Homogeneous model with equalized claim amounts

228 F. De Vylder, M. Goovaerts Insurance: Mathematics and Economics 26 2000 223–238 b. Let us now assume that u=0. By Lemmas 1 and 2, I n Y 1 , . . . , Y n , ct can be replaced with ct n n − Y n nct n−1 n − 1 = ct n n − 1 1 − Y n ct in 13. This proves the first relation 14. The second relation 14 is obvious. Then the last relation 14 results from an integration by parts. c. 15 results from 1, 12 and 14. General expectations such as E[ϕX 1 , . . . , X n ] are almost impossible to evaluate numerically, fastly and precisely enough, if n is large. In particular, 13 is not useful for the practical evaluation of U n t, u. On the contrary, expectations such as E[ϕX 1 + · · · + X n ] can be calculated. Indeed, they are reduced to single integrals E[ϕX 1 + · · · + X n ] = Z I ϕy dF ∗ n y. In practice I is a bounded interval and F the discretized, i.e. F is hold back as a long vector in the computer program. Then F ∗n can be calculated iteratively and only two successive long vectors F ∗k and F ∗ k +1 k=1,2, . . . , n must be stored simultaneously in the process at each stage. If the discretized F has ν components, then the direct calculation of E[ϕX 1 , . . . ,X n ] = Z · · · Z D ϕx 1 , . . . ,x n dF x 1 · · · dF x n may need the evaluation of ν n terms, to be summed up. In the case of U n t, u the evaluation of ϕx 1 , . . . , x n goes via relations such as 4. All this must be done for values n=0, 1, 2, . . . , n and then Ut, u should result from 1. In some cases ν and n may be pretty large, say ν=1000 and n = 100. Clearly this rudimentary procedure is hopeless, even with the fastest computers available today.

3. Homogeneous model with equalized claim amounts

We now start from an homogeneous model with time interval [0, t], called the initial model, and we replace each claim amount X k with the average amount X k ∼ = X 1 + · · · + X N t N t . This model with equalized claim amounts is also called the associated model. The claims instants T k k=1, 2, . . . , N t are the same in both models: T k ∼ = T k . The superscript ∼ is used systematically for the components of the associated model with equalized claim amounts. We notice that the risk reserve R τ ∼ 0 ≤ τ ≤ t cannot be determined from observations during time interval [0, τ ]. The complete trajectory R s 0≤s≤t is necessary in order to fix R τ ∼ . The distribution of the trajectories R τ ∼ 0 ≤ τ ≤ t results from the distribution of the trajectories R τ 0≤t≤t. Hence, the associated model is clearly defined. In Figs. 1–4, we represent sample functions of the processes R τ full lines and R τ ∼ stippled lines. All four following cases a, b, c and d can occur. a. No ruin in the initial model, no ruin in the associated model Fig. 1, b. Ruin in the initial model, ruin in the associated model Fig. 2, c. No ruin in the initial model, ruin in the associated model Fig. 3, d. Ruin in the initial model, no ruin in the associated model Fig. 4. Due to compensations between occurrences of these cases, the following question is relevant: is U ∼ t, u close to Ut, u? The most surprising answer is that in case of an initial risk reserve u=0, the compensation is perfect: U ∼ t, 0=Ut, 0 Theorem 2b. This throws a new light on Prabhu’s formula. The numerical investigations of Section 5 show that U ∼ t, u≥Ut, u and that U ∼ t, u is rather close to Ut, u. In fact, the comparison of U ∼ t, u with Ut, u is possible in the classical actuarial model only, i.e. when N t is Poisson distributed, because Ut, u can be evaluated F. De Vylder, M. Goovaerts Insurance: Mathematics and Economics 26 2000 223–238 229 Fig. 1. No ruin in initial model. No ruin in associated model. Fig. 2. Ruin in initial model. Ruin in associated model. Fig. 3. No ruin in initial model. Ruin in associated model. Fig. 4. Ruin in initial model. No ruin in associated model. 230 F. De Vylder, M. Goovaerts Insurance: Mathematics and Economics 26 2000 223–238 Table 1 Uniform F, η=0.05, t=1 u 9 9 ∼ 0.527 0.527 1 0.0925 0.0920 2 0.00827 0.00832 3 0.00049 0.00050 4 0.00002 0.00002 Table 2 Uniform F, η=0.05, t=5 u 9 9 ∼ 0.777 0.777 1 0.346 0.320 2 0.113 0.105 3 0.0297 0.0281 4 0.00646 0.00622 5 0.00119 0.00117 6 0.00019 0.00019 Table 3 Uniform F, η=0.05, t=10 u 9 9 ∼ 0.835 0.835 1 0.473 0.433 2 0.221 0.199 3 0.0900 0.0814 4 0.0321 0.0294 5 0.0101 0.00940 6 0.00284 0.00269 7 0.00072 0.00070 8 0.00016 0.00016 Table 4 Uniform F, η=0.05, t=20 u 9 9 ∼ 0.875 0.875 1 0.583 0.536 2 0.347 0.309 3 0.190 0.168 4 0.0964 0.0850 5 0.0452 0.0400 6 0.0196 0.0176 7 0.00791 0.00718 8 0.00298 0.00274 9 0.00105 0.00098 10 0.00035 0.00033 F. De Vylder, M. Goovaerts Insurance: Mathematics and Economics 26 2000 223–238 231 Table 5 Uniform F, η=0.25, t=1 u 9 9 ∼ 0.505 0.505 1 0.0822 0.0810 2 0.00734 0.00685 3 0.00038 0.00040 4 0.00002 0.00002 Table 6 Uniform F, η=0.25, t=5 u 9 9 ∼ 0.710 0.710 1 0.265 0.239 2 0.0742 0.0670 3 0.0172 0.0158 4 0.00335 0.00316 5 0.00056 0.00054 6 0.00008 0.00008 Table 7 Uniform F, η=0.25, t=10 u 9 9 ∼ 0.753 0.753 1 0.343 0.300 2 0.130 0.111 3 0.0441 0.0379 4 0.0134 0.0117 5 0.00368 0.00328 6 0.00091 0.00083 7 0.00021 0.00019 8 0.00004 0.00004 Table 8 Uniform F, η=0.25, t=20 u 9 9 ∼ 0.780 0.779 1 0.400 0.343 2 0.183 0.148 3 0.0791 0.0632 4 0.0323 0.0259 5 0.0124 0.0101 6 0.00450 0.00371 7 0.00153 0.00129 8 0.00049 0.00042 9 0.00015 0.00013 10 0.00004 0.00004 232 F. De Vylder, M. Goovaerts Insurance: Mathematics and Economics 26 2000 223–238 Table 9 Exponential, η=0.05, t=1 u 9 9 ∼ 0.470 0.470 2 0.122 0.120 4 0.0293 0.0290 6 0.00671 0.00667 8 0.00146 0.00147 10 0.00031 0.00031 Table 10 Exponential, η=0.05, t=5 u 9 9 ∼ 0.735 0.735 2 0.370 0.325 4 0.168 0.146 6 0.0702 0.0618 8 0.0274 0.0245 10 0.0100 0.00915 12 0.00349 0.00325 14 0.00117 0.00111 16 0.00038 0.00036 Table 11 Exponential, η=0.05, t=10 u 9 9 ∼ 0.803 0.804 4 0.283 0.233 8 0.0761 0.0631 12 0.0165 0.0141 16 0.00302 0.00265 20 0.00047 0.00043 Table 12 Exponential, η=0.05, t=20 u 9 9 ∼ 0.852 0.853 4 0.408 0.328 8 0.164 0.129 12 0.0565 0.0447 16 0.0168 0.0136 20 0.00436 0.00368 24 0.00103 0.00089 28 0.00022 0.00020 F. De Vylder, M. Goovaerts Insurance: Mathematics and Economics 26 2000 223–238 233 Table 13 Exponential, η=0.25, t=1 u 9 9 ∼ 0.445 0.445 2 0.113 0.111 4 0.0268 0.0265 6 0.00606 0.00603 8 0.00132 0.00132 10 0.00028 0.00028 Table 14 Exponential, η=0.25, t=5 u 9 9 ∼ 0.673 0.674 2 0.310 0.260 4 0.131 0.109 6 0.0518 0.0435 8 0.0194 0.0165 10 0.00688 0.00597 12 0.00231 0.00206 14 0.00075 0.00069 16 0.00024 0.00022 numerically in that case only as far as we know. By arguments of De Vylder and Goovaerts 1999, Section 6 the validity of results in the classical model can often be extended to any homogeneous model. By the discussion at the end of foregoing Section 2 and by next formula 19 combined with the ∼-version of 1, the nonruin probability U ∼ t, u can be calculated in any homogeneous model.

4. Nonruin probability before ttt in case of equalized claim amounts Theorem 2.

Dokumen yang terkait

BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Tentang Asam Jawa (Tamarindus indica) - EFEKTIVITAS EKSTRAK DAUN ASAM JAWA (Tamarindus indica L.) TERHADAP DAYA HAMBAT Staphylococcus epidermidis SEBAGAI SUMBER BELAJAR BIOLOGI - UMM Institutional Repository

0 0 19

BAB III METODOLOGI PENELITIAN 3.1 Jenis Penelitian - EFEKTIVITAS EKSTRAK DAUN ASAM JAWA (Tamarindus indica L.) TERHADAP DAYA HAMBAT Staphylococcus epidermidis SEBAGAI SUMBER BELAJAR BIOLOGI - UMM Institutional Repository

2 8 26

Factors That Have Caused Dengue Hemorrhagic Fever (Dhf) To Become A Public Health Problem In Indonesia And Effective Dhf Control

0 0 6

ASUPAN ZAT BESI DAN SENG PADA BAYI UMUR 6 —11 BULAN DI KELURAHAN JATI CEMPAKA, KOTA BEKASI, TAHUN 2014 Iron And Zinc Intake in Infants Aged 6 —11 Months in Kelurahan Jati Cempaka, Bekasi City, 2014

0 0 8

KONSELING PSIKOLOGI DAN KECEMASAN PADA PENDERITA HIPERTIROID DI KLINIK LITBANG GAKI MAGELANG Psychological Counseling And Anxiety In Patients With Hyperthyroidism In Klinik Litbang GAKI Magelang

0 9 10

Resistensi Malathion dan Aktivitas Enzim Esterase Pada Populasi Nyamuk Aedes aegypti di Kabupaten Pekalongan Malathion Resistance And Esterase Enzyme Activity Of Aedes aegypti Population In Pekalongan Regency

0 0 10

PENDIDIKAN DAN PEKERJAAN BERDASARKAN KUALITAS fflDUP PADA REMAJA (GAMBARAN DESKRIPTIF DATA RISKESDAS 2007) The Levels Of Education And Occupation Of Adolescence Based On Their Quality Of Life (Riskesdas 2007)

0 0 9

TREN PENYAKIT PENYEBAB KEMATIAN BAYI DAN ANAK BALITA DI INDONESIA DALAM PERIODE TAHUN 1992-2007 Trend Of Causes Of Death Of Infant And Children Under-Five Year Old In Indonesia In The Year Period 1992-2007

0 0 8

Patern On Health Seeking Behavior And Risk Behavior Among Adult In Indonesia (Furher Analysis Data Riskesdas 2007)

0 0 10

PENGETAHUAN, SIKAP DAN PERILAKU IBU BALITA DALAM PEMANFAATAN SISA PRODUK VIRGIN COCONUT OIL (BLONDO VCO) PADA MAKANAN LOKAL UNTUK PENINGKATAN GIZI BALITA DI KABUPATEN BUTON (Knowledge, Attitude And Practice of Mother with Children Under Five Years on The

0 1 9