second location is equally great in the lag-1, as well as the value of the partial cross-correlation between the first and the second location to a third location is equally great in the lag-1. It is therefore appropriate weighting to simulate one second case study is uniform weighting. The weighting value used to form the residual become GSTARX model parameter estimation in order to obtain results using the method of OLS and SUR in the following equations.           +           − − −           − − − +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 2 2 2 94 , 9 07 , 10 16 , 10 1 1 1 94 , 14 97 , 14 12 , 15 1 1 1 14 , 22 , 22 , 16 , 23 , 16 , 24 , 24 , 24 ,           +           − − −           − − − +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 2 2 2 95 , 9 06 , 10 15 , 10 1 1 1 96 , 14 96 , 14 13 , 15 1 1 1 14 , 22 , 22 , 16 , 22 , 16 , 24 , 24 , 23 , For the first simulation case study 2 also produces a weighted value of the partial normalized cross correlation is valid and comparable, therefore, be used to obtain a uniform weighted residual value and the resulting value of the parameter estimates in the following equations.           +           − − −           − − − +           − − −           − − − + +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 3 04 , 20 06 , 20 09 , 20 2 2 2 93 , 9 05 , 10 13 , 10 1 1 1 94 , 14 97 , 14 13 , 15 1 1 1 13 , 22 , 22 , 16 , 23 , 16 , 24 , 24 , 23 , The simulation studies for Generalized Space Time Autoregressive-X GSTARX model SWUP SC.34           +           − − −           − − − +           − − −           − − − + +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 3 95 , 9 06 , 10 15 , 10 2 2 2 95 , 9 06 , 10 15 , 10 1 1 1 96 , 14 96 , 14 13 , 15 1 1 1 13 , 22 , 22 , 16 , 22 , 16 , 24 , 24 , 23 , Estimation of parameters in simulation 1 case study 1 and 2 by using the Estimation Method OLS and SUR generating parameter values estimated by OLS can be said to be not much different or produce nearly all of the same value by using the GLS estimation method, as well as the resulting standard errors OLS and SUR. This means GSTARX-OLS model is as good as GSTARX-SUR in cases where residual data between locations are not mutually correlated. The same thing is shown in simulation 2 case studies 1 and 2 where the residual between locations is not correlated to produce standard error estimation parameters with the same value, which means GSTARX-OLS model is as good as GSTARX-SUR. The comparison of standard errors between GLS and OLS in simulation 1 is presented in Table 1. Table 1. Comparison standard error of OLS and GLS in simulation 1. Parameter OLS GLS estimasi SE estimasi SE Case study 1 psi10 0.24 0.05 0.23 0.05 psi20 0.23 0.05 0.22 0.05 psi30 0.14 0.06 0.14 0.05 psi11 0.47 0.08 0.48 0.08 psi21 0.32 0.07 0.32 0.07 psi31 0.43 0.07 0.43 0.07 w10 15.12 0.06 15.13 0.06 w20 14.97 0.06 14.96 0.06 w30 14.94 0.06 14.96 0.06 w11 –10.16 0.06 –10.15 0.06 w21 –10.07 0.06 –10.06 0.06 w31 –9.94 0.06 –9.95 0.06 Parameter OLS GLS estimasi SE estimasi SE Case study 2 psi10 0.23 0.05 0.23 0.05 psi20 0.23 0.05 0.22 0.05 psi30 0.13 0.06 0.13 0.05 psi11 0.47 0.08 0.48 0.08 psi21 0.32 0.07 0.32 0.07 psi31 0.44 0.07 0.44 0.07 w10 15.13 0.06 15.13 0.06 w20 14.97 0.06 14.96 0.06 w30 14.94 0.06 14.96 0.06 w11 –10.13 0.07 –10.13 0.07 w21 –10.05 0.07 –10.05 0.07 w31 –9.93 0.06 –9.94 0.06 w12 –20.09 0.06 –20.07 0.06 w22 –20.06 0.06 –20.05 0.06 w32 –20.04 0.06 –20.05 0.06 As for the simulation of 3, 4, 5, and 6 for the residual between locations correlated produce GSTARX-SUR model is more efficient than the GSTARX-OLS because it produces a J.D. Kurnia, Setiawan, S.P. Rahayu SWUP SC.35 standard error of estimate parameter values are smaller. In the third simulation case study 1 generated value weighted partial normalization of cross correlation are valid and comparable, and therefore a uniform weighting may be applied to this case resulting parameter estimates OLS and SUR in the following equations.           +           − − −           − − − + +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 2 2 2 920 , 9 960 , 9 880 , 9 1 1 1 010 , 15 980 , 14 160 , 15 1 1 1 130 , 229 , 229 , 159 , 278 , 159 , 304 , 304 , 160 ,           +           − − −           − − − + +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 2 2 2 970 , 9 990 , 9 960 , 9 1 1 1 040 , 15 997 , 14 060 , 15 1 1 1 171 , 210 , 210 , 165 , 267 , 165 , 317 , 317 , 136 , Simulation 3 in the case study 2 also produces a weighted value of the partial normalized cross correlation is valid and comparable, therefore, be used to get a uniform weighted residual value and the resulting value of the parameter estimates in the following equations.           +           − − −           − − − +           − − −           − − − + +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 3 950 , 19 822 , 19 917 , 19 2 2 2 946 , 9 031 , 10 891 , 9 1 1 1 014 , 15 970 , 14 149 , 15 1 1 1 129 , 231 , 231 , 163 , 270 , 163 , 303 , 303 , 163 ,           +           − − −           − − − +           − − −           − − − + +           − − −           +           − − −           =           t e t e t e t X t X t X t X t X t X t X t X t X t z t z t z t z t z t z 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 2 1 3 3 3 024 , 20 915 , 19 999 , 19 2 2 2 947 , 9 017 , 10 959 , 9 1 1 1 030 , 15 999 , 14 058 , 15 1 1 1 171 , 211 , 211 , 168 , 260 , 168 , 317 , 317 , 137 , In the third simulation case studies 1 and 2 where the residual data between locations are correlated to produce standard error of estimate parameter values that are smaller in GSTARX-SUR Model compared with GSTARX-OLS. This means that the model is more efficient GSTARX-SUR applied to the case where correlated residuals between sites. Value Model GSTARX-SUR efficiency can be seen in Table 2. Simulation of 4, 5, and 6 to the same conclusion as in the simulation 3.

4. Conclusion