LIST OF CONTENTS
CHAPTER TITLE
PAGE
ACKNOWLEDGEMENT i
ABSTRACT ii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES vii
LIST OF SYMBOLS x
LIST OF APPENDICES xi
1 INTRODUCTION
1.1 Motivation 1.2 Problem Statement
1.3 Objective
1.4 Scope 1
1 2
3
3
2 LITERATURE REVIEW
2.1 Upper Limb Anatomy 2.2 Design of Present or Existing Speed Control
2.2.1 Method of Motor Speed Control 2.2.2 Method of Accelerometer Sensor Positioning
2.2.3 Method of Reducing Noise and Amplify Signal 2.2.4 Selection of Microcontroller
2.3 Performance Analysis
5
5 7
7 9
10 11
12
2.3.1 Accelerometer Sensor 2.3.2 Experimental Test Performance
2.3.3 Pulse-Width-Modulation PWM
12 14
17
2.4 Summary of Section 18
3 METHODOLOGY
3.1 System Overview 3.2 Prototype Development
3.2.1 Hardware Selection 3.2.2 Hardware Development Draft
3.2.3 Real Hardware Development 3.2.4 Software Coding
3.3 System Flowchart 3.4 Project Setup
3.4.1 Sensing System 3.4.2 Monitoring System and Data Logging
3.4.3 Collecting Data 3.4.3.1 Experiment 1
3.4.3.2 Experiment 2 19
19 20
20 23
24 25
30 31
31 32
32 34
42
4 RESULT AND DISCUSSION
4.1 Experiment 1 4.1.1 Position 1
4.1.2 Position 2 4.1.3 Position 3
4.1.4 Position 4 4.1.5 Position 5
4.1.6 G
z
Value at All Positions 4.2 Experiment 2
45
45 46
47 48
49 50
52 55
5 CONCLUSION AND RECOMMENDATIONS
5.1 Conclusion
5.2 Recommendation 59
59 60
REFERENCES 61
APPENDICES
63
LIST OF TABLES
TABLE TITLE
PAGE
2.1 Elbow movement range
7 3.1
Declaration and initialize the system instruction 26
3.2 PWM motor speed control instruction mapping
28 3.3
Smoothing instruction 28
3.5 Conversion of LSB to G Force instruction
29
LIST OF FIGURES
FIGURE TITLE
PAGE
1.1 High efficiency DC motor
2 2.1
Degree of freedom DOF for upper-limb 6
2.2 Flexion motion for elbow
6 2.3
PWM output current signal 8
2.4 Sensor positioning for method
[5]
10 2.5
Arduino Duemilanove microcontroller board
[3]
11 2.6
Accelerometer sensor working 13
2.7 Experiment movement in X, Y, Z direction
[3]
14 2.8
Accelerometer sensor signal in reaching object experiment
[3]
15 2.9
Accelerometer sensor result in lifting object using lower arm a and upward reach b
16
2.10 PWM timing diagram
17 3.1
Block diagram of the system 19
3.2 ADXL345 accelerometer sensor
20 3.3
ADXL345 function block diagram, 21
3.4 Arduino UNO Rev 3 development board
22 3.5
Hardware development draft 23
3.6 Schematic circuit
24 3.7
Real Hardware development 25
3.8 Function flow chart
30 3.9
Theorem Pythagoras technique to obtain angle 33
3.10 Position involve in sensor positioning
36 3.11
Distance between each positions 36
3.12 Wrist’s sensor position 1
37
3.13 90
Wrist’s sensor position 1 37
3.14 sensor position at Position 2
38 3.15
90 sensor position at Position 2
38 3.16
sensor position at Position 3 39
3.17 90
sensor position at Position 3 39
3.18 sensor position at Position 4
40 3.19
90 sensor position at Position 4
40 3.20
sensor position at Position 5 41
3.21 90
sensor position at Position 5 41
3.22
Experiment 2 setup experiment
43 4.1
Position 1 result 46
4.2
Position 2 result
47 4.3
Position 3 result
48 4.4
Position 4 result
49 4.5
Position 5 result
50 4.6
Z-axis opposing gravity 51
4.7 Y-axis opposing gravity
51 4.8
Comparison between position 1, 2, 3, 4, and 5 on x-axis 52
4.9 Offset at different position
53 4.10
Comparison of five different position acting on z- axis 54
4.11 Relationship between duty cycle and motor speed for the system
57
LIST OF SYMBOLS
F -
Force Vs
- Voltage supply
m -
Mass a
- Acceleration
k -
Spring c
- Damper
mV -
milivolt µA
- micro ampere
Hz -
Frequency g
- gravitational force
T -
Period -
Triple axis’s angle
- G force for y-axis
- G force for z-axis
- Degree
rad -
Radians
LIST OF APPENDICES
APPENDIX TITLE
PAGE A
Experiment 1 Position 1 63
B Experiment 1 Position 2
65 C
Experiment 1 Position 3 67
D Experiment 1 Position 4
69 E
Experiment 1 Position 5 71
F Experiment 2
73 G
Full Coding 74
CHAPTER 1
INTRODUCTION
1.1 Motivation