Scope 1 Recommendation 59 Development Of Motor Speed Control System By Using Acceleration Characteristic At Forearm For Remote Control Car.

LIST OF CONTENTS CHAPTER TITLE PAGE ACKNOWLEDGEMENT i ABSTRACT ii TABLE OF CONTENTS iv LIST OF TABLES vii LIST OF FIGURES vii LIST OF SYMBOLS x LIST OF APPENDICES xi 1 INTRODUCTION 1.1 Motivation 1.2 Problem Statement

1.3 Objective

1.4 Scope 1

1 2 3 3 2 LITERATURE REVIEW 2.1 Upper Limb Anatomy 2.2 Design of Present or Existing Speed Control 2.2.1 Method of Motor Speed Control 2.2.2 Method of Accelerometer Sensor Positioning 2.2.3 Method of Reducing Noise and Amplify Signal 2.2.4 Selection of Microcontroller 2.3 Performance Analysis 5 5 7 7 9 10 11 12 2.3.1 Accelerometer Sensor 2.3.2 Experimental Test Performance

2.3.3 Pulse-Width-Modulation PWM

12 14 17 2.4 Summary of Section 18 3 METHODOLOGY 3.1 System Overview 3.2 Prototype Development 3.2.1 Hardware Selection 3.2.2 Hardware Development Draft 3.2.3 Real Hardware Development 3.2.4 Software Coding 3.3 System Flowchart 3.4 Project Setup 3.4.1 Sensing System 3.4.2 Monitoring System and Data Logging 3.4.3 Collecting Data 3.4.3.1 Experiment 1

3.4.3.2 Experiment 2 19

19 20 20 23 24 25 30 31 31 32 32 34 42 4 RESULT AND DISCUSSION 4.1 Experiment 1 4.1.1 Position 1 4.1.2 Position 2 4.1.3 Position 3 4.1.4 Position 4 4.1.5 Position 5 4.1.6 G z Value at All Positions 4.2 Experiment 2 45 45 46 47 48 49 50 52 55 5 CONCLUSION AND RECOMMENDATIONS 5.1 Conclusion

5.2 Recommendation 59

59 60 REFERENCES 61 APPENDICES 63 LIST OF TABLES TABLE TITLE PAGE 2.1 Elbow movement range 7 3.1 Declaration and initialize the system instruction 26 3.2 PWM motor speed control instruction mapping 28 3.3 Smoothing instruction 28 3.5 Conversion of LSB to G Force instruction 29 LIST OF FIGURES FIGURE TITLE PAGE 1.1 High efficiency DC motor 2 2.1 Degree of freedom DOF for upper-limb 6 2.2 Flexion motion for elbow 6 2.3 PWM output current signal 8 2.4 Sensor positioning for method [5] 10 2.5 Arduino Duemilanove microcontroller board [3] 11 2.6 Accelerometer sensor working 13 2.7 Experiment movement in X, Y, Z direction [3] 14 2.8 Accelerometer sensor signal in reaching object experiment [3] 15 2.9 Accelerometer sensor result in lifting object using lower arm a and upward reach b 16 2.10 PWM timing diagram 17 3.1 Block diagram of the system 19 3.2 ADXL345 accelerometer sensor 20 3.3 ADXL345 function block diagram, 21 3.4 Arduino UNO Rev 3 development board 22 3.5 Hardware development draft 23 3.6 Schematic circuit 24 3.7 Real Hardware development 25 3.8 Function flow chart 30 3.9 Theorem Pythagoras technique to obtain angle 33 3.10 Position involve in sensor positioning 36 3.11 Distance between each positions 36 3.12 Wrist’s sensor position 1 37 3.13 90 Wrist’s sensor position 1 37 3.14 sensor position at Position 2 38 3.15 90 sensor position at Position 2 38 3.16 sensor position at Position 3 39 3.17 90 sensor position at Position 3 39 3.18 sensor position at Position 4 40 3.19 90 sensor position at Position 4 40 3.20 sensor position at Position 5 41 3.21 90 sensor position at Position 5 41 3.22 Experiment 2 setup experiment 43 4.1 Position 1 result 46 4.2 Position 2 result 47 4.3 Position 3 result 48 4.4 Position 4 result 49 4.5 Position 5 result 50 4.6 Z-axis opposing gravity 51 4.7 Y-axis opposing gravity 51 4.8 Comparison between position 1, 2, 3, 4, and 5 on x-axis 52 4.9 Offset at different position 53 4.10 Comparison of five different position acting on z- axis 54 4.11 Relationship between duty cycle and motor speed for the system 57 LIST OF SYMBOLS F - Force Vs - Voltage supply m - Mass a - Acceleration k - Spring c - Damper mV - milivolt µA - micro ampere Hz - Frequency g - gravitational force T - Period - Triple axis’s angle - G force for y-axis - G force for z-axis - Degree rad - Radians LIST OF APPENDICES APPENDIX TITLE PAGE A Experiment 1 Position 1 63 B Experiment 1 Position 2 65 C Experiment 1 Position 3 67 D Experiment 1 Position 4 69 E Experiment 1 Position 5 71 F Experiment 2 73 G Full Coding 74 CHAPTER 1 INTRODUCTION

1.1 Motivation