Tomasi and T. Kanade. Shape and motion from image streams under orthography: Tomasi and T. Kanade. Shape and motion from image streams under orthography:

P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Let’s create a 2m × n data measurement matrix: 37 B. Leibe              mn m m n n x x x x x x x x x D ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 2 1 2 22 21 1 12 11     Cameras 2 m Points n

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 92:137-154, November 1992. Slide credit: Svetlana Lazebnik P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Let’s create a 2m × n data measurement matrix: • The measurement matrix D = MS must have rank 3 38 B. Leibe

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:

A factorization method. IJCV, 92:137-154, November 1992. Slide credit: Svetlana Lazebnik Cameras 2 m × 3   n m mn m m n n X X X A A A x x x x x x x x x D       2 1 2 1 2 1 2 22 21 1 12 11 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                           Points 3 × n P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 39 B. Leibe Slide credit: Martial Hebert P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Singular value decomposition of D: 40 Slide credit: Martial Hebert P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Singular value decomposition of D: 41 Slide credit: Martial Hebert P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Obtaining a factorization from SVD: 42 Slide credit: Martial Hebert P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Obtaining a factorization from SVD: 43 Slide credit: Martial Hebert This decomposition minimizes |D-MS| 2 P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • The decomposition is not unique. We get the same D by using any 3×3 matrix C and applying the transformations M → MC, S →C -1 S. • That is because we have only an affine transformation and we have not enforced any Euclidean constraints like forcing the image axis to be perpendicular, for example. We need a Euclidean upgrade. 44 B. Leibe Slide credit: Martial Hebert P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Orthographic assumption: image axes are perpendicular and scale is 1. • This can be converted into a system of 3m equations: 45 B. Leibe x X a 1 a 2 a 1 · a 2 = 0 |a 1 | 2 = |a 2 | 2 = 1 Slide adapted from S. Lazebnik, M. Hebert 1 2 1 2 1 1 1 2 2 2 ˆ ˆ ˆ 1 1 , 1,..., ˆ 1 1 T T i i i i T T i i i T T i i i a a a CC a a a CC a i m a a CC a �   � � � �    � � � � �   � � P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • This can be converted into a system of 3m equations: • Let • Then this translates to 3m equations in L  Solve for L  Recover C from L by Cholesky decomposition: L = CC T  Update M and S: M = MC, S = C -1 S 46 B. Leibe Slide adapted from S. Lazebnik, M. Hebert 1 2 1 2 1 1 1 2 2 2 ˆ ˆ ˆ 1 1 , 1,..., ˆ 1 1 T T i i i i T T i i i T T i i i a a a CC a a a CC a i m a a CC a �   � � � �    � � � � �   � � 1 2 , 1,..., T i i T i a A i m a � �   � � � � , 1,..., T i i A LA I i m   T L CC  P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 • Given: m images and n features x ij • For each image i, center the feature coordinates. • Construct a 2m × n measurement matrix D:  Column j contains the projection of point j in all views  Row i contains one coordinate of the projections of all the n points in image i • Factorize D:  Compute SVD: D = U W V T  Create U 3 by taking the first 3 columns of U  Create V 3 by taking the first 3 columns of V  Create W 3 by taking the upper left 3 × 3 block of W • Create the motion and shape matrices:  M = U 3 W 3½ and S = W 3½ V 3T or M = U 3 and S = W 3 V 3T • Eliminate affine ambiguity 47 Slide credit: Martial Hebert P e rc e p tu a l a n d S e n s o ry A u g m e n te d C o m p u ti n g C o m p u te r V is io n W S 8 9 48 B. Leibe

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: